(158) Petukhov, S. S., Gustov, V. F., Tr. Vses. Nauchn.-Zssled. Znst. Kislorodn. Mashinostr. No. 7, 120 (1963). (159) Pfefferle, w. c., u. S. Patent 3,138,948 (June 30, 1964). (160) Pichl, E., Erdoel Kohle 17 (6), 474 (1964). (161) Pines, I., Chem. Anal. 9 (2), 179 (1964). (162) Pribyl, Rf., Collection Czech. Chem. Commun. 28,2158 (1963). (163) Pross, A. W., Can. Spectry. 9 (8) 143, (1964). (164) Rabinovich, V. A,, Sherman, E. E., Rol Mikroorganizmov v Obrazov ZhelezoMergantsevykh Ozern. Rud, Akad. Nauk SSSR, Lab Gidrogeol Probl. 1964, 8. (165) Ray, W. A., German Patent 1,155,270 (Oct. 3, 1963). (166) Richter, H. G., Gillespie, A. S., Jr., NASA Accession No. N64-19, 1923; Rept. No. ORO-591 Avail. OTS. (167) Ripley, D. L., Clingenpeel, J. M., Hurn, R. W., Air Water Pollution 8 (8-9), 455 (1964). (168) Risk, J. B., Murray, F. E., Can. Pulp Paper Znc. 17 (lo), 31 (1964). (169) Roberts, J. L., Jr., Sawyer, D. T., J . Electroanal. Chem. 7 (4), 315 (1964). (170) Rogaczewska, T., Chem. Anal. 9 (3), 417 (1964). (171) Romand, M. J., Berneron, M. R., Puhl. Group. Avan. Methods Spectrog. 1963 (4), 327. (172) Roskam, R. Th., delangen, D., Anal. Chim. Acta 30, 56 (1964). (173) Russkikh, A. A., Novoe V Oblasti Sunit.-Khim. Analiza 1962, 162. (174) Ryhage, R., ANAL.CHEM.36, 759 (1964). (175) Saltzman, B. E., Mendenhall, A. L., Jr., ANAL.CHEM.36, 1300 (1964). (176) Seaver, R. E., NASA Doc. N62-14, 862 (1962). (177) Semikhatova, 0. A., Ivanova, T. I., Fiziol, Rust. 12, 175 (1965). (178) Semyachkova, A. F., Korskova, M. R., U.S.S.R. Patent 158,448 (Oct. 19, 1963).
(179) Senkevich, 0. V., Klassovskaya, N. A., U.S.S.R. Patent 161.966 . (Am. . _ 1, 1964): (180) Seo. E. T.. Sawver. D. T.. J.’Electroanal. Chem. 7 (3“).~-~ i84 11964). ’ (181) Serak, L., Hybasek, P., Czech. Patent 105,758 (Nov. 15, 1962). (182) Shul’gina, E. M., Arutyunova, A. Kh., Blyumshtein, A. E., Neftepererabotka i Neftekhim. Nauchn.-Tekh. Sb. 1964 (3), 26. (183) Sojecki, W., Prace Central. Znst. Ochrony Pracy 14 (43), 199 (1964). (184) I5id., p. 209. (185) Solitario, W. A., Bialecki, A., Laubach, G., Chem. Eng. Progr. Symp. Ser. 60 (52), 188 (1964). (186) Spitzer, Z., Kurka, Z., Paliva 43 (12), 364 (1963). (187) Stamm, W., German Patent 1,168,122 (April 6, 1964). (188) Stephens, B. G., Lindstrom, F., ANAL.CHEM.36, 1308 (1964). (189) Stephens, E. R., Pattison, J. N., ACS, Division of Water Waste Chemistry Preprints 1963 (March, April) 321. (190) Stetter, G., Oesterr, Akad. Wiss., Math-Naturw.Ki., Sitzber 172,79 (1963). (191) Stier, A., Intern. Arch. Gewerbepathol. Gewerbehyg. 20, 337 (1963). (192) Stout, J. W., Jr., Early, E., Proc. Operating Sect., Am. Gas Assoc. 1962, CEP-62-2. (193) Strafelda, F., Dolezal, J., Czech. Patent 104,676 (Aug. 15, 1962). (194) Sullivan, J. O., Warneck, P., Microchem. J . 8 (3), 241 (1964). (195) Suvorova, S. N., Vorob’ev, A. hf., Rabovskii, G. V., Gigiena i sunit. 28 (lo), 48 (1963). (196) Tapfer, D., Egeszsegtudomany 7 (4), 322 (1963). (197) Toedt, F., German Patent 1,177,377 (Sept. 3, 1964). (198) Tsuchiya, M., Tachikawa, T., Shitsuryo Bunseki l l (23), 117 (1963). (199) Utsumi, S., Ito, S., Machida, W., Okutani, T., Bunseki Kagaka 14, 12 (1965). I
~
\
,>
\ - -
