Inhibition of Rubber Oxidation by Carbon Black - Industrial

Ind. Eng. Chem. , 1955, 47 (9), pp 1820–1824. DOI: 10.1021/ie50549a032. Publication Date: September 1955. ACS Legacy Archive. Cite this:Ind. Eng. Ch...
0 downloads 0 Views 702KB Size
INDUSTRIAL AND ENGINEERING CHEMISTRY

1820

=

Vol. 47, No. 9

shearing stress, P R / 2 L dynes/sq. cm.

= Newtonian or zero shear viscosity a t temperature 2'

/::L

apparent viscosity a t temperature T , rU = Newtonian or zero shear viscosity at temperature To = real part of complex dynamic viscosity a t temperature 7' = real part of complex dynamic viscosity at temperaturr

=

'x.

-

= = = =

POLYMER

o

5 and IO T ~ 0 2

6

C u Phtholocyonine

+

0---2 S I 0 2

e

t I

'

2 S I O Z Heated

%.

e

'n

I

I

.

1

1

.

/

105

Figure 9.

I

1

REDUCED

RATE

OF

I

106

SHEAR,

_I

nTSw s e e .

=

10'

Filled dimethylpolysiloxane, 427,000 molecular weight

NOMENCLATURE

D K L P Q R

= slope A log D / A log

shearing stress a t capillary wall

'0

I n summary, the reduced variable treatment as shown by Ferry and DeWitt serves t o define a single curve for the reduced viscosity as a function of the reduced rate of shear for a given dimethylpolysiloxane over a wide range of temperature. Moreover, this technique also serves t o separate the effects of fillers into active and inert classifications.

c

To

circulap frequency, 2~ times frequency Newtonian or zero shear fluidity apparent fluidity, D,/T,, energy of activation as temperature coefficient for relaxation times 3 c

T

nominal shearing rate 4 & / ~R3(sec.-') proportionality constant in power lam length of capillary, cm. pressure in capillary, dynes/sq. cm. volume of extruded, cc./sec. = radius of capillary, cm. = reduction factor for relaxation times a t temperature 2' UT E,,,,, = energy of activation for viscous flow (from zero shear viscosities) = = = = =

Y



LITERATURE CITED

Barry, A . J., .I.Appl. Phys., 17, 1020 (1946). Currie, C. C., and Smith, B. F., IND.ENG.CHEM.,4 2 ,

2467

(1950).

DeWaele, A., Kolloid Z.,36, 332 (1925). DeWitt, T. W., SOC.Rheology, New York, Oct. 29-31, 1953. DeWitt, T. W., Padden, F., and Markorits, H., Phus. Rei., 9 1 , 2 1 7 (1953).

Einstein, A., Ann. phys., (4) 19, 289 (1906). Ferry, J. D., J . Am. Ckem. Soc., 72, 3746 (1950). Guth, E., and Gold, C. O., Phys. Rev., 5 3 , 3 2 2 (1938). Harper, R. C., Rlarkovitz, H., and DeU'itt, T. W., .T. Polptr7 Sci., 8, 435 (1952).

Iiutting, P. J., J . FranklinInst., 1 9 1 , 6 7 9 (1921). Ostwald, W., 2. physik. Chem., 111, 62 (1924). Rabbinowitsch, B., Ibid., 145A, 1 (1929). Scott Blair, G. W., Nature, 1 4 6 , 8 4 0 (1940). Smallwood, H. AI., J.A p p l . Phys., 8 , 5 0 5 (1937). Spencer, R.S., and Dillon, R. E., J . Colloid Sci., 3, 163 (1948). Warrick, E. L., and Lauterbur, P. C., IND. ENG.CHEM.,4 7 , 486 (1955).

Zapp, R., and Guth, E., Ibid.,4 3 , 4 3 0

(1951).

RECEIVED for review November 8, 1954.

A C C ~ P T KMarch D 14, 1955. Contribution from the multiple fellowship sustained a t Mellon Institiite, Pittsburgh, Pa., by the Corning Glass Works and Dow Corning Corp.

Inhibition of Rubber Oxidation by Carbon Black J

I