Inhibiting Action of Hydrocarbons on Ozone Formation by Silent

Abstract: The effect of various diluent gases on the energy yield of ozone generation from oxygen in commercial ozonators is discussed. The greatest l...
0 downloads 0 Views 330KB Size
Inhibiting Action of Hydrocarbons on Ozone Formation by Silent Electrical Discharge EIICHI INOUE and

KIICHIRO

SUGINO

Tokyo Institute of Technology, Tokyo, Japan

The reaction mechanism of ozone formation was studied to clarify the inhibiting action of hydrocar­ bons. The rate of ozone formation varies linearly with the hydrocarbon concentration, regardless of the type of hydrocarbon.

O z o n e f o r m a t i o n b y s i l e n t e l e c t r i c a l d i s c h a r g e is i n h i b i t e d p e r f e c t l y b y a d m i x i n g h y d r o c a r b o n s i n a i r (1). T h i s w a s t h e m a i n r e a s o n f o r t h e success of t h e s l o w o x i d a ­ t i o n of h y d r o c a r b o n s b y s i l e n t e l e c t r i c a l d i s c h a r g e . I t also caused t h e g r e a t d i f f i c u l t y i n p r e p a r i n g ozone b y t h e same process. A n i n v e s t i g a t i o n w a s m a d e t o c l a r i f y t h e m e c h a n i s m of t h e i n h i b i t i n g a c t i o n . Reaction

Mechanism

O z o n e f o r m a t i o n p r o b a b l y consists of t h e f o l l o w i n g e l e m e n t a r y r e a c t i o n s 0

+ e*

2

4Ο +

Ο* + e

(8).

(8.3 ev.)

(1)

(24.1 kcal.)

(2)

(116.4 kcal.)

(3)

ta Ο + 0

2

+ M -» 0

0 + 0 + Μ-4θ 0

3

3

+ Μ

2

+ e* -> Ο + 0

+ M

2

+ e

(4)

R e a c t i o n 4 c a n b e n e g l e c t e d , as i t s r a t e is t o o s l o w t o c o m p a r e w i t h t h e o t h e r s . T h e s l o w o x i d a t i o n of h y d r o c a r b o n s p r o c e e d s b y t h e f o l l o w i n g c h a i n r e a c t i o n , t h e s o - c a l l e d p e r o x i d e process, as d e s c r i b e d p r e v i o u s l y (1-7) : 0

Ο + Ο* + e

(1)

R H + Ο + M % R- + OH + M

(5)

R H + O H + M —» R · + H 0 + M

(6)

R- + 0 - > R 0 .

(7)

2

+ e*i

2

2

2

R 0 · + R H -+ R 0 H - f R · 2

2

(8)

I n t h e o x y g e n - h y d r o c a r b o n m i x t u r e , R e a c t i o n s 2, 3, a n d 5 a r e m u t u a l l y c o m p e t i t i v e , 313

314

ADVANCES

IN

CHEMISTRY

SERIES

so ozone f o r m a t i o n m a y be i n h i b i t e d w h e n t h e r a t e of R e a c t i o n 5 is g r e a t e r t h a n t h a t of R e a c t i o n 2. I n o u e (2-7) f o u n d t h a t t h e r a t e - d e t e r m i n i n g s t e p of t h e h y d r o c a r b o n o x i d a t i o n is R e a c t i o n 1 a n d t h a t a l l reactions take place i n a s t a t i o n a r y state. Then = 2fc [02][e] 1

fc [0][0 ][M] 2

-

2

fc [0] [M] 3

-

2

fc [RH][0][M] 4

(9)

= 0 Therefore,

[0]

is c o n s t a n t .

T h e n t h e r a t e of ozone f o r m a t i o n is -

fe[0][o,][M]

(io)

F r o m E q u a t i o n s 9 a n d 10 =

2fc [0,][e] 1

/c [0] [M] -

fc [RH][0][M]

2

3

4

(11)

W h e n t h e o x y g e n c o n c e n t r a t i o n is c o n s t a n t , b o t h t h e first a n d s e c o n d t e r m s i n E q u a t i o n 11 b e c o m e c o n s t a n t . T h e r a t e of ozone f o r m a t i o n , a c c o r d i n g l y , c a n be e x p r e s s e d b y t h e first-order f u n c t i o n of t h e h y d r o c a r b o n c o n c e n t r a t i o n . When dm dt

n υ

À; [RH][0][M] = 2/d[0 ][e] 4

Α· [0] [Μ]

2

(12)

2

3

T h e n t h e c r i t i c a l c o n c e n t r a t i o n of h y d r o c a r b o n for t h e p e r f e c t i n h i b i t i o n of ozone f o r m a t i o n is rpTTi Therefore, [ R H ] rent are definite.

Experimental

c r i t i c a l

.