(200) Vaistariene, K., Dolgopol’skii, I. M., Kriauciunas, J., Lietuvois T S R Mokslu Akad. Darhai, Ser. B 1946, No. 4, 79. (201) Vana, J., Vojir, V., Lichtenberg, F., Sekerka, B., Czech. Patent 104,374 (July 15, 1962). (202) Vana, J., Srein, K., Czech. Patent 106,163 (Jan. 15, 1963). (203) Van der Waal, J., Nuovo Cimento, +%.p~l. 1 (2), 760. (204) Van Meerten, R. J., Netherlands Patent 110,554 (Jan. 15, 1965). (205) Vasak, S’., Collection Czech. Chem. Commun. 24, 3500 (1959). (206) Vines, H. M.,Oberbacher, M. F., Proc. Florida State Hort. SOC.76, 312 (1963). (207) Vinogradova, V.A., Novoe v Oblasti Sunit.-Khim. Analiza 1962, 158. (208) Vlckova, Z., Prace Ustavu Vyskum Paliv 7, 257 (1964). (209) Voelker, R. E., White, C. N., ZSA Proc. Ann. Inst. Autom. Conf. Exhibat 18, Pt. 2 (1963). (210) S’ojir, V., Lichtenberg, F., Sekerka, B., S’ana, J., Czech. Patent 109,125 (Nov. 15, 1963). (211) Wigotsky, V. W., Design News 19, 38 (1963). (212) Yanagisawa, S., Hashimoto, Y., hfitsuzawa, S., Bunseki Kagaka 12, 1040 (1963). (213j -Yanagisawa, S., Mitsuzawa, S., Hirose, A., Arai, M., Zbid., p. 1037. (214) Zakhar’evskii, hf. S., Petrovskaya, I. A,. Vestn. Leninar. Univ. 19 (221, . . 1964.’ (215) Zavarov, G. IT., Zavodsk Lab. 30, 25 (1964). (216) Ibid., p. 409. (217) Zawadzki, S., Grabowski, Z., Prace Central. Znst. Ochrony Pracy 14 (43), 185 (1964). (218) Zimina, K. I., Polyakova, A. A., Khmel’nitskii. R. A.. Razdelenie i Analiz Ugiedodorodnykh Gazov, Akad. Nauk SSSR, Znst. Neftekhim. Sinteza, Sb. Staki 1963, 214.
Ion Exchange Robert Kunin, Rohm and Haas Co., Philadelphia, Pa.
T
review on the analytical chemistry of ion exchange follows the format introduced in 1962 excluding those topics that are specifically related to ion exchange chromatography which will be incorporated in another review. Since most all applications of ion exchange are in a sense chromatographic processes, the author has arbitrarily omitted from this review those analytical chromatographic separations involving the columnar separation of closely related species requiring a multitude of theoretical plates. This review covers the period from November 1963 to November 1965. HIS
REVIEWS
Several ion exchange reviews of a general nature which were published recently are of considerable interest to t h e analytical chemist. Reichenberg 176 R
e
ANALYTICAL CHEMISTRY
(7A) and Tremillon (8A) have reviewed some of the more important theories and principles of ion exchange. Dorfner (6A) has written, in German, a book on the properties and applications of ion exchangers. A Russian book describing the properties of ion exchange materials has been written by Chmutov ( 5 A ) ,a Soviet authority in the field. Of particular interest is the monograph by Amphlett ( 1 A ) on inorganic exchangers, an area of renewed It is indeed unfortunate, interest. however, that most of the recent workers in this area have ignored the extensive work of Sante Mattson and his students who published extensively in the United States and Sweden from 1926 to 1946. Of interest is the book by Cassidy and Kun ( S A ) on redox polymers. This monograph contains a comprehensive treatment of the nature, preparation, and applications of crosslinked redox
polymers which may be of considerable interest to the analytical chemist. Of direct interest to the analytical chemist are the recent reviews by Chernobrov ( 4 A ) and Walton (9A). Brinkman and DeVries (29) have reviewed the use of liquid ion exchangers in analytical chemistry. THEORY
Numerous studies are in progress in which attempts are being made to quantitatively account for the selectivity of ion exchange substances, particularly with respect to changes in the physical and chemical structures of the exchanger. Extensive thermodynamic studies were conducted by Boyd et al. (4B) and by Soldatov and Starobinets (29B-SZB) on the sulfonated styrenedivinylbenzene cation exchangers of varying degrees of crosslinkage. Other selectivity investigations on similar
