Ion Exchange Harold
I
F. Walton,
Department of Chemidry, University of Colorado, Boulder, Colo. 80302
we have examined Chemical Abstracts through December 1971, and Analytical Abstracts through November. References to ion exchange are easier t o find in Analytical Abstracts, but Chemical Abstracts is more nearly current. We have scanned t h e major U.S. and West European journals directly, in some cases through December 1971. We very much regret t h a t the extensive Russian and Japanese literature had to be followed through abstracts or translations. Many 1969 publications are included; we have coordinated them with our 1970 review t o avoid duplication. We have not attempted to include every reference t o ion exchange in chemical analysis, and have deliberately passed over many publications that seemed to add only minor details to well-known procedures. As before, we have included a number of references to the basic physical chemistry of ion exchange. A notable trend over the past two years has been an increase in applications to organic compounds and compounds of biochemical interest. Interactions with ion-exchanging materials that do not depend on electrostatic forces are being consciously exploited and better understood. Many of the chromatographic separations of organic compounds listed below are not, in the strict sense of the word, ion-exchange separations, though they use ion-exchanging polymers and inorganic materials as absorbents. It is hard to know how many of these to include in a review entitled “Ion Exchange,” and the line will be more difficult t o draw in future. Another trend is the development of pellicular exchangers and equipment for high-speed liquid chromatography. The new high-speed techniques have been used for organic and biochemical analysis but not, so far, for inorganic analysis. N PREPARINQ THIS REVIEW,
BOOKS AND REVIEWS
Two books published in the U.S. deal specifically with ion exchange in chemical analysis: “Introduction t o Ion Exchange,” by R. Paterson (377) and “Ion Exchange in Analytical Chemistry,” by W. Rieman I11 and H. F. Walton (424). The first is a practical manual for beginners in the field. The second discusses the structure and properties of ion exchangers, nonchromatographic applications, the theory of chromatographic columns, and the
256R
characteristics of ‘‘less common exchangers.’, Practical applications cited are illustrative rather than comprehensive. Two important books on chromatography are “Modern Practice of Liquid Chromatography,’’ edited by J. J. Kirkland (267), and “Multicomponent Chromatography,” by F. Helfferich and G. Klein (806). The first is a cooperative work describing recent developments in high-speed liquid chromatography. The second is a highly original and personal work on the theory of chromatographic fronts where different substrates influence one another’s movement. The theory is not restricted to ion-exchange chromatography but is especially relevant to ion exchange. Raising the concentration of one ionic component displaces other absorbed ions and sets them travelling along the column, each a t its own characteristic rate. An important review of the “state of the art” of ion-exchange chrom& tography is given by Salmon (436) in his plenary lecture before the Third IUPAC Analytical Chemistry Conference, Budapest, 1970. His thesis is that ion exchange will only be really useful in chemical analysis “if it can be coupled to an automatic detection and recording process.” This is h a p pening, as Kirkland’s book (267) vividly describes. Other reviews deal with radiochemical separations (85?‘), ion-exchange paper chromatography (904, %9), inorganic exchangers (304, &f), and partition chmmatography with liquid ion exchangers (72). This last review compares liquid ion exchangers with minous exchangers. The IUPAC Analytical Chemistry Conference was already mentioned; the proceedings were published separately (1) and include several notable papers on ion exchange. High-speed, hgh-resolution chromatography on pellicular ion exchangers is discussed in a symposium on clinical analysis (0). The historic issue of Science t h a t reported the analysis of the Apollo X I lunar samples (9) has, scattered through its pages, several references t o ion exchange, usually &s a reliable standard technique for radiochemical separations (Ref. 3, pp 485, 503, 509, 748) or for searching for amino acids (pp 761,771). COLUMN THEORY
The most important contribution t o the theory of ion-exchange chroma-
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
tography haa been mentioned (2015). The theory of multicomponent chromatography has been demonstrated in practice by the experiments of Mangelsdorf and Wilson (NO), who measured small dflerencea in the composition of sea water by detecting the various concentration pulses t h a t reaulted when the sample to be tested was introduced into a stream of standard sea water flowing through a cationexchange column. Plate theory was used t o predict the behavior of radioactive species whose decay time was comparable with the retention time on the column (845). Singlecomponent displacement fronts could be described equally well by plate theory and migration-rate theory (198). The effect of co-ions on ditTusion rates, and hence the resolving power of columns, was studied ($48); nitrates reacted faster than sulfates for the H+-. Zn2f and H+-Ce3+ exchanges. EQUILIBRIUM, KINETICS, EXCHANGfR PROPERTIES
There is little interest today in studying the thermodynamics of exchanges between resins and aqueous solutions. We report a three-component study of “I+, Na+, and H+ on 12y0 crosslinked sulfonated polystyrene (478), and a study of the distribution of divalent and univalent ions between an iminodiacetate resin and aqueous solutions of varying pH and ionic strength (317 ) . At high ionic strengths, it Seems that calcium ions can either be bound electrostatically or by chelation, chelation being favored a t high pH. The change from one kind of binding to another is slow enough that two peaks may appear in elution. Studies have been made of ion exchange in mixed solvents. I n methanolwater and 2-propanol-water mixtures, log K correlates with the reciprocal of dielectric constant in exchanges between Os+ and quaternary ammonium ions, absorption of Cs+ being favored by low dielectric constant (467). The exchange of singly-charged anions between waterdioxane mixtures aEd two different anion exchange resins was studied in detail (296). Effects of so!vent composition on solvent uptake and electrolyte uptake were studied. The resin imbibed water in preference to dioxane, and, as expected, adding dioxane lowered the total solvent uptake and greatly increased electrolyte invasion. It also lowered the selectivity ot the resins. Greatest differentiation between F, C1,
Br, I, and ReOl occurred in purely aqueous solutions. Equilibrium and kinetics of exchanges of quarternary ammonium ions and H+ were studied in macroporous resins using waterdiosane and water-2-propanol mistures (35, 36). Macroporous resins reacted much faster in nonaqueous solvents than do gel-type resins, and the preference of both types of resin for water as their internal solvent was strong. The proportion of water affected the equilibrium. Another study examined the solvent uptake and stability of macroporous and oleophilic resins (342). Kinetics of exchange in a phosphonic acid resin in aqueous solution (204) showed that doubly- and triply-charged cations exchange much more slowly than singly-charged ions, and that the slow step in these cases is the actual exchange a t the phosphonic functional group, rather than diffusion through the particle. Temperature effects on the equilibrium absorption of Zn(I1) by an anion-exchange resin from HC1 in mixed solvents were measured and thermodynamic constants evaluated (481); these data are of direct analytical importance but are hard to interpret, since they involve complex-ion stability as well as resin selectivity. Nuclear magnetic resonance studies of ionexchange resins yielded information about the amount of water imbibed by the resin (114, 453), the hydration of counter-ions and ion association (114, 454), the rate of exchange of water between the resin interior and exterior (115), and the rate of exchange of ions between resin particles in contact (160). The chemical shift of imbibed water is simply related to the water: polymer ratio and can be used to distinguish between pore water and imbibed water in macroporous resins (151). The water content of resins can be determined accurately by centrifugation provided account is taken of the size distribution of the beads (166). Infrared spectroscopy was used to examine phosphonic resins, both gel and macroporous. Bond strengths for 10 metals were compared, and a distinction was made between electrostatic and coordinate binding (434). A paper of great interest to anyone who uses ultraviolet or fluorescence spectrcscopy to examine the distribution of organic compounds between solutions and resins shows that when polystyrenebased resins are dried and then placed in water, organic compounds are released into the solution which come from the detachment and degradation of segments of the polymer chains. They were characterized by their fluorescence and infrared spectra (246). Inorganic Exchangers. Though equilibrium and kinetic studies are not as popular with gel-type exchangers as they once were, many
studies are being made with inorganic exchangers, particularly those whose crystal structures are known. The synthetic zeolites or “molecular sieves” have different types of cavities, and some cavities admit small counter-ions but not large ones. For such exchangers the Gaines-Thomas thermodynamic treatment must be modified (522). Equilibrium in various synthetic zeolites has been studied in aqueous (39) and mixed solvents (40, 411) as well as in molten salts, where the inclusion of Na+NO$- ion pairs was noted (313). Kinetics of isotopic exchange in zeolites (78, 79) give clear evidence of the presence of two kinds of exchange sites. Lanthanides (71) enter zeolite crystals as hydrated ions at rates governed by particle diffusion. Exchanges of Zn, Cd, Co, and Ni in Linde 4A zeolite were measured a t three temperatures ( 1 6 6 ~ ) . The structure of the nickel zeolite collapsed above 70 “C. Exchanges in crystalline zirconium phosphate were studied by several workers (102, 103, 130, 131, 195, 196, 277). Zirconium phosphate is a biprotic acid whose titration curve shows two distinct inflections, and complex structural changes accompany ion exchange. The Ca-H exchange in amorphous zirconium phosphate was studied a t temperatures up to 250 “C and thermodynamic functions were compiled (431). A similar study was made of the UOZ-H exchange, comparing crystalline with amorphous zirconium phosphate (432). Kinetics and equilibria of exchanges in molybdophosphate (106) and tungstophosphate (95) were studied. TECHNIQUES
Pellicular resins, that is, resins produced as thin coatings on the surface of spherical silica beads, have come into general use and are available commercially under the trade name “Zipax” (866-267). The beads are about 20-50 microns in diameter and have a porous surface some 2 microns thick, which may itself be used as a chromatographic absorbent or serve to bond a resin coating. Typical columns for liquid chromatography are 2 mm in diameter and 1-2 m long. They are operated a t high linear flow rates and high pressure, and mixtures of ribonucleosides, for example, are analyzed in 10-20 minutes. Several references to the use of such columns appear in Table XI1 (20, 76, 77, 206, 378, 461, 483, 506). Routine analysis of urine is reported (83). Surface-sulfonated polystyrene resins permit rapid separations of inorganic ions (464, 466). Glass capillaries have been coated internally with ion-exchange resin films, but chromatographic separations in these tubes are diesppointingly slow (229, 295).
Meanwhile, spherical resin beads with carefully controlled diameter and crosslinking continue to be used for exacting chromatographic separations (86, $97, 414) There are no new developments in detectors except for a special detector used for the special problem of difference chromatography of sea water (319). This uses ionexchange membranes and an electrochemical concentration cell. Thermal detectors have been a disappointment, but are useful in special cases (500) and have been compared with refractive index and ultraviolet detectors (348). Ultraviolet detection is combined with gradient elution for the analysis of body fluids (249). A flame ionization detector for alkali and alkaline earth metals is described (22). NEW AND SPECIAL EXCHANGERS
Inorganic. Hydrous antimony pentoxide, called HAP, is finding wide use. I t s selectivity for sodium ions is applied in activation analysis to absorb unwanted sodium-24 activity (171, 363, 417, 514). It selectively absorbs silver ions (363), strontium (279), and tantalum (396), and absorbs fluoride ions from concentrated HCl (526). Tin dioxide is an amphoteric exchanger with strong affinity for phosphate ions and U02 (127). Tin(1V) phosphate (113, 121, 162) and arsenate (113, 407, 408) have been prepared in crystalline form, and separate alkali and alkaline earth metal ions. Lanthanide ions are strongly absorbed. Tin arsenate gives good separations of lead (strongly absorbed) from zinc and manganese (407, COS), and tin molybdate separates Fe(II1) from All Mn(I1) from Fe(III), and many other elements from one another. Tin(1V) ferrocyanide has the formula (SnO)a(OH)aHFe(CN)e.3H20 and is selective for the alkali and alkaline earth ions. Exchangers based on titanium have been studied, including the arsenate (616), antimonate (406), phosphate (133, 615), molybdate (116), and tungstate (116, 216, 400, 401 , 404). Examples of their uses appear in Table I. Zirconium tellurate (415, 602) is a new exchanger; zirconium oxide (7), zirconium phosphate (7, 438, &O), and zirconium phosphate silicate (520) continue to be used. Thorium arsenate, T ~ ( H A s O ~ ) ~ . HisZ selective O, for lithium ions (14). Thorium phosphate, Th(HP04)2.3Hz0, has been produced in the form of fibrous sheets (13). Chromium polyphosphate glasses absorb sodium ions much more strongly than ions of zinc or copper, and allow the alkali metals to be separated from one another (61, 564). They have been prepared with different Po4 : Cr ratios (666), and appear to be linear polymers.
ANALYTICAL CHEMISTRY, VOL. 44,
NO. 5, APRIL 1972
257R
Table 1.
Inorganic Applications
The order of elements is based on the periodic table, with the actinides last. Abbreviations: A, anion exchanger; C, cation exchanger; I, inorganic; Chel., chelating or special resin; Cell., cellulose-based exchanger; P, paper; T, thin layer; Liq., liquid ion exchanger. Eluent Elements Separated from Exchanger Elution order Notes HNO~-NHINO~ Li first Alkali metals Each other I(Sb20s) Automaii Alkali metals I Li first NH4C1 Each other, Ca, Sr, Ba Each other, Ca, I ... *.. (61, 116, Na first Na, K, Rb, Cs Sr. Ba 437, 619) In basic rocks Li first Li Ca ' C CHaOH-HCI (4961 Li absd. Thorium arsenate Li Na I (14) HCl, e& ' 1171. 363. Na absd. K, other elements Na Activation anal. I(Sbz0s) Na
Sulfonic resin For traces K Phosphomolybdate Trace Rb
NHdNOa, HNOa HCl, EDTA Nonaq.
Cs passes
I
HCI
Cs absd.
SnOs exchanger Binary seps. Distrib. ratios gwen Exchangers compared In natural water
cs
C A I I I
HC1 HNOa HCl
cs cs cs
Na, Ca, Sr Na, Ba, Y Na, K
I C I
Rb
Cs, Na
...
Na absd. Pu absd. K, Rb, Cs Sr fist Cs absd.
Other elements Pu K, Ag, T1 Sr Sea water, soil
K NHd Rb, Cs
...
Cs absd.
cu cu cu
Fe Fe, Cd, Co Nil Fe
C Cell. I
Tartrate, P,O, HCl HCl, HNOa
Variable
cu cu cu
Ni, Zn Others Others
C C Chel.
Complexing
c u fist Cu absd. Cu absd.
cu
Ni
A
cu cu
Ni Zn
I C
Ag, c u Ag Ag Ag Ag Au All Au Au
Al Ca, Mg Cd - ..
Keratin Cell. C Redox C Chel. AP C A
Mg
Cu, etc. Pb Other elements Others Others Others Each other Each other Each ot.her Each other Fe, Al, etc.
Acetate I k O l )
*..