2fc [0 ][e] - / b [ Q ] [ M ] t

2

3

2

becomes constant w h e n b o t h [ 0 ] 2

a n d the discharge c u r ­

Work

T o i d e n t i f y E q u a t i o n 11 e x p e r i m e n t a l l y , t h e rates of o z o n e f o r m a t i o n f r o m a i r w e r e o b s e r v e d b y c h a n g i n g t h e c o n c e n t r a t i o n of a d m i x e d h y d r o c a r b o n s . The experi­ m e n t w a s p e r f o r m e d b y u s i n g t h e a p p a r a t u s s h o w n i n F i g u r e 1. U n d e r e x p e r i m e n t a l c o n d i t i o n s i n T a b l e I , t h e m a x i m u m ozone c o n c e n t r a t i o n Table I.

Experimental Conditions

Discharge tube Effective length Space gap Outer diameter of inner tube Effective volume Discharge voltage Discharge current Reaction temp. Total pressure Flow rate Space velocity

12.0 cm. 3.0 mm. 3.80 cm. 42.5 cc. 15.0 kv. 1.45 ma. 200° C. 760.0 mm. of Hg 11.0 l.air/hour 4.15 m i n . -1

r e a c h e d a b o u t 1.0 v o l u m e % , so t h a t t h e v a r i a t i o n of o x y g e n c o n c e n t r a t i o n c o u l d be neglected. T h e a m o u n t s of h y d r o c a r b o n s a d m i x e d were m e a s u r e d b y w e i g h i n g t h e c h a n g e of t h e w e i g h t of e v a p o r a t i o n i n t h e feeder i n F i g u r e 1. T h e q u a n t i t a t i v e a n a l y -

315

INOUE A N D SUGINO-INHIBITING ACTION OF HYDROCARBONS

50ru 100 V.

Figure 1.

Apparatus

1. Blower 2. Silica gel tube 3. Flowmeter 4. Manometer 5. Hydrocarbon evaporator 6. Discharge tube 7. Cooled trap 8. Potassium iodide solution 9. Transformer

sis o f ozone w a s c a r r i e d o u t b y t h e i o d i n e m e t h o d . T h e t o t a l e r r o r of t h e e x p e r i m e n t was w i t h i n ± 3 % . T h e results are shown i n T a b l e I I .

Table II. Hydrocarbon Cyclohexane

n-Hexane

n-Heptane

Experimental Results

G./Hour

Concn. of Hydrocarbon, Vol. %

M m . Hg

Rate of O 3 Formation, Mole/Hour X 10

0.000 0.092 0.227 0.290 0.550 0.850

0.000 0.223 0.549 0.702 1.331 2.051

0.00 1.69 4.18 5.34 10.12 15.64

5.89 4.61 2.67 1.98 0.12 0.09

0.164 0.250 0.304 0.335 0.509

0.388 0.589 0.740 0.792 1.201

2.96 4.50 5.49 6.03 9.23

3.58 2.38 1.82 1.50 0.13

0.056 0.120 0.160 0.264 0.311 0.749

0.114 0.245 0.326 0.538 0.633 1.502

0.87 1.86 2.48 4.10 4.82 11.50

5.22 4.53 4.04 3.05 1.99 0.08

s

I n F i g u r e 2, t h e a m o u n t s of ozone f o r m e d d u r i n g a 1 0 - m i n u t e p e r i o d a r e p l o t t e d a g a i n s t t h e c o n c e n t r a t i o n s of n - h e x a n e , c y c l o h e x a n e , a n d η - h e p t a n e . T h e r a t e of ozone f o r m a t i o n changes l i n e a r l y w i t h t h e h y d r o c a r b o n c o n c e n t r a t i o n ( E q u a t i o n 1 1 ) . And [ R H ] w a s a b o u t 1.1 v o l u m e % (8.5 m m . of m e r c u r y ) f o r a i r . N o m a r k e d difference i n i n h i b i t i n g a c t i o n w a s o b s e r v e d o n c h a n g i n g t h e t y p e o f hydrocarbon. c r i t i c a l

316

A D V A N C E S IN CHEMISTRY SERIES 6,

5

4

\

O CYCLOHEXANE • Π-ΗΕΧΑΝΕ X n-HEPTANE

3

ο

ε

0

0.2

, Ο 0.4 0.6 0.8 1.0 1.2 1.4 CONCENTRATION, HYDROCARBON,VOL.% ' 4 ' 6 ' 8 ' 10 ' PRESSURE, HYDROCARBON, mmH

1.6

t

0

'

2

12

3

Figure 2 .

Literature (1) (2) (3) (4) (5) (6) (7)

Effect of hydrocarbon concentration on ozone formation

Cited

Inoue, E., J. Electrochem. Ibid., 23, 18 (1955). Ibid., p. 76. Ibid., p. 403. Ibid., p. 452. Ibid., p. 574. Ibid., p. 647.

Soc. Japan 22, 668 (1954).

(8) Rideal, Ε. K., "Ozone," Constable, London, 1920. RECEIVED

for review M a y 17, 1957.

Accepted June 19, 1957.