cation exchange resins have been conducted by Klein et al. (ZOB), Strelow et al. ( S S B ) , and Whitney and Diamond (36B). h detailed study of the p K and selectivity of an iminodiacctic acid chelating exchanger was reported by Leyden and Under-qood (22B). Employing spectrophotometric techniques, Boyd et al. (SB) concluded that under special circumstances these ion exchange resins may extract salts by essentially a solvent extraction mechanism involving ion association complexes. Anion exchange selectivity data have been reported by Faris and Buchanan ( I 2 B ) for nitric acid, by Huff (18B) for HKOs-HF systems, by Danielsson (BB) for H2S04and by Kawabuchi (19B) for the thiocyanate-HC1 system. Various studies on ion exchange in nonaqueous media with particular emphasis on the role of hydration and dielectric constant were described by Davies and Narebska (9B), Davydov et al. (IOB), Dickel and Bunzl ( I I B ) , Gupta (15B), Poitrenaud (24B), and Savitskaya et al. (26B). A series of three related studies on the ion exchange properties of synthetic zirconium phosphates were reported by Ahrland and Albertsson ( I B ) , Amphlett and Jones ( 2 B ) ,and Harkin et al. (I 7 B ) . Gustafson (16B) has made a detailed study of the hydrogen ion equilibrium for a cross-linked polyniethacrylic acid copolymer in KaCl solutions. Freeman et al. ( I S B ) have presented a detailed study of the electrolyte uptake equilibria in low crosslinked cation and anion exchange resins. Detailed physical studies on the pore structures of macroreticular or macroporous ion exchange resins were presented by Kun and Kunin (2IB) and M l l a r et al. (ZSB). Diffusion controlled kinetics in ion exchange resins were reported by Bychkov et al. ( 6 B ) , Golubev and Panchenkov (ZdB), and Smith and Dranoff (28B). The kinetics of ion exchange in an iminodiacetic acid chelating ion exchange resin was found by Schwarz et al. (27B) and Varon and Rieman (34B) to be diffusion controlled. The columnar characteristics of ion exchange relating the concentration history with diameter, height, and flow rate were studied in detail by Chuprina (6B), Cooney and Lightfoot (7B),and Rosset et al. (25B). ANALYSIS OF SALTS AND SOLUTIONS
Of the most widely used analytical applications of ion exchange, most popular is the acidimetric analysis of salt solutions by conversion of the salts to their corresponding acids or hydroxides by passage through a column of the hydrogen form of a sulfonic acid cation exchange resin or the hydroxide form of a quaternary ammonium anion
exchange resin. Kowalska and Sollorz ( I C ) have developed such procedures for the determination of nitrates and ammonia in NH4NO3 fertilizers. Kreshkov et al. (ZC, SC) have devised similar procedures based upon the titration of the ion exchange liberated acids in nonaqueous media. CONCENTRATION OF DILUTE SOLUTIONS
Further studies on the use of high capacity ion exchange resins for the concentration of dilute solutions of electrolytes have been published in various journals. A simple apparatus for conducting such procedures rapidly for use in radiochemical work has been described by Samsahl (IOD). Tera, Ruch, and Morrison ( f 2 D ) have devised a combined precipitation-ion exchange procedure for the concentration of trace elements. Procedures for the determination of trace elements in waters and dilute solutions have been described by Derecki, Geisler, and Jaworowski ( 5 D ) , Benes ( I D ), Crosby and Chatters ( S D ) , Burriel-Marti and Alvarez-Herrero (2D), and Heitmann and Donath (80). Similar procedures for use on biological matter have been described by Wester, Brune, and Samsahl (16D), Forman and Garvin (YD), and Dietrich ( 6 D ) . Procedures for the determination of trace elements in edible fats have been investigated by Vioque, Albi, and Villagran (160). Vaissiere and Tremillon ( 1 S D ) have employed an ion exchange concentration procedure for the determination of traces of uranium in alloys. Ion exchange procedures for increasing the scwitivity of such analytical processes as h e ring-oven, activation, x-ray emission, and atomic-absorption techniques have been described by Shen, Kan, and Keng ( I I D ) , Vavar ( I 4D), Link, Heine, Jones, and Wattlington ( 9 D ) ,and David ( 4 0 ) . INORGANIC ANALYSIS