Ai, others MgJ Ca Ca, others Biol. samples Biol. samples Each other Each other Pb, Cu, Al, Fe Fe, Al, Ti Water Ca, Ba, Y Phosphate Fission products Bi, TI, Zr Pb, Ag, Ni Ca, Mg, Ni Ca, Mg Al, Cu, Fe Cd, Fe, Pb
Cd Cd Cd Cd Cd Hg Hg
Zn, Cu, Pb Zn, Fe, Mg Other elements Other elements U Other elements Other elements
T, Cell. A Chel. C, Chel.
Hg
Other elements
I
258R
0
K N ~
Diethanolamine
...
HCl HCl H ClO4-HNOa Various CHqOH-HNOa Various HCl, CDTA (N&)&Oa Acetate Nonaq.
C T Chel. I A Chel. IP A C C Chel. C C C Chel. I C C A Cell.
Alkali earths Alkali earths Ca, Sr, Ba Ca, Sr, Ba Be Be Be Be, Al, Ti Mg Mg Mg Mg, Ca Mg, c a Mg, Ca Mg, Ca Sr Sr Sr Sr Zn, Cd, Hg Zn, Cd, Hg Zn, Cd Zn, Cd Zn Zn
A1
Pyridine; kethanolamine KNOa phthalate Na$ba HCl acetone
Acetate Complexing Nonaq.-DMSO Acetate, EDTA Triethanolamine
...
Lactate HCl
HCl, CKOH
...
I
...
C Chel. C A
HCl, C Z 6 0 H
...
c, A
...
Cu absd. Cu absd. Variable Ag, Cu absd. Ag, Cd Ag, Mg Ag absd. Ag, Pb Au absd. Au absd. Au absd. Au absd. Be first Mg, Ca, Sr, Ba Variable Cs, Sr, Ba Be first Al first ... Be absd. Mg absd. Na, Mg
...
NO. 5, APRIL 1972
Radioche'kcal Radiochemical Ag reduced HCI eluates Pb
... ...
Carboxylic resin From elemental Ge Eluents compared
...
HCI, Sr'fiist
... ...
Special resin Iron meteorites
Mg(OHji pptd.
...
A1 first Mg, Ca absd. Sr absd. Y, Ca, Sr, Ba
Mg, Ca; Sr sep.
%::F
.
.
1
Sr passes Zn, Cd, Hg
...
.. Zn eluted Fe, Zn, Cd
Hg absd.
(440) (166. 3eU) (334 66oj (616 ) (306, 392) (808, 854)
Eth lenediamine aided High temp. Pyr., Zn first
Some isotope sep.
Cd absd.' Hg absd. Hg absd.
HCl
Titanium exchanger Aq. CH3OH (506) Weak acid resin
Mg, c a ' '
Zn, Cd (in C) Cd first Cd eluted
E, A
ANALYTICAL CHEMISTRY, VOL. 44,
*..
...
Batch In rock
... ...
...
... ... ... ... Various eluents ...
From sea water
compared Traces in water
(388)
1386
Table 1. Elements
Separated from
Inorganic Applications (Continued) Eluent
Exchanger
Elution order CHaHg first
Hg (inorg.)
CHaHg, etc.
I
Phosphate
Hg B B
AP A A A, c I C P A A
HC1 NaOH HF, NaOH HF, HCI
sc sc sc
Other elements NaOH Soil, water Fe, Ti, Ca Fe, Mg, In Ti La, Th Ti Rocks
Y Y Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides
Sr, Cs, Fe Lanthanides Ca, silicates Fluorspar U, fission products U, fission products Steel Each other
C
Lanthanides Lanthanides Lanthanides Eu Pm Ga, A1 Ga Ga Ga Ga Ga Ga
Each other Each other Each other Am Others V, Fe Al, In, Fe Fe, Al, In, Zn Fe In, AI In, TI
C A A, I A A A C
In
Sea water
Chel., A
In In
Rain water Sb, Ag, Cd
C C
T1 T1
Others Others
c, A
Si Si Ti
P P, As Al, Fe
Cell. A C
HWO,, EtOH NH3, NaNO, HzSO~,citrate
SiO, Po4 sio3, Po,, AS04 Ti, Al, Fe
Ti
Fe
A
NaOH
Fe, Ti
Ti Zr Zr Zr
Impurities Ti, Mo, Sc Hf Hf
A Liq. C I
12N HCl HzSOd Formic, HN03 Formic acid
Ti passes Fe, Zr, Mo Zr, Hf Hf, Zr
Hf
sc
A
HzSOc
sc, Hf
Ge
Fe, A1
A, C
H C1
Ge passes
Ge Sn Sn Pb
Fe, AI Cu. Fe. Ni Oxidation states Fe
A A IP A
HC1 HCl Acetate HC!, HBr
Ni, Fe,' Cu, Sn Sn(1V) faster Fe, Pb
Pb Pb Ammonia N anions NO,
Zn, Cu Zn, LMn, Cr Urea, etc. Each other NOS
A I I, c A A
HCl, "03 HNO,, XH4NOI CSCl NazS04, NaOH NaOH
NO2 Phosphates
Sea water Each other
A A
HOAc KCl
PO1
Others
I
...
v
Fe, Al, Mn
I
...
V Nb
Mo, W Zr, Pa
Liq. A A
Al
A1 Al
Al
C
HzOZ,HCl Nonaq. HCI, H F ("a)zSO4, Ha04 Citrate Complexing Compiexing HC1 Complexing HCl, nonaq. Nonaq. Complexing
E, A
Nonaq. Complexing
c, A
C C C
y ,;
p
c
Hg absd.
*..
... AI, Ti,-Fe
... Al, Ti ... Sc, Ti Sc eluted
In steel'
Ca, La U, La U, La La, Ce absd.
...
' '
Radioche'kcal
...
...
...
Also I
...
Temp., crosslinking effect
...
HCl, KaOH KSCN, HCl Hx0. "02 CarbonatesHCl. HiSOi
NaOH'elutes Ga Ga, Al Ai, In, Fe, Ga Al, In, Ga, F e Fe(II), Ga Ga, In, Al T1, In, Ga In absd.
...
Sb, As, In, Ag ..,
T1 passes
Displacement Liq. Le., for TLC By displacement
..*
Polarographic Org. sollkht changed Solvent xtr, activation Activation Activation; many elements Temp. raised Cd, In etc. retained .. In steel Fe(CN)B3-not absd. Ti molybdophosphate formed
...
On silica gel Elute Hf w. HNO, Lanthanides also separated Elute Hf w. 2M acid Weak-base A; for coal GeC14distiiled In bronze Meteorites (373)
Cu, Pb, Zn Zn, Mn, Pb, Cr
...
NO3 last NO*, NO3 .,.
...
HNO,, HOAc
...
...
E u first
Chel.
Selective'exchgr.
Y, Fe, Cs
LicI, ELOH
HF, HCI
Notes Hg el. w. dithizone Traces in water
&PO4 strongly absd.
.*.
V, W, Mo Nb, Zr, Pa
Biochemical
... Other anions studied Azo dye absorbed Cyclic polyphosphates Hydrous SnOz Selectivity depends on exchanger
...
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
4
259R
Table 1. Separated from
Elements
Inorganic Applications (Continued)
Eluent
Exchanger
HF
Elution order
Chel. C I A I A C
HISO, nonaq. HNOa NH8, NaNO,
Nb, Ta Ta, Pa Ta absd. Si, PI As
Malonaie' Formic acid
Bi, Cu
C
HCl, HISO, HC1 HCl, etc.
Cu, Bi (A) Bi abad. Pt, Bi, Pb
Elute w: 'HSO, In alloys
EDTA Nonaq. Nonaq. CNS EDTA
Bi abed.
Traces
Cr absd: * Cr absd.
Sb Bi
Nb Pa Others P, Si Others Others Cu, etc.
Bi Bi Bi
CUI etc. ROCkS Pb, etc.
Bi S anions S anions Cr Cr Cr
Pb, Fe Each other Phosphate Other elements AI, Fe Complexes
C CT C
Mo Mo
Lake water Fission prods.
Chel. A
HCl, H F '
Mo absd. El. by 1M HCl
Mo, W
Rocks
A
Sulfate
Mo, W a b d .
Mol Tc Se Se Se F
Others Hg Te, Au Oxid. states PO,, etc. Other elts. Zr, U
C A A' AT AP
Various HNOa HCl HCl
Mo, Tc absd. Se, He Se, Te, Au Se(IV), Se(V1)
AP AP
Mn Mn Mn Re Re
Water ClO,, BrOl Water Others Protein-I Sr, Mg Other elements Cu, Cr, Mo MO Aq. solns
Fe Fe
Ta TB
Ta
As04
As
F F
c1 Br BrO,
I I I
-1
A
C C
pc
A, A
c
*.*
HC1 KNOa PH 4
... ... ...
...
A
A A C C
...
:E
... ...
F absd.'
*
CI pa&&' Br absd. BrO,, ClO,, 10, I absd. I2 absd. Inorg. I absd. Mn, Mg, Sr Mn last Mn last (C) Mo Re Red4 strong absd. Fe absd. Al, Fe
A
Citrate HC1-acetone "08, HC1 Acid "08, NHa
Concd NaCl A1
Chel. A
Sulfate
Fe Fe Fe Fe
Others Others Others Co, Ni, Zn
A A, c Redox A
Fe, Ni Fe, Ni co co co co Ni
Al, c u Cu, Ca, Al Others Ni Ni Ni, V Others
I A C C C A C
Ni Ni Co, Ni Co, Ni Co, Fe Nil Pd
Others Be U, Mo, Y MnOn Rocks Zn, Cd, Co
A A A A Chel.
HCl HF, HCl "08, CHIOH HCl, PrOH HCl NHa, HCl
Ru Pd, Ir, Ag Pd, Rh, Pt Pt Th
Fission prods. Pt Others Ni, Fe, Cu Others
I A C A A
HCl HCl, HNOs Thiourea HNOa
Ni first Ni, Be Co, Ni first Ni, Mn, Fe, Co Co, Cu, Fe, Zn Ni, Pd, Cu absd. Ru absd. Ir, Ag, Pd Pt etc. abs. Pt passes Th absd.
Th Th Th Th
Others Lanthanides Ti, Sc U
C C A
c, A
Nitrobeneoic acid Complexing KSCN HCI, NHdNOa
Th passes Th, Lu Th, Sc U, Th
Pa
Th
A
HF, HISO,
Th, Pa
260R
Note
*c
c, A
HCl HCl
Fe last
HCl, NiCh
Fe absd: '
HC1, H&O, Various Acetate HCl, DMSO KCNS HCl, acetone
Ni, Fe
...
...
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
Co, Ni Co, Ni
...
Ni, Th, 'habsd.
SbrOs x&;;.' In steel Selective Elute w.HISO, Many elements WP.
Thionatk's'sep.
...
Malonate,' acetate complexes sepd. Solvent extr. used Se . from Np, Zr, &b Eluted by NaOHNaCl Activation
..
Se fastest
..
Phosphate -rock SbtOj xgr. Nuclear fuels Excess I X-ray det . BrOa less abs. Pre-treiieh xgr.
Sea water' sdfate cbkplexes absd. High-speed chrom. Traces Reduce to Fe(I1) Purification of Ni, co Sn molybdate xgr. Ferron complexes Eluents compared Equil. data given Sc, Ti, Th also Elute Ni with dimet hylglyoxime Purific of Ni In pure Be0 Mo also sep. Cu, Fb, Fe sep. Activation anal. Dioxime resin Reduced by s204 Radiochem. Au also sep. HC1 elutes Th Radiochemical Eluents compared Aq. acetone Th nitrate abs. by A
U
Separated from tu,etc.
U U, Pd, Au U
Elements
Table 1. Inorganic Applications (Continued) Exchanger Eluent Elution order
Notes
Ref.
A
HCl
U absd.
Glycine (836)
Others Others Fe, Cu
Cell. Liq. A, c
Butanol HOAc HClO, Various
U absd.
Ring oven Distrib. described U(IV)-U(VI) sep.
U U NP NP NP, pu
: 3f:2s% Pu, U
HCl, DMSO
Pu, U Pitchblende
C A C A A
Cu, U, Fe U absd. ND. NP, Ti. U, Pu pu Pu, U, NP rriulrw Elutes Np
NP NP
U, Th U, Th, Pu
A I
NMerOH HNOa
Np passes U, Th, NP(VI)
NP Pu
U, fission prods. Soil, etc.
Liq. A
Pu Pu Am Am Cm Bk
Th Zr, Nb Eu, etc. Cm Cf Ce, Cm, Eu
A I A I C A
HCl, ” 0 3 , HF HCl 12M HN6,, ascorbic HC1 HNOa g N m j y
Absd. from HNOa Th passes Pu passes Eu, Am Am(V), Cm(II1) Cf, Cm Bk, Ce
Niobium phosphate exchangers have been made (494). There are few reports of ferrocyanide exchangers, compared to earlier years, but the ferrocyanides of zinc (251) and copper (418) were prepared in different ways to maximize their absorption of Cs. Organic. Interest continues in preparing new types of chelating resin with specific affinities for certain elements. A polymer made from 2-(2-hydroxyphenylazo) benzoic acid is selective for iron and calcium, and absorbs strontium from concentrated sodium chloride solutions (57, 68). A resin with dioxime groups is selective for copper and palladium (501). Another, made from 2-carboxy-2’-hydroxy-azobenzene is selective for beryllium (59). Another, made from vinylpyridine, absorbs Cu(II), Co(II), and Ni(I1) so strongly that these ions are not removed by 25y0 aqueous ammonia (38). A polymer of triaminophenol and glyoxal absorbs copper from sea water down to 1 part in log (663). Others are selective for gold and platinum (118). The resin with guanidine and sulfoguanidine groups, described in 1967 by Koster and Schmuckler and now made commercially, not only absorbs gold (179, 180) but also mercury, including CHaHg (302). Naturally these resins are being used to analyze environmental samples. A new selective polymer of natural origin is chitosan. It is made from chitin, a constituent of crab shells, by deacetylation, and contains 10% of nitrogen in the form of glucosamine units (362). It has a remarkable affinity for heavy metals, and collects Zn, Cu, Pb, U, and Hg from sea water along with many other metals (351, 362). One way to use it is to dissolve it in formic acid, then reprecipitate it by
WRr HBr “08,
n u HCl
...
HCl
U absd. c u , U (C)
raising the pH, at the same time coprecipitating many trace metals (360). It is selective and was used to remove trace metal impurities from thallium(1) nitrate (363). Wool keratin is a selective exchanger for certain metal ions, such as Ag(I), Cu(II), and Pb(II), and may be used for thin-layer chromatography (66). Alginates and polyuronides are selective anionic polymers (198). Macroporous chelating resins have been prepared with arsonate and iminodiacetate groups (211) and used for various chromatographic separations. Exchangers of fibrous form have been made from fluorocarbons (70, d99), and polyacrylate resins are made in the form of cloth (318). No new redox resins are reported, but quinone-hydroquinone polymers were used to recover silver ( 3 8 3 , and columns of alumina (370) and zirconium oxide (548), impregnated with strong oxidizing or reducing agents, were used for analytical purposes. Separation of optical isomers is now a reality. By reacting dextran (Sephadex) with cyanuric chloride and then with I-arginine, an optically active absorbent was prepared that separated d- and I-dopa almost completely, allowing both to be desorbed from the column (27). A resin made from chlormethylated polystyrene and I-proline, complexed with Cu(I1) ions, resolved a number of amino acids into their d and I forms (119). Separations of dl from ZZ polypeptides are noted (125). Cobalt(111)-ethylenediamine comples ion was resolved into its optical isomers (556). Cellulose, agarose, and polysaccharides are the basis of exchanger “pearls” (124) and lipophilic exchangers (136). By cross-linking, molecular-sieve char-
(836,486, 628) (61 (167) (38, (8871 (899) (81) (110) (364)
Fibrous‘xh. Purific di Np Natural abundances Citrate added Oxidation states sep. Sep. scheme given Environmental
(326)
(167,468) (123)
Reduced’io Pu(II1)
...
\
Variables studied BklIV): . . other seps.
,
(97, 893, 606,660) (386 ) (680) (186j (343, 642) (19) ($67, 378)
acteristics and volume stability are introduced (169). Dipolar “ion-retardation resins” find use for salt removal in biochemical analysis (198). Specially prepared dipolar ion eschangers (389, 390) separate proteins; lipophilic eschangers (17, 18) separate phospholipids. It was only a step further to prepare polymers with polar groups that are not ionic, and use them for special chromatographic separations. The name “interactive polymer networks” (154) has been proposed for these materials. They will be discussed below. Finally we note that macroporous (macroreticular) resins are widely used in ion-eschange chromatography, both for large organic ions and for metal complexes in nonaqueous media. Many esamples are given in the Tables. A macroporous resin carrying nickel ions was used in gas chromatography to separate CO, CO,, and air. It was most effective if Ni(I1) was first reduced to Ni metal. This retarded CO without producing a volatile carbonyl (369). NONCHROMATOGRAPHIC USES
Microstandards. Single beads of ion-exchange resins call be used as containers for determinate q u a n t i h of ions. Their diameter is measured with great precision by a microscope; the volume is strictly proportional to the mass of the ions, which may be of the order 10-9 gram. This idea was proposed by D. H . Freeman in 1968 and has been further developed in the past two years (153, 469, 470). Resins used in this way are carefully prepared to ensure their homogeneity. Single cubic crystals of zeolites (470) may be used for the same purpose.
ANALYTICAL CHEMISTRY, VOL. 44,
NO. 5, APRIL 1972
e
261 R
Attention was given to the release of ions from the resin beads; resins containing Cr(II1) could be quantitatively “unloaded” with 30% hydrogen peroxide at pH 7 (469). Beads loaded with radioactive tracers served as standards for Sr, h i , T1, and I at the microcurie level (191, ,#I). Batch Processes. The old FolinWu for determining ammonia in urine by absorbing i t on a siliceous cationexchanger has been adapted to cationexchange resins, using a specially prepared resin which absorbed ammonia but did not absorb creatinine, urea, putrescine, and other substances (643). Ammonia in blood was determined by a similar test (413). Zirconium phosphate works in the same way (687). Batch procedures are fastest with very finely-divided absorbents, but fine particles settle slowly. They can be coagulated by a suspension of a resin or other colloid of opposite charge type (384). Phosphate and calcium ions were removed by shaking solutions with a mixture of finely-divided anion and cation-exchange resins. Stirring solutions with resin-loaded papers, or filtering them through paper disks or ion-exchanging membranes, are common ways to collect trace metals for subsequent determination by x-ray spectroscopy (180,316,419, 604, activation analysis (43), or emission spectroscopy (99). Gold ( I @ ) , mercury (43, SO$), and bromine (412) have been determined in natural waters by these techniques. Papers of ion-exchanging cellulose have been used in the ring oven (6). An interesting ring-oven technique is to precipitate radioactively-labeled cadmium su!fide in the center of a paper
disk, then measure traces of Cu and other metals by dropping their solutions on to the radioactive CdS and measuring the radioactivity released (989). Selective precipitation inside resin columns was used to separate metal ions; for example, a SOAoaded anionexchange resin selectively retained Pb, Ba, and Sr (96g). Suspended resins were used to achieve phase separations during radiometric titrations by EDTA (2001, 902). A sensitive qualitative test for nitriles, distinguishing them from imides and amides, is described which uses Nessler’s reagent and a few resin beads (409). Short resin columns are often used io remove undesirable cations, replacing Free nitric acid them by H or “ 4 . was thus measured in aged uranyl nitrate solutions, slowing the formation of hydrolytic species (980); cations were separated from apatite to measure phosphate, fluoride, and total metal ions (26). The cations of clay were converted to acetates for subsequent analysis by paper chromatography (1467, and bromine in urine was determined by flame photometry as InBr after converting all cations to NHI (187). Trace metal impurites in A!Sb were determined by emission spectroscopy following their collection on cationexchange resin (99). Resins carrying indicators are used for rapid, rough measurements by packing them into glass tubes, passing the solution through them, and measuring the length of resin that shows a color change. Acids and bases (334) and copper ions (364) were so titrated. A novel method for measuring ionic concentrations in solutions is to pass
Table 11. Distribution and SepGration Studies of Many Elements Abbreviations: PS, polystyrene sulfonic acid; PQ,polystyrene quaternary base; DEAE, diethylaminoethyl cellulose; liq., liquid ion exchanger. Exchanger Solvent Notes Ref. PS HC1-acetone 0.3M acid (582) PS HC1-acetone 54 cations: IICl, water (490) varied PS Formic acid, water, 20 cs,tions dioxane PS Fission products separat.ion (624) ... (63\ NaNOTEtOH PS, PQ KCl-MeOH Chelating agents (306) PS,PQ EtOH, PrOH, acetone, (640) “03-various PQ DMSO, methvl - ~lvcol, -- , tetrahydrofurane MeOH, EtOH, HC1 Also NhlehC1 PQ PQ macroporous HC1, HSCN, rtcetone HSCN varied PQ li Thiocyanate Separations PQ: P%, liq. Various 25 elements sep. Chelating ... Trace separations from salts Phosphoric, Various 8 elements macroporous DEAE MeOII, acetone, HSCN I n TLC DEAE MeOH, HzO, HCl HCl, HzO varied DEAE BleOH. HOAc. H&Od I n TLC . . Chitin, chitosan HzO, sea wate; Trace cations Cr phosphate HCl, NHiCl 38 cations Ti antimonate 27 cations ... Zr phosphate Separations Zr t.ellurate HC1, N&Ci 45 cations
262R
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
them through a min column carnying a radioactive tracer. Measurable amounts of tracer appear in the effluent after one void column volume, and increase exponentially as more effluent passes. The slope of the (log activity)volume curve measures the initial concentration (60). Electrophoresis on resin-loaded paper gives chromatographic separation of metal ions. As the ions approach the cathode, the pH rises because of the hydroxyl ions produced a t the cathode. The ions slow down, and precipitate as hydroxides or concentrate into narrow zones (139). Thin-layer chromatography of metals on ion-exchanging materials is mentioned repeatedly in Table I. Systematic studies h w e been made of thinlayer chromatography on anion- and cationexchange resins (148) and liquid ion exchangers held on solid supports (74, 148), and comparisons made with column chromatography. INORGANIC APPLICATIONS
General. Table I summarizes separations of inorganic ions. Many references report several separations, of which only one or two examples could be cited in the ts,ble. We tried to make our Review more useful by including Table 11, which lists most of the publications that report tables of distribution ratios for many elements, and includes some, but by no means all, of the comprehensive separation schemes for complex mixtures. One distribution study deserves special mection, that of Walter and Korkisch on the anion exchange of metals in mixtures of nitric acid with water and seven organic solvents. For brevity this is cited under one reference number (640),but there are five long papers with a vast amount of useful informstion. Multicomponent analyses not listed in Table I1 include the separation of fission products into 6 groups by cation exchange in resins of different crosslinking (6,924); separation of. transition metals and Zn by anion exchange and eluents containing acetate (691); the anion-exchange behavior and partial separation of 12 anions in mixed solvents (181, 1%); separation of 12 metal ions by reversed-phase thin-layer partition chromatography on liquid ion exchangers (112), of 6 transition metals on resin-impregnated paper j190), and of 5 transition metals through their peroxy complexes, stabilized by chelating resins (84). The role of ion-exchange separations in activation analysis is as important as ever. They have been applied to lunar samples (S), meteorites (9U7,S o l ) , terrestrial silicate rocks (910, 237, 3,9231, metallic molybdenum (141, l4@, scandium (33), titanium (369), germanium
(&0), and the platinum metals (104). Other examples are cited in Table I. Emission spectroscopy was used as the “finish” following anion-exchange separation of Fe, Cu, Sn, and Bi from other elements (16). Silicate rocks were fused with lithium borate and their cations fixed on a resin for spectrographic analysis (174). Complex Ion Studies. Ion exchange chromatography is often used t o separate “stable” complex ions. We cite here the separation of difacetate ferent Cr(II1) malonate (93,90), and propionate (608) complexes. Ionic charge is the main basis for such separations, but cis and trans isomers are separated, the trans forms, with the smaller dipole moments, being eluted first (93). Co(II1)-ethylenediamine complexes were separated, and the optical isomers of Co(en)s8+ were resolved by eluting with d-tartrate (666). Complexes of ruthenium were separated, as well as different oxidation states, and the separation was used to prepare lo*Ru in high specific activity (337)
9
Ion exchange serves to characterize “labile” complexes in solution, including aluminate complexes in 1M NaOH, where the Al(OH),- first formed poIymerizes appreciably after 7 days (667), and polymeric hydroxy species formed slowly in uranyl nitrate solutions (380). Thiocyanate complexes of Co(I1) (493), Pb and Tl(1) (60) were studied with anion-exchange resins. Chloride complexes of Ca and Sr are absorbed by an anionexchange resin from hydrochloric acid in water-dioxane (117). Complexes of metal ions with uncharged nitrogen bases have the same charge as the hydrated metal ions and are absorbed by cationexchange resins. However, they are absorbed to differing degrees, and the curves of dist,ribution ratio against free ligand concentration have characteristic shapes. At high ligand concentrations, hydroxy complexes form and the distribution ratio falls. The ligands pyridine, triethanolamine, and ethylenediamine and the metals Cu, Zn, Cd, Nil and Co were studied by Incz6dy (291) and separa; tions were made. Isotope Separations. Isotopes of nitrogen were separated by cycling a mixture of ammonia and N,N’-diaminoethanol between a pair of anionexchange resin columns, one at 10 “ C and the other at 40 OC; up to 90% enrichment of l5N was obtained (86). Isotopes of lead were separated by cation exchange in solutions of EDTAtype complexing agenb, where ¶%Pb gives more etable complexes than mPb. A chelating resin was also used ($33). ORGANIC AND BIOCHEMICAL APPLICATIONS
Table I11 summarizas these applications, b u t some general comment is
necessary. First, the number of reported applications of ionexchanging materials to organic and biochemical analysis has increased spectacularly. The new high-speed techniques of liquid chromatography account for some of this expansion. Second, there is growing recognition of the role of nonionic forces between organic substances and ion-exchanging materials. Many of the separations listed in Table I11 involve the binding of uncharged molecules, a striking example being the separation
of isomeric butyl alcohols, on a potassium-loaded polystyrene-type resin (662). The chromatography of carbohydrates on polystyrene-type resins, both anionic and cationic, is well known. Aromatic compounds are absorbed and desorbed by porous styrene--divinylbenzene polymers that contain no ionic groups. Such materials have been prepared for liquid chromatography by polymerizing styrene with m- or p-divinylbenzene in the pores of silica gel, then dissolving the silica in hydrofluoric
Table 111. Organic and Biochemical Applications Compounds Exchanger Eluent Notes Acids Formic acid Fatty acids Fatty acids Dicarboxylic Dicarboxylic, tricarboxylic Dicarboxylic, hydroxy
A C-Na A C A
Formic acid Hz0-E t OH NaOH-PrOH Acetone-HzO sol, PO! -
14C isolated CrCe In detergents Mono-also Complex mixts.
A
NaCl, Mg(0Ac)z NaNOs Borate, NOa NiCl?, FeCls
Sugar derivs.
Incl. alcohols Industrial use
Nitroso- also
C
HzO MeOHHOAC EtOHHOAC DMF
A A
HOAc Various
Weak bade resin
c, A c, T C-K
NaC1-PrOH Citrate, HC1 HIO
Maleic, fumaric Aromatic, COOH Aromatic, COOH Aromatic, unsat. Aromatic, OH
A A A T C
Aromatic, OH
A
Pellicular Incl. SOsH Incl. phenolic AgzO-silica gel “8 DOPA metaboCitrate lites NaC1, MeOH Vanillin derivs.
Phenols, nitrophenols C Phenols, chlorophenols A Naphthols, naphthoic acids Aminosalicylic Fulvic, quinic Sulfonic, phenolsu!fonic Sulfonic, aliphatic Phosphonic, amino Alcohols, isomeric butyl Amino acids Group separation
C-Fe
+
c, T
Various
General
C
Li citrate
General
C
Various
General General General General Proline, others Betaine Creatinine Cysteine, glutathione Glutamic, aspartic Hydroxyprolines Iodoamino acids Methylamino acids Tryptophan
C C-Zn Cell.
c, T $lc
Special A $lC
C C C
AcetaielZn Pyridine Citrate HzO, NHv Hz0 Citrate Chloracetate
... ...
Citrate
C
...
Polypept,idee
c, A
...
Proteins
Chel-Cu Chel-Na
NHs KOH-CU
C Special
Citrate
Nitrilotriacetic
...
Aminophenol retained
Salt removal, concn. Refined resin Resin prep. varied Review (381) Ligand exchange As dansyl derivs. Opt. isomers sep. Opt. isomers sep. I n sugar juice In soups
...
Sep. from amines
In feeds;’ other amino acids sep. In waters: metals (6441 removed by resin Macroporous resins Amino acids also Collagen-Cu not abs. Snake venoms Dipolar absorbents (Continued)
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
263 R
Table 111.
Organic and Biochemical Applications (Continued)
Compounds Amides, esters Amines, aliphatic Mono- and diDiamines, polyamines
Exchanger C
C C
Eluent EtOH-HC1
Notee Colored derivs. of alcohols, amines
Borate Pyridinium acetate HC1
15 components Carboxylic resin
Polyamines Polyamines
CP Metal
Choline Quaternary cations
c
Amino sugars
Cl A
Borate
SiOg-Cu
PrOH-NHa
Cell C
HOAc Nonaq.