illany ion exchange procedures for the analysis of various metals were reported during the past two years. Procedures for the analysis of the alkalies were described by Breault @ E ) ,Olsen and Sobel (IQE), and Osterried (16E). Ion exchange techniques for the analysis of the alkaline earths were developed by Hantabal et al. (6E), Blake, Oldham, and Sumpter (2E), Gregory (5E), and Porter and Kahn (16E). Methods for the analysis of uranium were reported by Korkisch and Ahluwalia (IOE) and Marabini (12E). Ion exchange techniques were developed by Mizuike (1SE) for the analysis of gold, by Korkisch and Feik (I1E) for lead, and for iron and aluminum by Gera (4E). Various ion exchange procedures were investigated by Kanwar and Chopra (BE) and Vilbok (19E) for sulfate
analyses, by Kanie (7E) for silica, by Kelso, Matthews, and Kramer (9E) and Sacks (18E) for the halides, and by Ryabchikov and Kuril’chikova (IYE), Babko ( I E ) , and Wenzel and Pietri (d0E) for the analysis of boron. MICROCHEMICAL TECHNIQUES
Microchemical spot test procedures based upon single beads of ion exchange resins were described by Kat0 and Kakihana ( 4 F ) and Fujimoto and his associates (IF-SF). ORGANIC AND BIOCHEMICAL ANALYSIS
Of the various organic and biochemical ion exchange procedures that are of a non-chromatographic nature, several are of noteworthy interest. Bey ( I G ) , Czaja and Awerbuch (4G), and Miro (BG) have employed ion exchange techniques for the analysis of detergent mixtures. Calderbank and Yuen (ZG) have developed an ion exchange method for the analysis of quaternary ammonium pesticide residues. An ion exchange procedure for the analysis of urinary ascorbic acid was described by Hughes (6G). Ion exchange procedures for the analysis of acetamide and acetanilides were developed by King and Simmler (7G) and Cassidy and Streuli (SG). Kamp (6G)has devised a method for the analysis of the caffeine, quinine, and strychnine alkaloids. Vancraenenbroeck et al. (9G) have described a procedure for the analysis of flavenoids. NEW ION EXCHANGE MATERIALS
I n the development of new ion exchange materials, much of the effort has been directed toward the improvement of physical and chemical stability, the synthesis of specific ion exchangers, and the development of inorganic exchangers capable of being utilized a t high temperatures. Zirconium phosphate gel appears to be the most popular inorganic exchanger from a research point of view. Details of its preparation have been described by Ahrland et al. ( I H ) , Materova and Skabichevskii ( I 7 H ) , and Clearfield and Stynes ( 4 H ) . Other inorganic exchangers based upon such materials as stannic phosphate, ferrocyanides, and molybdates were described by Inoue (BH),Huys and Baetsle ( 7 H ) , and Kourim et al. (11H). Seidl and his associates (20H, I I H ) have reviewed the newer trends and approaches to the synthesis of ion exchange resins and have described some of the principles involved in the preparation of macroreticular structures. Hopff et al. (6H)have described the details of the suspension-polymerization techniques. Kokoshko et al. (10H) have detailed the synthesis of several new monomers useful for the prepamtion of anion exchange resins. Several noteVOL. 38, NO. 5, APRIL 1966
* 177 R