C
NHiCl NadOs NiCLEtOH
Hexosamines Amines, aromatic Nitroanilines Nitroanilines, sulfonamides Pyridines
C-Nil Cd
Pyridines, toluidines
Phthalocyanine-Co C-Na, H
Toluidines, aminophenols Imidazoles Indoles Benzotriazole Amines, biogenic Adrenaline derivs. Catecholamines,
...
I
Pyridines, toluidines
Pyridine, benzylamine
... ...
...
Buffers
Gas &om. From other bases Incl. pyridinium, etc. Amino-acid analyzer Thin-layer
... ... ... Gas chrom. Base strengths differ TLC
SiOl-Cd
Various
C y
A Et‘OH H81
C C (acrylic)
In urine HCl, NHs Citrate-PrOH 18 constituents
Pellicular resin
...
In antifreeze
...
CoTE2nes Dopa, dopamine, adrenaline Dopa, d- and IHistamine, spermidine Putrescine
C C
Acetate HC1-MeOH; citrate
Special C C
HNO~,‘ Hci (N&)zC03
Tryptamines
Cell.
Tris
Sep. from amino acids CarboxyIic resin also Dextran xgr.
c, CP
CHCla, etc.
Urine screening
CP
CHCla
Cl A
HSO-PrOH
FLC or GC follows Barbiturates also
C
HC1
In elixir
C C
NaCl “,NO3
A
Tris
C C
EtOH HC1
High-speed Analgesics; highspeed Analgesics; highspeed
C A
HzO Borate
28 sugars Automated
Glucose, glycolysis intermed. Hemicelluloses Mucopolysaccharides Exotoxin Polysaccharides Hydrocarbons Aromatic
A
NHiCl
...
c, A A, Cell. A, c Apatite
NaCl Formate Phosphate
Olefins, aromatic Olefins Lipids, phospholipids
A complex R% complex Cell.
Purines, pyrimidines Amine drugs Amphetamines, etc. Amphetamine, methadone, barbiturates Amphetarnine, ephedrine Norephedrine Drugs, other Barbiturates, etc. Aspirin, phenacetin, caffeine Aspirin, phenacetin, caffeine Caffeine, analgesics Phenacetin and metabolites Carbohydrates Sugars Sugars
C
Special
... ...
In urine
m-resolved
...
.,.
Final det. by GC
(56)
(W
Purification (479) Nucleic acids sep. (686) Donor-acceptor complexes GC; isomers sep. GC; isomers sep. Cholesterol, egg lipids
(149, 311, 4.98 ) ! I l l , 486)
(i70) (17, 18) (Continued)
264R
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
acid (318). Polar or ionic groups may be introduced later if desired. “Donor-acceptor chromatography,” in which the stationary phase contains electrondonating molecules and the substrates are electron-accepting molecules or vice versa, has been described by several workers in the last few years. Aromatic hydrocarbons (donor molecules) were separated by thin-layer chromatography on silica gel impregnated with such substances as tetracyanoethylene, pyromellitic anhydride @ I l ) , or trinitrobenzene (149). They can be separated by column chromatography on dextran gels (492) or nitrated polystyrene (154). A conscious effort to exploit this kind of chromatography in a systematic way has been made by Freeman and Enagonio (154). I n a short paper entitled “Interactive Polymer Networks,” they describe a polymer made from 2-methyl&vinyl pyridine and divinylbenzene. This is a weak base and a n electrondonor. It binds, to varying degrees, such substances as pyridine, aniline, cyclohexane, and aliphatic alcohols. I n a more recent study [(ANAL.CHEM., 44, 117 (1972)], these authors present donor-acceptor chromatography as the product of interactions, identifiable and expressible numerically, between absorbent and substrate, solvent and substrate, and absorbent and solvent. Previous workers have attempted to evaluate these interactions (492). Probably this kind of chromatography will see considerable development in the next few years. Absorbents containing metal ions have been used in various ways. Gas chromatography of olefines with absorbents containing silver complexes has been known for some time and has been further developed (111). Isomeric butenes and pentenes were separated by gas chromatography on coordination complexes of rhodium (170); metallic stearates dissolved in a high-boiling amine alcohol separated aliphatic amines (89), and aromatic amines, including substituted pyridines, were separated by gas chromatography on cobalt phthalocyanine (162). We noted previously the use of metallic nickel supported on silica gel to absorb carbon monoxide (369). Liquid chromatography on silver nitrate supported on porous s t y r e n e divinylbenzene is better than gas chromatography for the less volatile olefines (4%). Several separations by thinlayer chromatography silica gel impregnated with metal salts are noted; unsaturated acids and amines on silver oyide (503), aromatic amines on CdSO4 (664), hexosamines on Gus04 (3%). Amino-acid analysis by ligand-eschange chromatography on a zinc-loaded cation-exchange resin, introduced in 1966 by Arikawa, has been further
Table 111.
Organic and Biochemical Applications (Continued)
ComF ounds Lipids, polar
Exchanger
...
MeOHacetone NHa, EtSH
Blood; papain
Special
NaCl
Poly-barginine
DNA DNA
Apatite C-A1
RNA
AT
NaC104 GlycineNaOH Formic, LiCl
RNA
C
Formate
&+RNA
A
Nucleotides
A
NaClNaOAc Phosphate
Nucleotides Nucleosides Adenosine, guanosine Adenosine cyclic monophos hate Uridine, hygoxyadenine Petroleum additives
C A C A
Pellicular, highsped HNOa, citrate Pellicular Borate Acetate-EtOH Also bas& ... Pellicular
C
HCl
c
MeOH, NHa
Saponins Thiamine Vitamin B
A C AP, CP
HOAc HC1-acetone Various
Mercaptans Nucleic acids and derivatives General
Apatite
Notea
Eluent
Hg, Ag complexes
A,
developed (218). Amino acids and oligopeptides were separated on a copper-loaded chelating resin, using aqueous ammonia as eluent (63),and so were oxypurines, analgesic drugs and caffeine ( 6 4 9 ~ ) . Aromatic amines were separated on a nickel-loaded sulfonated polystyrene resin with NiClz in 50% ethanol as eluent (1, 218). A special asymmetrie complexing exchanger carrying cupric ions was used, as noted above, to separate amino acids into their optical isomers (119). An aluminum-loaded cation-exchange resin serves to separate D N A into several fractions (283-286). Hydroxylapatite fractionates DNA (177),and the process is called “affinity chromatography.” It also fractionates polar lipids (471). The interactions in these instances are complex, but this is the direction that liquid chromatography is taking today. LITERATURE CITED
(1) Symposium: Proc. Third Analytical
Chemistry Cod., International Union of Pure and Ap lied Chemistry, Budapest, 1970; Akaaemiai Kaido, Budapest,
1970. (2) Symposium:
Second Annual Symposium on Automated High-Resolution Analysis in the Clinical Laboratory, Clin. Chem., 16 (1970). (3) Collected Reports on Apollo 11 Lunar Samples, Science, 167, 447-784, January 30, 1973. (4) Aaltonen, J., Acta Chem. Fan., 44, 1 (1971). (5) Abe, M., Bull. Chem. SOC.Jap., 42, 2683 (1969). (6) Abe, S., Weisa, H., Mikrochim. Acta, 1970, 550.
Hydrolysis products After hydrolysis, high-speed Weak base xgr.
... Phenols, arom. amines 12 fractions
...
...
(7) Ahrland, S., Carleson, G., J . Inorg. Nucl. Chem., 33, 2229 (1971). (8) Akki, S. B., Khopkar, S. M., Anal. Chim. Acta, 52, 393 (1970). (9) Akki, S. B., Khopkar, S. M., Chromatographia, 3, 363 (1970). (10) Akki, S. B., Khopkar, S. M., Separation Sn‘.,5, 707 (1970). (11) Akki, S. B., Khopkar, S. M., Fresenms’ Z. Anal. Chem., 249, 228 (1970). ,--- ,(12) Ibid., 255, 130 (1971). (13) Alberti, G., Costantino., U.. , J. Chromatog’r., SO’, 482 (1970). (14) Alberti, G., Mwucci, M. A., J . Inorg. Nucl. Chem., 32, 1719 (1970). (15) Aleksandrov, S., Krasnobaeva, N., Acta Chin,. Acud. Sci. Hung., 64, 11 (1970). (16) Alexa, J., Collect. Czech. Chem. Commun., 35, 1921 (1970). (17) AlmB, B., Nystrom, E., J . Chromatogr., 59, 45 (1971). (18) AlmB, B., Sjovall, J., Bonsen, P. P. M., Anal. Lett., 4, 695 (1971). (19) Aly, H. F., Latimer, R. M., AbdelRassouI, A. A., Talanta, 17, 265 (1970). (20) Anden, M. W., Latorre, J. P., ANAL.CHEM.,42, 1430 (1971). (21) Aoki, I., Hori, M., Matsumaru, H., Bunseki Kagaku, 18, 346 (1969). (22) Araki, S., Susuki, S., Hobo, T., Yamada, M., ibid., 19, 493 (1970). (23) Ashley, K. R., Lane, K., Inorg. Chem., 9, 1795 (1970). (24) Atkin, G. E., Ferdinand, W.,Anal. Biochem., 38, 313 (1970). (25) Atkin, G. E , Ferdinand, W., J . Chromato r., 62, 373 (1971). (26) Babacaev, G., Ref. Zh. Khim., 19GD, No. 50177 (1971). (27) Bacsuk, R. J., Landram, G. K., DuBois, R. J., Dehm, H. C., J . Chrcmatogr., 60, 351 (1971). (28) Baechmann, K., Lieser, K. H., Fresenius’ Z. Anal. Chem., 250, 172 (1970). (29) Bagbanly, I. L., Luseinov, I. K., Allakhverdieva, E. G., Ref. Zh. Khim., 19GD, No. 3G80 (1970). ~
(30) Balsenc, L., Beeler, R., Haerdi, W., Chimia, 24, 420 (1970). (31) Balsenc. L.. Beeler. R., Haerdi. W.. Monnier, ’D.,’ Anal. ‘Chi&. Acta; 55; 253 (1971). (32) Balsenb, L., Haerdi, W., Helv. Chim. Acta, 52, 2657 (1969). (33) Balsenc, L., Haerdi, W., Monnier, D., Anal. Chim. Acta 48, 213 (1969). (34) Bandere, R., Lasdns, I., Smorodina, I. V., Avots, A., Ref. Zh. Khim., 19GD, No. 20236 (1971). (35) Barbier, Y., Rosset, R., Bull. Soc. Chim. Fr., 1970, 4162. (36) Ibid., p 4559. (37) Barooshian, A. V., Lautenschleger, M. L., Harris, W. G., Anal. Biochem., 42, 281 (1971). (38) Barketov, E. S., Kopylova, V. D.,
Kargman, V. B. Druzin, M. I., Saldadze, K. M., .dh. Anal. Khim., 25, 440 (1970). (39) Barrer, R. M., Munday, B. M., J . Chem. SOC.,A , 1971, 2904, 2909, 2914. (40) Barrett, R. B., Mannsky, J. A., J . Phys. Chem., 75, 85 (1971). (41) Baselt, R. C., Casarett, L. J., J. Chromatogr., 57, 139 (1971). (42) Bautista, E. R., Dominguez, G., An. Quim., 67, 375 (1971). (43) Becknell, D. E., Marsh, R. H., Allie, W., ANAL.CHEM.,43, 1230 (1971). (44) Badetti, G., D’Agnolo, G., Pocchiari, F., J . Chromatogr.,49,53 (1970). (45) BengtsJon, L., Samuelson, O., ibid.,
61, 101 (1971). (46) Bengtsson, L., Samuelson, O., Anal. Chim. Acta, 57,93 (1971). (47) Bengtsson, L., Samuelson, O., Chromatographia, 4, 142 (1971). (48) Berridge, B. J., Chao, W. R., Peters, J. H., Anal. Biochem., 41, 256 (1971). (49) Bertani, L. M., Dziedzic, S. W., Clarke, I). D., Gitlow, S. E., Clin. Chim. Acta, 30, 227 (1970). (50) Bertazzi, N., Silvestri, A., Barbieri, R., J . Inorg. Nucl. Chem., 33, 799 (1971). (51) Betteridge, D., Snape, F., ibid., p 3557. (52) Bhatki, K. S., Dingle, A. N., Radiochem. Radioanal. Lett., 3, 71 (1970). (53) Bhatnagar, R. P., Trivedi, R. G., Bala. Y..Talanta. 17. 249 (1970). (54) Binde;, G., Altmah, K. ~I.,Forbes, W. F., Anal. Biochem., 37, 129 (1970). (55) Blake, hf. I., Hunt, J., Talanta, 17, 876 (1970). (56) Blake, J. D., Richards, G. N., Carbohyd. Res., 14, 375 (1970). (57) Blmi~s, E., Fallot-Burghardt, W., Angew. Makromol. Chem., 12, 197 (1970).
(58) Blasius, E., Fallot-Burghardt , W. , Fresenaus Z. Anal. Chem., 251, 180 (1970). (59) Blasiue, E., Janzen, K-P., FallotBurghardt, W.,Talanta, 18, 549 (1970). (60) Bobleter, O., Dincler, G., Saban, C., Mikrochim. Acta, 1971, 310. (61) Bonilla, C. A., Fiero, M. K., J . Chromatogr., 56, 253 (1971). (62) Bohn, R., Kalbhen, D. A., ibid., 62, 399, 409 (1971). (63) Boisseau, J., Jouan, P., ibid., 54, 231 (1971). -, (64yBondarenk0, G. N., Baksheeva, 1. P., Dubrova, L. N., Radiokhimiya, 13, 314 (1971). (65) Boudet, A., Alibert, G., Puesh, J. L., Bull. SOC.Chim. Bid., 52, 1119 (1970). (66) Brady, P. R., Hoskinson, R. >I., J . Chromatogr., 54, 55, 65 (1971). (67) Brajter, K., Chem. Anal. (Warsaw), 16, 587 (1971). (68) Brajter, K., Janowski, A., Jach~mowicz,E., ibid., 15, 657 (1970). (69) Brezgunova, I. K., Smolyaminov, V. V., Kharlamova, S . I., Zh. Fiz. Khim., 45, 1785 (1971). \ - -
ANALYTICAL CHEMISTRY, VOL. 44,
NO. 5, APRIL 1972
265R
(70) Brevnova, N. V., Bekisheva, E. V., Radzokhimiya, 13, 445 (1971). (71) Brezhneva, S. E., Dement'ev, V. D., Kapshaninov, Y. I., Popov, I. B., ibid., n 32.5. r
(72) Brinkman, U. A. Th., Progr. Separ. Purz$c., 4, 241 (1971). (73) Brinkman, U. A. Th., de Vries, G., J . Chromatoyr., 56, 103 (1971). (74) Brinkman, U. A. Th., Sterrenburg, P. J. J., de Vries, G., ibid., 54, 449 (1971). (75) Brook, A. J. W., ibid., 47, 100 (1970). (76) Brooker, C., ANAL.CHEM.,42, 1108 (1970). (77) Brown, P. R., J . Chromatogr.,52, 257 (1970). (78) Brown, L. M., Sherry, H. S., J. Phys. Chem., 75, 3855 (1971). (79) Brown, L. M., Sherry, H. S., Krambeck, F. J., ibid., p 3846. (80) Brunisholz, G., Roulet, R., Helu. Chim. Acta, 52, 1847 (1969). (81) Bubernak, J., Law, bl. S., Matlack, G. M., Anal. Chim. Acta, 48, 233 (1969). (82j Burtis, C. A., J . Chromatogr.,51, 183 (1970). (83) Zbid., 52, 97 (1970). (84) Caneva, C., Maura, G., Rinaldi, G., Rass. Chim., 22, 211 (1970). (85) Carillo, D., Urgell, M.,Iglesias, J., An. R. SOC.Esp. Fis. Quim., 66, 461 (1970). (86) Carisano, A., Bonecchi, A., Riva, M., J . Chromatogr.,45, 264 (1969). (87) Carlsson, B., Samuelson, O., Anal. Chim. Acta, 49, 247 (1970). (88) Carlson, R. RI., Paul, J. L., Soil Sci. 108, 266 (1969). (89) trastells, R. c., Catoggio, J. A., ANAL. CHEM., 42, 1268 (1970). (90) Chang, J. C., J . Znorg. ~Vucl.,Chem., 32. 1402 11970). (91) 'Chan,' Y. K.,Lum-Shue-Chan, K., Anal. Chim. Acta, 48, 205 (1969). (92) Chen, Y-&I., Tsao, F-P., J . Chinese Chem. Soc. (Tazpei),17, 81'(1970). 193) Chumtov. K. V.. Xazarov. P. P.. ' blasslova, G. B., Shkptunov, V, N., J : Chromatogr., 59, 415 (1971). (94) Choudhuri, D., Mukherjee, 5. K., J . Znorg. A'ucl. Chem 32, 1023 (1970). (95) Zbid., 33. 1933 (l&l). (96) Christova, R., Ivanova, Z., Fresenius' Z. Anal. Chem., 253, 184 (1971). (97) Chu, N. Y., ANAL.CIIEM., 43, 449 (1971-,). (98) Chu, R., J . Ass. Ofic. Anal. Chem., 54, 603 (1971). (99) Chuchalina, L. S., Yudelevich, I. G., Buyanova, L. U., Starshinova, K. P., Vall, G. A., Zh. Anal. Khim., 24, 905 (1969) ~ --_,. . (100) Churacek, J., Jandera, P., J . Chrmatogr., 53, 69 (1970). (101) Chwastowska, J., Szymczak,) S., Chem. Anal. (Warsaw),14, 1161 (1969. (102) Clearfield, A,, Medina, A. S., J . Znorg. Nucl. Chem., 32, 2775 (1970). (103) Clearfield, A., Medina, A. S., J . Phys. Chem., 75, 3750 (1971). (104) Cilindro, L. G., Martin, D. S., J. Radioanal. Chem., 3, 195 (1969). (105) Coetzee, C. J., Rohwer, E. F. C. H., J . Znorg. iVucl. Chem., 32, 1711 (1970). (106) Coetzee, C. J., Van Wyk, A. J., ibid., 33, 1501 (1971). (107) Coggins, J. R., Benoiton, N. L , J. Chrmatogr., 52, 251 (1970). (108) Coic, Y., Porthault, M., Bull. SOC. Chim. Fr., 1971, 1546. (109) Conkerton, E. J., Neucere, N. J., Anal. Biochem., 32, 512 (1969). (110) Conner, W. V., Proctor, S. G., J . Znorg. Nucl. Chem., 32, 3259 (1970). (111) Cook, L. E., Givand, S. H., J. Chrmatogr., 57, 313 (1971). \ - -
266R
*
(112) Cornett, F. V., Gilbert, T. W., Anal. Lett.. 4. 69 (1971). (113) costantino, 'U., Gasperoni, A., J. Chromatogr., 51, 289 (1970). (114) Creekmore, R. W., Reilley, C. N., ANAL.CHEM.,42, 570 (1970). (115) Zbid., p 725. . (116) Cziboly, C., Zsinka, L., Szirtes, L., Maav. Kem. Lam. 24. 470 11969): Ana[ Abstr., 19, i700 (1970). (117) Czosnowska, W., Radiochem. Radioanal. Lett., 4, 293 (1970). (118) Davankov. A. B.. Tr. Mosk. Khim.' Tekhnol. Inst.,' 64, 118 (1970); C.A., 75, 77568x (1971). (119) Davankov, V. A., Rogozhin, S. V., J . Chromatogr., 60, 280 (1971). (120) De, A. K., Sarkar, S. K., Bhattacharyya, C. R., Indian J. Chem., 9, S76 (1971). (121) De Bruyne, P., J . Znorg. +Vucl. Chem., 32, 346 (1970). (122) De Koning, A. J., J . Chromatogr., 59, 185 (1971). Trautmann, N., (123) Denig, R., Hernnann. G.. J . Radioanal. Chem.. 6. 331 (1970j. ' (124) Determann, H., Meyer, N., Wieland, T., 'Tuture, 223, 499 (1969). (125) Devenyi, T., Acta Biochem. Biophys. Hung., 5, 435, 441 (1970). (126) Devillers, P., Loilier, M., Sucr. Fr., 111, 349 (1970); Anal. Abslr., 21, 552 (1971). (127) Donaldson, J. D , Fuller, hl. J., J . Znorg. Nucl. Chem., 32, 1703 (1970). (128) Dubuquoy, C., Gusmini, S., Pounard. D.. Verrv. .,, M.,J . Chromatoar., $7, 455 (1971). (129) Dybczynski, R., zbad., 50, 487 (1970). (130) Dyer, A., Leigh, D., Ocon, F. T., J . Inorg. .Vucl. Chem., 33, 3141 (1971). (131) Dyer, A., Ocon, F. T., ibid., p 3153. (132) D mov, A. M., Kozel, L. Z., IskanJaryan, R. D., Ref. Zh. Khim., IQGD,No. 50179 (1970). (133) Egorov, Y. V., Dranitsina, N. V., Kalygina, N. N., Tr. Ural. Politekh. Inst.. 184. ~, 86 11970): C . A .., 75. . 80652a (197i). (134) Einaga; H., Ishei, H., Bunseki Kagaku, 18, 439 (1969). (135) Ellingboe, J., AlmB, B., Sjoevall, J., Acta Chem. Sand., 24, 463 (1970). (136) Eristavi, D. I., Eristavi, V. D., Kekeliya, S. A., Zh. Anal. Khim., 26, 1430 (1971). (137) Eristavi, D. I., Eristavi, V. D., Kutateladze, G. S., C.A., 74, 14667813 (1971); Soobsch. Akad. Nauk Gruz. SSR, 1971, 313. (138) Eristavi, V. D., Kekeliya, S. A., Ref. Zh. Khim., 1970,15G116. (139) Ermolenko, I. N., Longin, hI. L., Sokolova, V. I., Zh. Anal. Khim., 24, 517 (1969). (140) Fanger, M. W., Smyth, D. G., Anal. Biochem., 34, 494 (1970). (141) Fedoroff, M., Bull. SOC. Chim. Fr., 1970, 1233. (142) Fedoroff, M., Ann. Chim., 6, 159 (1971). (143) Fernandez-Flores, E., Kline, D. A., Johnson, A. R., Leber, B. L., J . ASS. Ofic. Anal. Chem., 53, 1203 (1970). (144) Ferrari, L., Boffi, C., Farmaco. Ed. Anal. Abstr., Prat.. 24. 785 (1969): . ,, 20, 5io. ' (145) Floridi, A., J . Chromatogr., 59, 61 (1971). (146) Foner, H. A., Analyst, 94, 392 (1969). (147) Fokina, L. S. et al., C.A., 75, 14646a (1971); Tr. Vses. .Vauch-Zssled. Inst. Stand. Obraztsov Spektral. Etalonov 1969.5. 118: Ref. Zh. Met., 1970,Abstr. No. 4g57. ' 1148) Frache. R.. Dadone. A,. Chromafographh, 4, 156 (1971j. ' \
I ,
I
I
I
.
,
~I
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
"
.
I
(149) Franck-Neumann, M., Jossang, P., J . Chromatogr., 14, 280 (1964). (150) Frankel, L. S., ANAL.CHEM.,42, 1638 (1970). (151) Zbid., 43, I506 (1971). (152) Franken, J. J., Vidal-Madjar, C., Guiochon, G., ANAL. CHEM.,43, 2034 (1971). (153) Freeman, D. H., Currie, L. A., Kuehner, E. C., Dixon, H. D., Paulson, R. A., ibid., 42,203 (1970). (154) Freeman, D. H., Enagonio, D. P., Xature, 230, 135 (1971). (155) Fricke, G. H., Rosenthal, D., Welford, G. A., ANAL. CHEM., 43, 648 11971) (166j'Fiitz, J. S., Kaminski, E. E., Taiantq, 18, 541 (1971). (157) Fritz, J. S., Kennedy, D. C., ibid., 17. 837 (1970). (158) Fritz', J. S., Latwesen, G. L., ibid., n 81.
( I k - F r i t z , J. S., Xillen, W. G., ibid., 18, 323 (1971). (160)..~ Fritz, J. S., Topping, J. J., ibid., p 865.
(161) Fudano, S., Konishi, K., J. Chromatogr., 62,467 (1971). (162) Fuller, M.J., J . Znorg. .Vvucl. Chem., 33, 559 (1971). (163) Fujimura, K. Matsubara, ?*I.,Funasaka, W., J . Chromatogr., 59, 383 (1971). (163a) Fukusawa, T., Yajima, K., Kano, S., Mizuika, A., Bunseki Kagaku, 20, 193 (1971). (164) Gaibakyan, D. S., Arm. Khim. Zh., 22, 981, 986 (1969); Anal. Abstr., 19, 4872 (1970). (165) Gaibakyan, D. S., Karapetyan, Z. A , , Zh. Anal. Khzm., 26, 394 (1971). (166) Gajankush, R. V., Shukla, R. P., Zndzan J . Appl. Chem., 33, 107 (1970). (166a) Gal, I. J., et al., Trans. Faraday SOC.,67, 999 (1971): (167) Ganzerli-Velentini, &I. T., Moxia, V., hleloni, S., Martinelli, A,, Radiochem. Radzoanal. Lett., 7, 85, 163 (1971). 1168) Geissbuhler, F., Clzn. Chim. Acta, 30, 143 (1970): (169) Ghetie, V., Schnell, H. D., Bilzila, L., Hoppe-Seyler's Z. Physiol. Chem., 350, 1675 (1969). (170) Gil-Av, E., Schurig, V., ANAL. CHEM.,43, 2030 (1971). (171) Gills, T. E., Marlow, W. F., Thompson, B. A., ibid., 42, 1831 (1970). (172) Gilmer, T. C., Pietrzyk, D. J., ibid., 43, 1585 (1971). (173) Gorenc, B., Marsel, J., Tramsek, G., Mikrochena. Acta, 1970, 24. (174) Govindaraju, K., C.A., 75, 58276j (1971); Dosage Elem. Etat Traces Roches Autres Subst. Miner. JYatur., Actes Collop., 1968, 133. (175) Gorgia, A., Monnier, D., Anal. Chim. Acta, 55, 247 (1971). (176) Grabchak, S. L., Ivanova, L. S., Matskevich, E. S., Mun'kin, A. S., Serebryakova, L. K,,C.A., 75, 131190h (1971); Prom. Khim. Reaktzvov. Osobe Chist. Veshchestu, 1970,41. (177) Graham, D. E., Anal. Biochem., 36, 315 (1970). (178) Grays, H., Walton, H. F., Separ. Sci., 5, 653 (1970). (179) Green, T. E., Law, S L., Rep. Invest. U.S. Bur. Mines, No. 7358, 1970; Anal. Abstr., 20, 2324 (1971). (180) Green, T. E., Law, S. L., Campbell, W. J., ANAL.CHEM.,42, 1749 (1970). (181) Guertler, O., Chu-Xuan-Anh, Holzapfel H., 2. Chemie, 11, 186 (1971). (182) duertler, O., Fuertig, D., ibid., 9, 352 (1969). (183) Guertler, O., Holzapfel, H., Angeu. kfakrmol. Chem., 7, 194 (1969). (184) Gumbar, K. K., Bozhichko, M.A., Radiokhimiya, 13, 155 (1970). '
(185) Guseva, L. I., Tikhomirova, G. S., ibid. 12, 771 (1970). (186) busmini, S., Dubuquoy, C., Nucl. Sci. Abstr., 25, 29178 (1971). (187) Gutsche, B., Herrmann, R., Analyst, 95. 805 (1970). (188) Ha ‘wara; Z., Noguchi, M., Bull. Chem. &c. Jap., 43, 401 (1970). (189) Haglwara, Z., Oki, H., ibid., 42, 3177 (1969). (190) Ha ’wara, Z., Terashima I., KoyJ . Inorg. Nucl. dhem., 32, ama, 3091 (1970). (191) Hahn, P. B., Shleien, B., ANAL. CHEM.,42, 1608 (1970). (192) Hale, W H., J . Phys. Chem., 74, 4452 (1970). (193) Hanak,’J., Simek, M., Hutn. Listy, 26, 356 (1971); C.A., 75, 83805p
?,
11971). \ - - . - I .