worthy studies on the styrene-divinylbenzene system have been made by Storey (2SH) and Wiley and his associates (26H, 2 i ” ) . Anderson ( 2 H ) has prepared a very interesting contour map of the anion exchange properties of the quaternary ammonium anion exchange resins based upon chloromethylated and aminated styrene-divinylbenzene copolymers. Several other anion exchange resin syntheses have been described by Lloyd and Durocher ( 1 4 H ) , Hatch and Lloyd ( 5 H ) , and Skondak and Nikolaev ( 2 2 H ) . Rabek and hlorawiec ( I 9 H ) have synthesized a cation exchange resin based upon the sulfonation of a polybenzyl polymer. Ion exchange resins based upon phosphorous resins and arsenic functionality have been described by Marhol (16H) and Tevlina et al. (24H). Considerable effort is still being directed toward the development of specific and chelating ion exchange structures. Veruovic (25N) has described the preparation of a condensed flavone having a high selectivity for ferric ions. Lewandowski and Szczepaniak ( I S H ) have prepared a noble metal-selective exchanger based upon a rhodamine structure. Selective exchangers based upon resorcinol and arsenic acid have been described by Lastovskii et al. (12H). Chelating exchangers based upon 4-acetoxy-styrene and divinylbenzene have been described by Packham ( I B H ) . Various redox polymers have been synthesized by Baistrocchi and Grossi ( S H ) and hfanecke and Storck ( 1 5 H ) . A review of redox resins has been prepared by Kadlec and Brodsky ( 9 H ) . TESTING METHODS
Committee D-19 of the American Society for Testing Materials (ASTM) has two active task groups studying the establishment of standard methods for evaluating various ion exchange materials. The work of these groups is beginning to bear fruit and their efforts should be most valuable to all those interested in ion exchange. Verteshev and Komarovskii ( 4 4 have developed an experimental apparatus for hydraulically grading ion exchange resins. Nuclear magnetic resonance methods for studying ion exchange resins have been described by deVilliers and Parrish (1J) and Dinius and Choppin ( 2 J ) . A dilatometer useful for ion exchange studies have been developed by John Thompson, Ltd. (SJ). STABILITY OF ION EXCHANGE RESINS
The thermal stability of ion exchange resins has been studied by Erofeev el al. ( I K ) and Skorokhod et al. (2K).
178 R
ANALYTICAL CHEMISTRY
ACKNOWLEDGMENT
The author acknowledges the assistance of Janice Brock, Erich hleitzner, and the library staff of the Rohm and Haas Company. Without this assistance, this review would not have been possible. LITERATURE CITED
Reviews. (la)Amphlett, C. B., “Inorganic Ion Exchangers,” Elsevier, K.Y., 1964. (2A) Brinkman, U.A. Th., DeVries, G., J . Chromatog. 18, 142 (1965). (3A) Cassidy, H. G., Kun, K. A., “Oxidation-Reduction Polymers (Redox Polymers),” Interscience, N. Y., 1965. (4A) Chernobrov, S. M., Ind. Lab. 29, 1417 (1963). (SA) Chmutov, K. V., “Investigation of the Properties of Ion-Exchange hlaterials,” (Russia), Nauka, Xoscow, 1964; (6A) Dorfner, K., “Ionen Austauscher, Walter Der Gruyter and Co., Berlin, 1963. (7A) Reichenberg, D., Endeavour 22, 123 I1963’,
(8A)-Tiemillon, B., Bull. Inform. Sei. Tech. (Paris) 50 (85), 5 (1964). (9A) Walton, H. F., J . Chem. Educ. 42, 111 (1965). Theory
(1B) Ahrland, S., Albertsson, J., Acta Chem. Scand. 18, 1861 (1964). (2B) Amohlett, C. B.. Jones, P. J.. J . Inorg. lvucl. Chem. 26, 1759 (1964). (3B) Boyd, G. E., Lindenbaum, S., Larson, Q. V., Inorg. Chem. 3, 1437 (1964). (4B) Boyd, G. E., Vaslow, F., Lindenbaum, s.,J . Phys. Chem. 68,590 (1964). (5B) Bychkov, N . V.,Znamenskii, Yu. P., Kasperovich, A. I., Issled. Svoistv Ionoobmen. Materialov, Akad. Nauk SSSR, Inst. Fiz. Khim. 1964, p. 30. (6B) Chuprina, L. F., Izv. Vysshikh Uchebn. Zavedenii, Tekhnol. Legkoi Prom. 1964 (5), p. 20. (7B) Cooney, D. O., Lightfoot, E. N., Ind. Eng. Chem. Fund. 4,233 (1965). (8B) Danielsson, L., Acta Chem. Scand. 