(194) Hara, N., Matsumura, Y., Kogko Kagaku Zasshi, 74, 364 (1971). (195) Harvie, S. J., Nancollas, G. H., J . Inorg. Nucl. Chem., 32, 3923 (1970). (196) Hasegawa, Y., Tomita, I., Bull. Chem. SOC.Jap., 43, 3011 (1970). (197) Hatano, H., Sumizu, K., Rokushika, S., Murakami, F., Anal. Biochem., 35, 377 (1970). (198) Haug, A., Smidsroed, O., Acta Chem. Scand., 24, 843 (1970). (199) Heathcote, J. G., Davies D. M., Haworth, C., Oliver, R. w‘. A., J . Chromatoqr., 55, 377 (1971). (200) Heaton, A. M., Blumberg, A. G., ibid. 41, 367 (1969). (201) keijink, A., Polak, H. L., J . Radioanal. Chem., 3, 359 (1969). (202) Ibid., 4 , 63 (1970). (203) Ibzd., 8, 13 (1971). (204) Heitner-Wirguin, C., Kendler, J., J . Inorg. Nucl. Chem., 33, 3119 (1971). (205) Helfferich, F., Klein, G., “Multicomponent Chromato raphy,” 419 pp, Marcel Dekker, New Qork, N.Y., 1970. (206) Henry, R. A., Schmit, J. A., Chromatoqraphia, 3, 116 (1970). (206a) Hering, R., et ai., C.A., 74, 119637f Kunstharz-Ionenaustauschw, (1971) ; Plenardiskussionsvortr. Sym 1968,573. (207) Hermann, F. Kiesl, Kluger, F., Hecht, F., dikrochim. Acta, 1971, 225. (208) Hesselbarth, H., Fresenius’ Z. Anal. Chem., 248, 289 (1969). (209) Heurtebise, M., Ross, W. J., ANAL. CHEM.,43, 1438 (1971). (210) Higuchi, H., Tomura, K., Hamaguchi, H., J . Radioanal. Chem., 5, 207 (1970). (211) Hirsch, R. F., Gaucher, E., RUSSO, F. R., Tahnta, 17, 483 (1970). (212) Hoegfeldt, E., Muhammed, M., Acta Chem. Sand., 24, 2660 (1970). (213) Hofer A., Fresenius’ Z. Anal. Chem., 249, 115 (1970). (214) Huber-Schausberger, I., Mikrochim. Acta, 1970, 240. (215) Hunt, J., Blake, M. I., J . Phurm. Sm’.,59, 683 (1970). (216) Husain, W., Gulabi, M., Separ. Sci., 6, 737 (1971). (217) Imai K., Tamura, Z., Chem. Pharm. Bull., Tokyo, 18, 1055 (1970). (218) InczBdy, J., Acta Chim. A d . Sci. Hung., 69, 265 (1971). (219) InczBdy, J., Glosz, L., ibid., 62, 241 (1969). (220) InczBdy, J., Klatsmanyi-Gabor, P., Erdey, L., ibid., p 1. (221) Ibid., 69, 137 (1971). (222) Ionescu, T. D., Tudorache, G., Rev. Chim. (Bucharest), 22, 413 (1971). (223) Irreverre, I?., Witkop, B., J . Chromatogr., 43, 127 (1969). (224) Ishida, K., Talanta, 16, 1607 (1969). (225) Iskric, S.,Stanic, L., Kveder, S., Clin. Chim. Acta, 25, 435 (1969). (226) Jan&k, J., Jagaric, Z., Dressler, M., J . Chromatogr., 53, 525 (1970).
(227) Janauer, G. E., Korkisch, J., Hubbard, S. A., Talanta, 18,767 (1971). (228) Janauer, G. E., Van Wart, H. E., Carrano, J. T., ANAL.CHEM.,42, 215 (1970). (229) Jandera P., Churacek J., Stamberg, J., kupec, J., Cohed. Czech. Chem. Commun., 35, 3112 (1970). (230) Janicki, J., Chelkowski, J., Wyrwol, J., Chem. Anal. (Warsaw), 15, 1191 (1970). (231) JansBn, L., Samuelson, 0 , J . Chromatogr., 57, 353 (1971). (232) Jardy, A., Rosset, R., Bull. Soc. Chim. Fr., 1969, 4576. (233) Jarvis, D., Loeser, R., Herrlich, P., Roeschenthaler, R., J . Chromatogr., 52, 158 (1970). (234) Jenkins, I. L., Lidington, D. E., Wain, A. G., J . Appl. Chem. (London), 19, 213 (1969). (235) Jensen, C. H., Diamond, R. M., J . Phys. Chem., 75, 79 (1971). (236) Jercan, E., Dinoiu, L., Anal. Chim. Acta, 50, 166 (1970). 237) Johansen, O., Steinnes, E., Talanta, 17, 407 (1970). (238) Johansson, C. E., ibid., p 739. (239) Juengst, D., Strauch, L., Z. Klin. Chem. Klin. Biochem., 7, 636 (1969). (240) Kseser, H., Thomke, E., Clin. Chim. Acta, 27, 203 (1970). (241) Kaistha, K. K., Jaffe, J. H., J . Chromatoqr., 60, 83 (1971). (242) Kalinin, A. I., Kalinina, N. E., Zh. Anal. Khim., 26, 777 (1971). (243) Kaminski, E. E., U.S. At. Energy C m m . , IS-T-377 (1970); C.A., 75, 53639v (1971).
(266) Ibid., 8, 72 (1970). (267) Kirkland, J. J. Ed., “Moder: Practice of Liquid bhromatogra hy 454 pp, Wiley-Interscience, New $o&, N.Y., 1971. (268) Kladnitskaya, M. B., Khalirova, V. A. Zavod. Lab., 35, 793 (1969). (269) dlockow, D., Krivan, V., Radiochem. Radioanal. Lett., 2, 181 (1969). (270) Knapp, G., Spitzy, H., Clin. Chim. Acta, 30, 119 (1970). (271) Knox, R., Kohler, G. O., Palter, R., Walker, H. G., Anal. Biochem., 36, 136 (1970). (272) Kocheva, L. L., God. Sof. Univ., Khim. Fak., 62, 135 (1970); Anal. Abstr., 20, 2351 (1971). (273) Kocheva, L. L., Draganova, R., ibid., 62, 129 (1970); Anal. Abstr., 20, 2350 (1971). (274) Kocheva, L. L., Koleva, E., ibid., 62, 147 (1970); Anal. Abstr., 20, 2475 (1971). (275) Koenig, H., Z. Anal. Chem., 254, 337 (1971). (276) Kogan, L., Ratner, R., J . Chromatoqr., 62, 449 (1971). (277) Komarov, V. D., Tikavyi, V. F., C.A., 75, 91530k (1971); Isu. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol.. 1971, 651. (278) Konecny, J., Keltos, D., Radioisotopy, 11, 693 (1970). (279) Konecny, C., Kourim, V., Radiochm. Radioanal. Lett., 2, 47 (1969). (280) Kopylova, V. D., Saldadse, K. M., Asambadze, C. D., Zh. Anal. Khim., 26, 31 (1971). (281) Korf, J., ROOS,B. E., Werdinius, B., Acta Chem. Sand., 25, 333 (1971). (282) Kosta, L., Ravnik, V., Levstek, M., Radiochim. Acta, 14, 143 (1970). (283) Kothari. R. M.. J . Chromatoor.. ” , 53: 580 (1970). (284) lbid.; 56, ‘151 (1971). (285) Ibid., 57, 83 (1971). (286) Ibid., 59, 194 (1971). (287) Kratochvil, V., Povondra, P., Sulcek. Z.. Collect. Czech. Chem. Commun.. 35,’233 (1970). (288) Kreshkov, A. P., Kolosova, I. F., Zh. Anal. Khim., 25, 1234 (1970). (289) Krivan,. V.,. Talanfa, 16, 1513 (1969). (290) Krtil, J., Moravec, A., Mencl, J., Alexa, J., Radiochem. Radioanal. Lett., 3, 113 (1970). (291) Kuchkarov, U. R., et al., C.A., ’ 5 , 10619w (1971). (292) Kulus, E., Molnar, F., Szabo, E., J . Radioanal. Chem., 7, 347 (1971). (293) Kunzle-Lutz, M., Metivier, H., Rapp. CEA, R-3922, 1970; Anal. Abstr., 20, 1817 (1971). (294) Kura, G., Ohashi, S.,J . Chromatoqr., 56, 111 (1971). (294a) Kuroda, R., Yoshikuni, N., Talanta, 18, 1123 (1971). (295) Kupec, J., ProkopovB, E., Stamberg, J., Collect. Czech. Chem. Commun., 35. 3659 (1970). (296) Lambrino,’ V., Furnica, G., C.R. Acad. Bulg., _ .Sci., 22, 1111 (1969). (297) Lange, H.-W., Hempel, K., J . Chromatoqr., 59, 53 (1971). (298) Lanne. --a- H.-W.. Maenul. H. F. K.. Hempel, k., A d . Biochem., 38, 98 (1970). (299) Laskorin, B. N., Smirnova, N. M., Yuzhina, A. D., Smenova, E. I., Savaleva, T. I., Radiokhimiya, 13, 160 (1971). (300) Laul, J. C., Case, D. R., SchmidtBleek, F., Lipschutz, M. E., Geochim. Cosmochim. Acta, 34, 89 (1970). (301) Lavrukhina, A. K., Mil’nikova, Z. K.. Zh. Anal. Khim.. 24. 1714 (1969). (302j Law, S. L., Science, 174, 285 (1971). (303) Lebedev, K. B., Rozmanov, V. h l , ’
%.,
(250) Kawabuchi, K., Kuroda, R., Talanta, 17, (i7 (1970). (251) Kawamura. S.. Kuraku. H.. Kurot,aki, K., A m i . Chim. Ada, 49, 317 (1970). (252) Kawamura, S., Kurotaki, K., J . Chromntoqr., 45, 331 (1969). (253) Kazantsev, E. I., Plyusuin, A. V., Tr. Ural Politekh. Inst.. 184. 119 (1970); C.A., 75, 80647c (1971): (254) Kazantsev, E. I., Sapogov, N. V., Dolgushin, N. T., ibid., 184, 65 (1970); C.A., 75, 80654c (1971). (255) Kazantsev, E. I., Sapogov, N. V., Ivanov, M. L., ibid., 184, 84 (1970); C.A., 75, 80653b (1971). (256) Kedenburg, C.-P., Anal Biochem., 40, 35 (1971). (257) Kelley, M. T., Pure Appl. Chem., 26, 75 (1971). (258) Kemula, W., Brajter, K., Chem. Anal. (Warsaw), 15, 331 (1970). (259) Kemula, W., Brajter, K., Rubel, S., ibzd., 14, 1339 (1969). (260) Kennedy, W. P., Lee, J. C , J . Chromatogr., 51, 203 (1970). (261) Khasanov, E. I., Egorova, I. V., C.A.. 74.146701d (1971): . ,, IonnuiObmen Ion&, i970, 229. (262) Khristova, R., Novkirishka, M., God. Sof. Univ., Khim. Fak., 62, 347 (1970); Anal. Abstr., 20, 2299 (1971). (263) Khym, J. X., Uziel, M., J . Chromatoqr., 47, 9 (1970). (264) Kim, J. L., Lagally, H., Born, H. J., J . Inorq. Nucl. Chem., 33, 3547 (1971). (265) Kirkland, J. J., J. Chromatoqr. Sei., 7, 361 (1969).
z
~
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
267R
Ponomarev, V. D., Zh. Prikl. Khim., 44. 496 (1971). (304) Lederer, 'M., Majani, C., Chromatogr. Rev., 12, 239 (1970). (305) Lederer, M., Sinibaldi. M.. J . Chromatogr.; 60, 275 (1971). . (306) Lee K. S., Lee, D. W., Kang, S. W., ANAL.~ X E M . 43. . 876 11971). (307) fee, K. b.;-Le,-D.-W:, Lee, E. K. Y.,ibid., 42, 554 (1970). (308) Lel'check, Y. L., Glukhovskaya, R. D.. Zsu. Tonesk. Politekh. Inst.., 163., 134, 139 (1970). (309) Lepri, L., Desideri, P. G., Coas, V., J . Chromatogr., 52, 421 (1970). (310) Lepri, L Desideri, P. G., Coas, V., Cozzi, D., idid., 49, 239 (!970). (311) Libickova, V., Stuchlik, M., Kresnec, L., ibid., 45, 278 (1969). (312) Liljamaa, J. J., Hallen, A. A., ibid., 57, 153 (1971). (312a) Lim, H. S., C.A., 74, 119640b (1971); Kangwon Taehak Yon'gu Nomun'ip, 1970,47. (313) i uornik, M., Marcus, Y., J . Phys. 8 hem., 75, 2523 (1971). (314) Lopez, J. P., Dominguez, G., An. Quim., 66, 669 (1970). (315) Louis, R., Anal. Abstr., 20, 3961 (1971); Erdoel Kohle Erdgas Petrochem. Brennst-Chem., 23, 347 (1970). (316) Lower, G. M., Murphy, S. B., Bryan, G. T., Clin. Chim. Acta, 29, 421 (1970). (317) Luttrell, G. H., More, C., Kenner, C. T., ANAL.CHEM.,43, 1370 (1971). (318) Makarova, S. B., Egorov, E. V., J . Chromatogr., 49, 40 (1970). (319) Mangelsdorf, P. C., Wilson, T. R. S., J . Phys. Chem., 75, 1418 (1971). (320) Marcus, Y., Eyal, E., J . Znorg. Nucl. Chem., 32, 2045 (1970). (321) Marhol, M., Cheng, K. L., ANAL. CHEM.,42, 652 (1970). (322) Markiw, R. T., J . Chromatogr., 47, 111 (1970). (323) Marowsky, G., Fresenius' Z . Anal. Chem., 253, 267 (1971). (324) Martynenko, L. I., Varlamova, G. L., Pechurova, N. I., Spitsyn, V. I., Zh. Neorg. Khzm., 16, 2244 (1971). (325) Martz, M. D., Krivis, A. F., ANAL. CHEM.,43, 790 (1971). (326) Masino A. P., Orlandini, K. A., Fried, S., kohen, D., U.S. At. Energy Comm., ANL-7751, (1970); C.A., 75, 53617m (1971). (327) Mason, T'. J., Cummiskey, C. J., J. Znorg. Nucl. Chem., 33, 137 (1971). (328) Matsui, H., Paart, E., Samuelson, 0 . Chem. SCT.,i, 45 (1971j. (329) Matthews, A. D., Riley, J. P., Anal. Clbim. Acta, 51, 287 (1970). (330) Ibid., D 4FiR. (331) May, S., Samadi, A. A., Bull. SOC.Chim. Fr., 1970, 1628. (332) McMartin, C., Simpson, P., Thorpe, N., J . Chromatogr., 43, 72 (1969). (333) McMillan. J. W.. Havnes. J. W.. Bentham, R. ' J., Cunningham; J. D.; Rep. U.K. Atom. Enwgy Auth., AERER 6203 (1969). (334) Meditsch, J. de O., Rev. Quim. Ind. (Rio de Janeiro), 38, 18 (1969); Anal. Abstr., 19, 3688 (1970). (335) Mehta, M. J., et al., Indian J . Appl. Chem., 33, 117, 121 (1970). (336) Michaelson, J. A., Coffman, P. Z., Anal. Biochem., 27, 257 (1969). (337) Miki, E. Ishimori, T., Okuno, H., Bull. Chem. hoc. Jap., 43, 782 (1970). (338) Miroshnik, L. V., Tolmachev, N. V., Ref. Zh. Khim., 1970, No. 16G55. (339) Moeken, H. H. P., Eschrich, H., Willeborts, G., Anal. Chzm. Ada, 45, 233 (1969). (340) Mondino, A., J . Chromatogr., 50, 260 (1970). (341) Montalvo, J. G., Klein, E., Eyer, D., Harper, B., ibid., 47, 542 (1970). \ - - - ,
~~
r
'
268R
ANALYTICAL CHEMISTRY, VOL.
(342) Moody, G. J., Thomas, J. D. R., Lab. Prad., 19, 284 (1970). (343) Moore, F. L., ANAL. CHEW, 43, 487 (1971). (344) Morris D. R., Koffron H. L., Okstein, 6. J., Anal. Bzo&m., 30, 449 (1969). (345) Moskvichev, B. V., Kuznetsova, N. N., Sammnov, G. V., Zh. Fiz. Khim., 45, 1873 (1971). (346) Muenze, R., Wiss. 2. KarbMarzUniv., Leipzig, 18, 621 (1969); Anal. Abstr., 19, 4125 (1970). (347) Munier, R. L., Dra ier, A. M., Chromatographia, 2, 479 b969). (348) Munk, M. N., J . Chromatogr. Sa'., 8, 491 (1970). (349) Murakami, F., Rokushika, S., Hatano, H., J . Chromatogr., 53, 584 (1970). (350) Muzzarelli, R. A. A., Anal. Chim. Acta, 54, 133 (1971). (351) Muzzarelli, R. A. A., Sipos, L., Talanta, 18, 853 (1971). (352) Muzzarelli, R. A. A., Tubertini, O., ibid., 16, 1571 (1969). (353). Muzzarelli, R. A. A., Tubertini, O., Mzkrochim. Acta, 1970,892. (354) Myers, W. A., Lindner, M., J . I w g . Nucl. Chem., 33, 3233 (1971). (355) Nadezhina, L. S., Ref. Zh. Khim., 19GD, No. 17G91 (1970). (356) Nakamura, T., Kimura, M., Waki, H., Ohashi, S., Bull. Chem. Soc. Jap., 44, 1302 (1971). (357) Nardin, M., Ann. Chim., 6, 143 (1971). (358) Navratil, J. D., Anal. Chim. Acta, 50, 345 (1970). (359) Neirinckx, R., Adams, F., Hoste, J., ibid. 48, 1 (1969). (360) Nishiido, T., Bull. Chem. SOC.Jap., 42, 3017 (1969). (361) Nomura, N., Hiraki, S., Yamada, M., Shiho, D. I., J . Chromatogr., 59, 373 (1971). (362) Norton, E. F., Stonner, R. W., Anal. Chim. Acta, 55, 1 (!971). (363) Novikov, B. G., Belinskaya, F. A., Materova, E. A., Vestn. Lenangrad Univ.. Fiz. Khim.. 1971. 29. (364) Ogawa, -T., igatsu'ma, H., Denki Kagaku, 39, 20 (1971). (365) Oguma, K., Kuroda, R., J . Chromatogr., 52, 339 (1970). (366) Ibid., 61, 307 (1971). (367) Ohashi, S., Tsuji, N.,. Ueno, Y., Takeshita, M., Muto, M., zbid., 50,349
(iwn)
(368j.Ohn0, S., Tsutsui, T., Analyst, 95, 396 (1970). (369) Ohzeki. K.. Kambara. T.. J . . Chromatogk, 55,819 (1971). (370) Ol'shanova, K. M., Konishcheva, A. S., Ref. Zh. Khim., 19GD, No. 156189 (1970). (371) Osterman, L. A., Anal. Biochem., 43, 254 (1971). (372) Overman, R. F., ANAL.CHEM.,43, 600 (1971). V. M.. Geochim. COS(373) - , Oversbv. mochim. Acta, 34, 65 (1970). (374) Paluch, J., Stangret, S., C.A., 75, 1010542 (1971); Biul., Zakl. Badan Nauk. Gornoshkiego Okregu Przem. Pol. Akad. Nauk, 1970, 7. (375) Park, M. Y., Lee, B. C., Park, K. C.. Duehan Hwahak Hwoeiee 15. 45 (1971); C.A., 75, 104700t (1971). (376) Zbid., 15, 49 (1971); C.A., 75, 104709~(1971). (377) Paterson, R., "An Introduction to Zon Exchange, 109 pp, Sadtler Research Laboratories, Philadelphia, Pa., I
>-
.
----i,
I
1 a711
(378):-Pennington, S. N., ANAL. CHEM., 43, 1701 (1971). (379) Perevozova, V. A., hichinova, E. S.. Zh. Prikl. Khim. Leninarad. 43. 479 (1970). I
44, NO. 5, APRIL 1972
.
.
(380) PBrez-Bustsmente, J. A., Mikroehim. Ada, 1971, 455.
(381) Peters, J. H., Berridge, B. J., Chromatogr. Rev., 12, 157-165 (1970). (382) Peterson, S. F., Tera, F., Morrison, G. H., J . Radioanal. Chem., 2, 115 (1969). (383) Phon, M. E. Q., Fra ala, R. J., Anal. Chim. Acta, 52, 553 6970). (384) Pinfold, T. A., Karger, B. L., Separ. Sci., 5, 183 (1970). (385) Plock, C. E., Vasquez, J., Anal. Chim. Acta, 57, 113 (1971). (386) Podorvanova, N. F., Zh. Anal. Khim., 26, 818 (1971). (387) Pohland, D., Rehnitz, W., Hubl, W., Buechner, M., De-ut Gesundheitsw., 25, 1570 (1970); Anal. Abstr., 21, 3608 (1971). (388) Poitenrand, C., Chim. Anal., 52, 39 (1970). - -,(389) Porath, J., Fornstedt, N., J . Chromatogr., 51, 479 (1970). (390) Porath. J.. Frvklund., L... Nature. 226, 1169 '(1970). " (391) Powell, J. E., Burkholder, H. R., Gonda, K., J. Chromatogr., 54, 259 (1971). (392) Powell, J. E., Johnson, D. K., ibid., 44, 212 (1969). (393) Power, T. F., Bennett, D. J., Anal. Biochem.. 36. 537 (1970). (394) Prusiner,' S., Milne;, L., ibid., 37, 429 mm). - -,(395) Purdie, J. W., Hanafi, D. E., J . Chromatogr., 59, 181 (1971). (396) Puschel, S. M. P., Lima, F. W., Radiochem. Radioanal. Lett., 6, 313 11971). (397) Pyathitskii, I. V., Kolomiets, L. L., Zh. Anal. Khim., 25, 479 (1970). (398) Quinche, J. P., Quinche-Sax, S., Thonnev. M.. Chim. Anal... 52.. 400 (1970). " ' ' (399) Qureshi, M., Fifth International Symposium on Chromatography and Electrophoresis, Rev. Presses Acad. Euro ., Brussels, 1969, p 197. (400) uresbi, M., Gupta, J. P., J . Chem. SOC.,A , 1970, 2620. (401) Qureshi, M., Gupta, J. P., J . Chromatogr., 62, 439 (1971). (402) Qureshi, M., Husain, K., ANAL. CHEM.,43, 447 (1971). (403) Qureshi, M., Husain, W., Talania, 18, 399 (1971). (404) Qureshi, M., Husain, W., Khan, F., Experiential 27, 607 (1971). (405) Qureshi, M., Husain, K., Gupta, J. P., J . Chem. SOC.,A , 1971, 29. (406) Qureshi, M.,Kumar, V., J . Chromato r., 62, 431 (1971). (407) ureshi, M., Rathore, H. S., Kumar, R., J . Chem. SOC.,A , 1970, 1986. (408) Qureshi, M., Rathore, H. S., Kumar, R., J . Chromatogr., 54, 269 (1971). (409) Qureshi, M., Qureshi, S. Z., Zebra, N., Anal. Chim. Acta, 47, 169 (1969). (410) Qureshi, M., Varshney, K. G., Israili, A. H., J . Chromatogr., 59, 141 (1971). (411) Radak, V. M., Susic, M. V., J . Znnrg. Nucl. Chem., 33, 1927 (1971). (412) Radcliffe, D., Anal. Lett., 3, 573 (1970). (413) Rahiala, E-L., Kekomaki, M. P., Clin. Chim. Acta, 30, 761 (1970). (414) Rahm, J., Weinova, H., Prochazka, Z., J . Chromatogr., 60, 256 (1971). (4151 Rahman. M. K.. HUQ,A. M. S., ibid., 53, 613 (1970): (416) Raj, R. K., Hutsinger, O . , Anal. Biochem., 33, 43 (1970). (417) Ralston, H. R., Sato, E. S., ANAL. CHEM.,43, 129 (1971). (418) Ramaswamy, M., Sunder Rajan, N. S., Anal. Abstr., 21, 903 (1971); Rep. Bhaba atom. Res. Centre, BARC-497, \--
'
\--
8
d
\--
~
1970.
(419) Razina I. S., Viktorova M. E., Zh. Anal. khim., 25, 1160 (19tO). (420) Raznmova, G. N.,Shuba, I. D., Vasilev, I. Y . , Radwkhzmaya, 12, 133 (1970). (421) Rees. L. V. C.. Annu. Rev. Prom. . Chm., S‘ect. A , 67,’ 191 (1970) (422) Reiter, W., Arzneim.-Forsch., 19, 1751 (1969). (423) Rehak, W . , Feddersen, B., A+ Abstr., 20,4371 (1971); R ort Staatlache Zentrale fuer Strahlena$utz, Berlin. szS-1/7o;p 8. (424) Rieman, W., 111, Walton, H. F., “Ion ,,Exchange in Analytical Chemistry, 294 pp, Pergamon Press, New York, N.Y., 1970. (425) Rinaldi, L. M., Anal. Biochem., 36, 352 (1970). (426) Ripan, R., Budiu, T., Rev. R a m . Chim., 14, 1629 (1969). (427) Rolland, M., Aquaron, R., Lissiteky, S., Anal. Biochem., 33, 307 (1970). (428) Rosett, T., Smith, J. G., Matsuo, I., Bailey, P. A., Smith, D. B., Surakiat, S.,J . Chromafogr., 49, 308 (1970). (429) Roy, S. D., Das, M. S., Anal. Chim. Acta, 51, 509 (1970). (430) Ruf, H., Fresenius’ 2. Anal. Chem., 247, 297 (1969). (431) Ruvarac, A. L., J . Chromatogr., 60, 235 (1971). (432) Ruvarac, A., Vesely, V., J . Inorg. Nucl. Chem., 32, 3939 (1970). (433) Safer, A., A’Zary, E., Valenti, C., Schneck, L., Clin. Chem., 16, 891 (1970). (434) Saldadze, K. M., Kopylova, V. D., Mekvabishvili. T. V.. Zh. Fiz. Khim.. 45, 1200 (197’1). 45. ‘ (435) Salikova, G: G. E., Sevryukov, N. N., Zaood. Lab., 36, 25 (1970). (436) Salmon, J. E., Pure Appl. Chem., 25, 797 (1971). (437) Sanchez, Batanero, P., May, S., Bull. Soc. Chim. Fr., 1971, 1935. (438) Ibid.. D 2749. (439) Sanchez Batanero, P. May, S., Burriel-Marti, F., Inform. &uim. Anal., 24, 190 (1970). (440) Ibzd., 25, 9 (1971). (441) Sansoni, B., Bund, K., Sixth International Sym osium on Microchemical Techniques, 8raz, Austria, Sept. 1970. (442) Sansoni, B., Wiegand, W., Talanta, 17, 973 (1970). (443) Santini, G., Ulrich, V., J. Chromatogr., 49, 560 (1970). (444) Savvin S. B., Myrtsoedov, B. F., Eliseeva, d. P., Zh. Anal. Khim., 24, 1023 (1969). (445) Schmid, E. R., Pfannhauser, W., Mikrochim. Acta, 1971, 250. (446) Schmit, J. A., Henry, R., Chromate graphia, 3, 497 (1970). (447) Seifert, W. K., Teeter, R. M., ANAL. CHEM.,42, 750 (1970). (448) Selezneva, N. A., Plotnikova, 0. M., Novikov, V. P., Ref. Zh. Khim., 19GD, No. 5G92 (1970); Anal. Abstr., 20, 171 (1970). (449) Senegacnik, M., Paljk, S., Kristan, J.. Fresenius’ 2. Anal. Chem.. 249. 39 (1970). (450) Sethi, S., Rei, R. S., ibid., p 186. D.., Sickafoose. (451) Sevmour., -M. - -. .- - ., J _.. F., Fntz, “J. -S.,ANAL. CHEM., 43, 1734 ~
(1871 ). \--.
- I -
(452) Shafiev, A. I., Efremov, Y. V., Nikolaev, V. M., Yakovlev, G. N., Radiokhimiya 13, 126, 129 (1971). (453) Sharma, k. D.. Subramanian. N.. ANAL.CHEM., 42, 1287 (1970). ’ ’ (454) Sharma, H. D., Subramanian, N., Can. J. Chem., 49, 457 (1971). (455) Shenna, J., Thorpe, T., Anal. Ledt., 4. 507 (1971). (456)- She&ai‘-J., Van Leuten, F. J., Separ. Sci., 6, 199 (1971).