19, 670 (1965). (9B) Davies, C. W., Narebska, A., J . Chem. SOC.1964, p. 4169. (10B) Favydov, A. T., Skoblionok, R. F., Lisovina, G. M., Issled. Svoistv Ionoobmen. Materialov, Akad. hTauk SSSR, Inst. Fiz. Khim. 1964, p. 79. (11B) Dickel, G., Bund, L., Makromol. Chem. 79, 54 (1964). (12E) Faris, J. P., Buchanan, R. F., ANAL.CHEM.36, 1157 (1964). (13B) Freeman, D. H., Patel, V. C. Buchanan, T. M., J . Phys. Chem. 69, 1477 (1965). (14B) Golubev. V. S.. Panchenkov. G. M. Zh: F i z . Khim. 38, 1010 (1964). ’ (15B) Gupta, A. R., J . Phys. Chem. 69, 341 (1965). (16B) Gustafson, R. L., J . Phys. Chem. 68, 1563 (1964). (17B) Harkin, J. P., Nancollas, G. H., Paterson. R.. J . Inoro. Nucl. Chem. 26, 305 (1964). ’ (18B) Huff. E. A,. ANAL.CHEM.36, 1921 . (1964). ’ (19B) Kawabuchi, K., J . Chromatog. 17, 567 (1965). (20B) Klein, G., Villena-Blanco, M., Vermeulen. T.. Ind. Ena. Chem. Process Design Deielop. 3, 280 (“1964). (21B) Kun, K. A., Kunin, R., J. Polymer Scz. BZ, 587 (1964). ~
(22B) Leyden, D. E., Underwood, A. L., J . Phys. Chem. 68,2093 (1964). (23B) illillar, J. R., Smith, D. G., Marr, W. E., Kressman, T. R. E., J . Chem. SOC.1964. rn . 2740. -(24B) Poitrenaud, C., Bull. Inform. Sei. Tech. (Paris) 1964 (85), p. 25. (25B) Rosset, R., Tremillon, B., Fould, H., Bull. Inform. Sci. Tech. (Paris) 1964 (85), p. ioi. (26B) Savitskaya, E. AI., Lou, C. H., Bruns, B. P., Ionoobmen. Sorbenty v Prom., Akad. Nauk SSSR, Inst. Fiz.Khim. 1963, p. 11. (27B) Schwarz, A., Marinsky, J. A., Spiegler, K . S., J . Phys. Chem. 68, 918 (1964). (28B) Smith, T. G., Dranoff, J. S., Ind. Eng. Chem. Fund. 3, 195 (1964). (29B) Soldatov, V. S., Starobinets, G. L., Issled. Svoistv Ionoobmen. Materialov, Akad. Nauk SSSR, Inst. F i z . Khim. 1964, p. 36. (30B) Soldatov, V. S., Starobinets, G. L., Zh. Fiz. Khim. 38,681 (1964). (31B) Starobinets, G. L., Novitskaya, L. V.,Kolloidn. Zh. 26, 105 (1964). (32B) Starobinets, G. L., Soldatov, V. S., Zh. F i z. Khim. 38,992 (1964). (33B) Strelow, F. W., Rethemeyer, R., Bothma. C. J. C., ANAL.CHEM.37. 106 (1965). ’ (34B) T’aron, A., Rieman, W., 111, J . Phys. Chem. 68, 2716 (1964). (35B) Whitney, D. C., Diamond, R. AI., J . Inorg. Nucl. Chem. 27,219 (1965). - 7
~
Analysis of Salts and Solutions (1C) Kowalska, E., Sollorz, J., 2. Anal. Chem. 210, 271 (1965). (2C) Kreshkov, A. P., Yarovenko, A. N., Sayushkina, E. N., Zelenina, L. N., Zh. Analit. Khim. 19. 375 (1964). (3C) Kreshkov, A. P., ‘Yarovenko; A. N., Sayushkina, E. N., Zelenina, L. N.. ibid., 409 (1964). Concentration of Dilute Solutions (1D) Benes, J., Anal. Chim. Acta 32, 85 (1960). (2D) Burriel-Marti, F., Alvarez-Herrero, C., Inform. Quim. Anal. (Madrid)16,68 (1962). (3D) Crosby, J. W., 111, Chatters, R. M., J . Geophys. Res. 70, 2839 (1965). (4D) David, D. J., Analyst 89,747 (1964). (5D) Derecki, J., Geisler, J., Jaworowski, Z., Nukleonika 8 , 783 (1963). (6D) Dietrich, H., Z. Landwirtsch. Versuchs-Untersuchungsw.9,549 (1963). (7D) Forman, D. T., Garvin, J. E., Clin. Chem. 1 1 , 1 (1965). (8D) Heitmann, H. G., Donath, G., Wasser 30, 293 (1963). (9D) Link, W. B., Heine, K. S., Jones, J. H., Wattlington, P., J . Assoc. Ofic. Agr. Chemists 47, 391 (!964). (10D) Samsahl, K., Aktiebolaget Atomenergi, Stockholm AE-159 (1964). (11D) Shen, S-N., Kan, T. H., Keng, H-T., Hua Hsueh Hsueh Pao 30, 17 (1964). (12D) Tera, F., Ruch, R. R., Morrison, G. H., AKAL.CHEM.37,358 (1965). (13D) Vaissiere, M., Tremilion, B., Bull. Soc. Chim. France 1965, p. 2099. (14D) Vavar, S., Sb. Ref. Seminara Aktivacnej Anal., Modra-Piesky, Czech. 1963, p. 60. (15D) Vioque, A., Albi, M. A., Villagran, M. d. P., J . Am. Oil Chemists SOC.41, 785 (1964). (16D) Wester, P. O., Brune, D., Samsahl, K.. Intern. J . Avvl. Radiation Isotopes 15; 59 (1964). ’ .
Inorganic Analysis (1E) Babko, A. K., Ind. Lab. USSR 31, 189 (1965). (2E) Blake,’W. E., Oldham, G., Sumpter, I)., Suture 203, 862 (1964). (3E) Breaiilt, E. A., J . Assoc. Ofic. Agr. Chemists 48, 719 (1965). (4E) Gera. J.. Chem. Anal. (Warsaw) , 9., 541 (1964). ’ (5E) Gregory, L. P., Health Phys. 10,483 (1964’1. (6E) Hjntabal, E., Fojtik, RI., Rusek, V., Trnovec, T., Chem. Zvesti 18, 203 (1964). (7E) Kanie, T., iyagoyashi Kogyo Kenkyusho Kenkyu Hokoku iYo. 27, 35 (1963). (8E) Kanwar, J. S., Chopra, S. L., Proc. iyatl. Inst. Sci. India Pt. A 29, 638 (1963). (9E) Kelso, F. S., Matthem, J. M., Kramer, H. P., ANAL.CHEM.36, 577 (1964). (10E) Korkisch, J., Ahluwalia, S. S., ANAL.CHEW37, 1009 (1965). (11E) Korkisch, J., Feik, F., ANAL.CHEM. 36, 1793 (1964). (12E) blarabini, A. RI., Ric. Sei., Rend., A3, 919 (1963). (13E) RIizuike, A,, Anal. Chim. Acta 32, 428 (1965). (14E’1 Olsen. E. D.. Sobel. H. R.. Talanta 12.’81 (1965). ’ (15Ej Osterried, O., 2. Anal. Chem. 199, 260 (1964). (16E) Porter, C. R., Kahn, B., ASAL. CHEY.36, 676 (1964). (17E) Ryabchikov, I). I., Kuril’chikova, G. E., Zh. Analzt. Khim. 19. 1495 (1964). (18E) Sacks, B. I., Nature 202, 899 (1964). (19E) Vilbok, Kh., Tr. Tallinsk. Politekhn. Inst., Ser. A. KO.210, 83 (1964). (20) Wenzel, A. W., Pietri, C. E., ANAL. CHEM.36, 2083 (1964). Microchemical Techniques (1F) Fujimoto, RI., Fukabori, N., Nakatsukasa, Y., Anal. Chim. Acta 29, 335 (1963). (2F) Fujimoto, M.,Iwamoto, T., Mikrochim. Ichnoanal. Acta 1963, p. 655. (3F) Fujimoto, M.,Kortum, G., Be?. Bunsenges. Physik. Chem. 68, 488 (1964). (4F) Kato, K., Kakihana, H., hrippon Kagaku Zasshi 84, 405 (1963).