(457) S h e d , R. D., Smith, M. D., Pauley, J. L., J . I m g . Nucl. Chem., 33,3131 (1971). (458) Shuizu, T., Ishikwa, R., J . Chrmtogr., 56, 95 (1971). (459) Shimiru, T., Momo, E., Anal. Chim. A d a 52, 146 (1970). (460) 6himizu T. Uda, F., Matsumiya, H., Miyauchi, Ganno, S., Bunseki Kagaku, 18, 632 (1969). (461) Shmukler, H. W., J . Chrmatogr. Sn’., 8 , 653 (1970). (462) Sinpgribova, 0. A,, Bukova, T. A., Semenov, G . I., Yagatin, G. A., Ref. Zh. Khim., 19GD, 3G57 (1971). (463) Sinibaldi, M., Lederer, M., J . Chrmatogr., 51, 556 (1970). (464) Skafi, M., Lieser, K. H., Fresenius’ 2. Anal. Chem., 250, 306 (1970). (465) Zbid., 251, 177 (1970). (466) Skelly, N. E., Crummett, W. B., J . Chromatogr., 55, 309 (1971). (467) Skotokhod, 0. R., Klezovich, L. I., Kolloid. Zh., 33, 268 (1971). (468) Slavinskaya, G. V., Granovskaya, G. L., Mazo, A. A., Tr. Voronezh. Gos. Uniu., 72, 72 (1969); C.A., 75, 80659h (1971). (469) Sleater, G. A., Freeman, D. H., ANAL.CHEM.,42, 1666 (1970) (470) Sleater, G. A., Freeman, D. H., Olson, D. H., Sherry, H. S., ibid., 43, 1898 (1971). (471) Slomiany, B. L., Horowitz, M. I., J . Chromatogr., 49, 455 (1970). (472) Sluyterman, L. A. E., Wijdenes, J., Biochim. Biophys. Acta, 200,593 (1970). (473) Smith, D. J., J . Ass. Oflc. Anal. Chem., 53, 116 (1970). (474) Ibid. pp 840, 847. (475) Smith, T. A., Anal. Biochem., 33, i n (1970). (476) ‘Smit$, R., Larsen, K., Massart, D. L., J. Chromatogr., 59, 237 (1971). (477) Smolyaninov, V. V., ibzd., 53, 337 (1970). (478) Soldatov, V. S., Bychkova, V. A., Zh. Fiz. Khim., 45, 1242 (1971). (479) Sorm, F., Pure Appl. Chem., 25, 253 (1971). (480) Spiegel, H. E., Christian, R. P., Clin. Chiin. Acta, 31, 143 (1971). (481) Spiridon, S.,Sabau, C., Korkisch, J., J . Radioanal. Chem., 3, 377 (1965). (482) Stehl, R. H., ANAL. CHEM., 42, 1802 (1970). (483) Stevenson, R. L., Burtis, C. A., J . Chromatogr., 61, 253 (1971). (484) Stoerl, H. J., Zahn, H., Fresenius’ 2. Anal. Chem.. 280. 99 (1970). (485) Stoeppler, M., J.’Radaoanai. Chem., 5 , 21 (1970). (486) Stoeppler, M., Fresenius’ Z . Anal. Chem., 250, 237 (1970). (487) Ibid., 253, 35 (1971). (488) Strelow. F. W. E.. Boshoff, M. D., Tulanta, 18; 985 (1971). (489) Strelow, F. W. E., Victor, A. H., Eloff, C., J . S. Afr. Chem. Znst., 24, 27 (1971). (490) Strelow, F. W. E., Victor, A. H., van Zyl, C. R., Eloff, C., ANAL.CHEM., 43, 870 (1971). (491) Strelow. F. W. E.. Weinert.’ C. H. S.’W., Talanta, 17, 1 (i970). (492) Streuli, C. A., J . Chromatogr., 56, 219, 225 (1971). (493) Strong, P. Landers, L., Neumann, J., Cummiskey, C. J., J . Znorg. Nucl. Chem., 32, 309 (1970). (494) Sukharev, Y. I., Egorov, Y. V., Pustovalov. N. N.. Zh. Neoro. Khim.. 16, 1026 (1971). ’ (495) Sulcek, Z., Povondra, P., Kratochvil, V., Colled. Czech. Chem. Commun., 34, 3711 (1969). (496) Sulcek, Z., Rubeska, J., ibid., p 2048. (497) Sulcek, Z., Sixta, V., ibid., p 3448. (498) Sumakova, N. S., Markova, N. V.,
k.,
~
Ref. Zh. Khim., 19GD, No. 1OG154 (19701. (499) Suranova, Z. P., Grabchuk, 0-Y., Kutovaya, L. M., Zh. Prikl. Khim. (Leningrad), 44, 1566 (1971). (500) Suzuki, Y., Ishii, D., Takenchi, T., Bumeki Kagaku, 18, 858 (1969). (501) Szczepaniak, W., Kubera, G., Chem. Anal. (Warsaw), 15, 1009 (1970). (502) Szirtes, L., Zsinka, L., Radiochem. Radioanal. Lett., 7 , 61 (1971). (503) Tabak, S., Mauro, A. E., Del’Acqua, A., J . Chrmatogr., 52, 500 (1970). (504) Tackett, S. L., ANAL.CHEM.,43, 972 (1971). (505) Talley, C. P., ibid., p 1512. (506) Talvitie, N. A., ibid., p 1827. (507) Tanewa, G. G., Freze, N. A.1 Zavod, Lab., 36, 665 (1970). (508) Tedesco, P. H., Quintana, J. A. G., J . Inorg. Nucl. Chem., 32, 2689 (1970). (509) Thauer, R. K., Rupprecht, E., Jungermann, K., Anal. Biochem., 38, 461 (1970). (510) Thomas, D. E., Thomas, J. D. R., Analyst, 94, 1099 (1969). (511) Tikhomirov, V. K., Petrukhin, N. V., Radiokhimiya, 13, 318 (1971). (512) Tischler, W., Z. Chem., 10, 156 i, i-~~-,. m. ) . (513) Tobia, S. K., Gawargious, Y. A., El-Shahat, M.F., J. Chem. U.A.R., 12, 363 (1969). (514) Torok. G.. Diehl, J. R., Radiochim. ‘ Aita, 15, 96 (1971). (515) Torpudzhiyan, M K., Tsitovich, I. K., Ref. Zh. Khim., 19GD, No. 1G70
-,.
(la711 *“I
(5i6 ) Tortolani. G.. Bianchini. P.. Mantc‘ vani, V., Faimaco. Ed. P;at.,’25, 772 (1970); Anal. Abstr., 21, 2879 (1971). (517) Uziel, M., Koh, C., J . Chromatogr., 59, 188 (1971). (518) van Dyck, G., Verbeek, F., Fresenfus’ 2. Anal. Chem., 249, 89 (1970). (519) van Raaphorst, J. G., Haremaker, H. H., Talanta, 17, 347 (1970). (520) Vaidyanathan, S., Baetsle, L. H., Radiochem. Radioanal. Left., 5, 247 (1970). (521) Vanderdeelen, J., Anal. Chim. Acta, 49, 360 (1970). (522) Vansant, E. F., Uytterhoeven, J. Trans. Faraday SOC., 67, 2961 k 7 1 l
(5i3j.Visyutin1 V. P., >lorozova, N. M., Ol’shanova, K. M.,Ref. Zh. Khim., 19GD, Abstr. No. 23G59 (1970). (524) Vdovenko, V. M., Krivokhatskii, A. S., Skovorodkin, N. V., Rad+ khimiya, 13, 416 (1971). (525) Vialatte, B., Barrandon, J. N., Alexandrov, S., et al., Radiochem. Radioanal. Lett., 5, 59 (1970); Anal. Abstr., 21, 1810 (1971). (526) Vidal, G., J . Chromatogr., 59, 71 (1971). (527) ;ci‘lnki-J. J., Analyst, 95, 399 (1970). (528) Vita, 0. A., Walker, C. R., Trivisonno, c. F., SDarks, R. w., ANAL. CHEM.,‘42, 465 (i970).’ (529) Waclawik, Z., Pr. Znst. Odlew., 20, 136 (1970); Anal. Abstr., 21, 1825 (1971). (530) Wada, E., Hattori, A., Anal. Chim. Acta, 56, 233 (1971). (531) Wagner, F. W., Shepherd, S. L., Anal. Biochem., 41, 314 (1971). (532) Wahlgren, M., Orlandini, K. A., Korkisch, J., Anal. Chim. Acta, 52, 551 (1970). (533) Wakat, A., Griffin, C., Radiochem. Radioanal. Lett., 2, 351 (1969). (534) Walborg, E. F., Kondo, L. E., Anal. Biochem., 37, 320 (1970). (535) Wald, M., Kaysser, B., Mikrochim. Acta, 1970, 1137. (536) Walker, H. G., Saunders, R. M.,
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
269 R
Cereal Sci. Today, 15, 140 (1970); Anal. Abatr., 20, 4295 (1970). (537) Walker, R. I., Shipman, W. H., J . Chromatogr., 50, 157 (1970). (538) Wall, R. A., Anal. Biochem., 35, 203 (1970). (539) Wall, R. A,, J. Chromatogr., 60, 195 (1971). (540) Walter, C. W., Korkisch, J., Mikrcchim. Acta, 1971, 81, 137, 158, 181, 194. (541) Watanabe, H., Bunseki Kagaku, 19, 1658 (1970). (542) Webster, P. V., Wilson, J. N., Franks, M. C., J. Znst. Petrol., 56, 50 (1970). (543) Wenzel, E., Oppolzer, R., Schuster, D., Mikrochim. Acta, 1971, 680. (544) Wernet, J., Wahl, K., Fresenius’ Z. Anal. Chem., 251, 373.(1970). (545) Wetterquist, H., Whte, T., Scand. J. Clin. Lab. Invest., 25, 325 (1970); Anal. Abstr., 20, 4146 (1970). (546) White, S. H., Loken, M. R., Shields, C. E., Clin. Chem., 16, 861 (1970). (547) Widtmann, V., Hutn. Listy, 25, 733 (1970); Anal. Abstr., 21, 2601 (1971).
(548) Winkler, R., Sansoni, B., Starke, K., Radiochim. Acta, 15, 65 (1971). (549) Wolf, W. J., Thomas, B. W., J . Chromatogr., 56, 281 (1971). (549a) Wolford, J. C., Dean, J. A., Goldstein, G., ibid., 62, 148 (1971). (550) Wong, K. M., Anal. Chim. Ada, 56, 355 (1971). , (551) Woodroofe, G. L., Munro, J. D., Analyst, 95, 153 (1970). (552) Wu, C. M., McCready, R. M., J. Chromatogr., 57, 424 (1971). (553) Yaguchi, M., Perry, M. B., Can. J. Biochem., 48, 386 (1970). (554) Yasuda, K., J. Chromatogr., 60, 144 (1971). (555) Ying-Mao Chen, Fu-Pa0 TSBO,J. Chinese Chem. SOC., (Taipa), 17, 81 (1970). (556) Yoshikawa, Y., Yamasaki, K., Kagaku No Ryoiki, 25, 164 (1971); C.A., 74, 1 3 0 7 7 8 ~(1971). (557) Yoshio, M., Waki, H., Ishibashi, N., J. Znorg. Nucl. Chem., 32, 1365 (1970).
(558) Zagorodnyeya, A. N., Lebeder, U. D., Ponomarev, V. D., C.A., 74, 1307% (1971). Tr. Znst. Met. Obogashch., Akad. hauk. Kaz. SSR, 1970, 97. (559) Zaharescu, T., Rev. Roum. Chim., 16, 775 (1971). (560) Ziegler, M., Ziegeler, L., Winkler, H., Mikrochim. Acta, 1970, 1312. Zhitenev, V. A., Zh. Prikl. Khim., 42, 1699 (1969). (561) Zhukov, A. I., Kazantsev, E. I., Zhitenev, V. A., Zh. Prikl. Khim., 42, 1699 (1969). (562) Zima, S., Giacintov, P., J. Rad& anal. Chem., 7, 19 (1971). (563) Zlatkis, A., Buening, W., Bayer, E., ANAL.CHEM.,42, 1201 (1970). (564) Zsinka, L., Szirtes, L., Radiochem. Radioanal. Lett., 2, 257 (1969). (565) Zsinka, L., Szirtes, L., Radiokhimiya, 12, 774 (1970). (566) Zsinka, L., Szirtes, L., Acta Chim. Acad. SCi. Hung.,69, 249 (1971).
Ion Selective Electrodes, Potentiometry, and Potentiometric Titrations Richard P. Buck, Kenan laboratory o f Chemistry, University o f North Carolina at Chapel Hill, Chapel Hill, N.C.
T
HE LITERATURE COVERED in this review includes recent developments in the area of potentiometry which were published since the last review by Toren and Buck (944). The final issue of Chemical Abstracts consulted was Vol. 75, No. 22, November 29, 1971. The format of this review is altered in comparison with earlier reviews by a clear emphasis on ion selective electrodes and their applications in all fields of applied science. This comprehensive survey has required deletion of some topics previously reviewed : nonaqueous titrations, equilibria in aqueous and nonaqueous solvents by potentiometric methods, electrodes and cell systems pertaining primarily to batteries, fuel cells and electrochemical synthesis, and potentiometry in molten salts. A few exceptions are included in the final section. We have, however, retained a section on standard potentials in nonaqueous and mixed solvents together with a summary of fundamental papers on potentiometry in mixed solvents and the principles of membrane potentials. Most potentiometric application papers are listed in tables according to the type of electrode used. BOOKS, REVIEWS, AND SURVEYS
The selective ion electrode field is one of the most active and flourishing branches of potentiometry. While there were nearly two hundred fundamental 270 R
and application papers referred to in the previous review, the number has now risen to at least 500, including glass electrode developments and applications. The number of review articles and books has increased abruptly as well. Although already out-of-date in this rapidly advancing field, the chief source book and compilation is that edited by Durst, “Ion-Selective Electrodes” (231). A new book by Moody and Thomas “Selective Ion Sensitive Electrodes” (640) has just appeared. A chapter by Buck (128) in “Physical Methods of Chemistry” emphasizes selective electrode principles. Theoretical principles are treated comprehensively by Eisenman (243) while compositions and performance are described by Ross (808). Recent general reviews of potential response theory and experimental characteristics of glass, solid-state, synthetic solid ion exchange, liquid ion exchange, and neutral carrier membrane electrode systems are by Cammann (140-142), Covington (179), Durst (232), Florence (282), Liteanu (666) in Rumanian, Pearson (738), Simon (884, 888) and Taubinger (988). N onglass electrodes are also reviewed by Ishibashi (409) in Japanese and Moody et al. (639, 641). Shorter reviews are by B a g (34) and de Carvalho (369, 370), Karasek (447) and Ray (782). Applications emphasizing techniques and thermodynamic
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
27574
measurements are by Durst (229), Rechnitz (784, 786), Oehme (696) in German, and Butler (133). Although heterogeneous membranes of the Pungor type are included in these reviews, specific reviews by Covington (1 77) and Pungor and Toth (773) are recommended. Applications of selective electrodes in various fields are : industrial processes (67, 661, 662), electroplating (284), toxicology and industrial hygiene (128), water and air pollution (17, 146, 691, 796, 797, 889, 1026). Sensitizing of ion selective electrodes for measurement of materials via an intermediate chemical reaction product was achieved long ago in the development of the well known p C 0 ~electrode. This, together with immobilized substrate electrodes, e.g., enzyme or liquid ion exchangers, have been reviewed by Huang (396) in Japanese, Guilbault (334), Mueller (649),and Rechnitz (787). Glass electrodes for pH and pM measurements have been reviewed by Truesdell (963) and Galster (297) while the principles of pH measurement and some commercial pH meters are reviewed by Woudsma (1022) in Dutch. Other pH reviews are: sterilizable pH electrodes (662), pH control in industry (746),and pH electrodes in fermentation (401). Bates has reviewed pH measurements in nonaqueous and mixed solvents (48)*