Organic and Biocher.ica1 Analysis (1G) Bey, K., Fette, Seifen, Anstrichmittel 67, 25 (1965). (2G) Calderbank, A., Yuen, S. H., Analyst 90, 99 (1965). (3G) Cassidy, J. E., Streuli, C. A., Anal. Chim. Acta 31. 86 (1964). (4G) Czaja, D.,’Awerbuch, F., Tluszcze i Srodki Piorace 8, 31 (1964). (5G) Hughes, R . E., Analyst 89, 618 (\--_-,. 1 964)
(6G) Kamp, W., Pharm. Weekblad 99, 1092 (1964). (7G) King, P., Simmler, J. R., ANAL. CHEM.36, 1837 (1964). (8G) RIiro, P., Invest. Inform. TeztiE8, 23 (lRRFi\
(13H) Lewandowski, A., Szczepaniak, W., 2.Anal. Chem. 202,321 (1964). (14H) Lloyd, W. G., Durocher, T. E., J . Appl. Poly. Sci. 8,953 (1964). (15H) Manecke, G., Storck, W., Makromol. Chem. 75, 159 (1964). (16H) Marhol, M.,Chem. Listy 58, 713 (1964). (17H) Afaterova, E. A., Skabichevskii, P. A., Vestn. Leningr. Univ. 19, Ser. Fiz. i Khim., No. 2, 65 (1964). (18H) Packham, D. I., J . Chem. SOC. 1964 p. 2617. (19H) kabek, T. I., Morawiec, J., Zeszyty. Nauk. Politechniki Wroclaw., Chem. No. 10, 83 (1964). (20H) Seidl, J., Soviet Plastics No. 12, 10 (1964). \ - - - - , -
j - _ _ _
(9G) Vkcraenenbroeck, R., Lemaitre, H., Rogirst, A., Lontie, R., Chromatog. Symp., 2nd, Brussels 1962, p. 237. New Ion Exchange Materials (1H) Ahrland, S., Albertsson, J., Johansson, L., Nihlgard, B., Nilsson, L., Acta Chem. Scand. 18. 707 (1964). (2H) Anderson, R. E., ‘Ind. ’Eng. Chem. Prod. Res. Develop. 3, 85 (1964). (3H) Baistrocchi, R., Grossi, F., Ann. Chim. 54, 1218 (1964). (4H) Clearfield, A., Stynes, J. A., J . Inorg. iyucl. Chem. 26, 117 (1964). (5H1 Hatch. RI. J.. Llovd. W. D.. J . Appl. Poly. Sci. 8,’1659“(1964). (6H) Hopff, H., Lussi, H., Gerspacher, P., Makromol. Chem. 78, 24 (1964). (7H) HL~YS, D., Baetsle, L. H., J . Inorg. Nucl. Chem. 26, 1329 (1964). (8H) Inoue, Y., Ibid., p. 2241. (9H) Kadlec, V.,Brodsky, A., Chem. Listy 58, 891 (1964). (10H) Kokoshko, Z. Yu., Chupakhin, 0. N.,Smirnova, N. B., Pushkareva, Z. V., Sintez i Svoistva Monomerov, Akad. Nauk SSSR, Inst. Neftekhim. Sinteza. Sb. Rabot 12-oi (Dvenadsatoi) Konf. p o Vysokomolekul.~Soedin 1962; n. p. 241. (lTHj-Kourim, (11H) Kourim, V., Rais, J., Million, B., J . Inorg. Nucl. Chem. 26, 1111(1964). (12H) Lastovskii, R. P., Temkina, Y. Va., Dvatlova, Va.. Dyatlova, N. RI., Kolesnik. Kolesnik, E. S., Yaroshenko, G. F., ’ Issled. Svoistv: Yaroshknko, Svoistv. Ionoobmen. Materialov. Akad. Nauk SSSR, Inst.’Foz. Khim. i964, p. 104. I
(21H) Seidl, J., Malinsky, J., Rahm, J., Chem. Listy 58, 651 (1964). (22H) Skondak, I., Nikolaev, A. F., Vysokomolekul. Soedin. 7, 101 (1965). (23H) Storey, B. T., J . Poly. Sci. A3, 265 (1966). (24H) Tevlina, A. S., Kotlyarova, S. V., Agapova, E. P., Vysokomolekul. Soedin. 6, 1327 (1964). (25H) S’eruovic, B., Chem. Prumysl 14, 189 (1964). (26H) Wiley, R. H., Allen, J. K., Chang, S. P., Musselman, K. E., Venkatachalam, T. K., J . Phys. Chem. 68, 1776 (1964). (27H) Wiley, R. H., Venkatachalam, T. K., J . Poly. Sci. As, 1063 (1965).
-
~
Testing Methods (1J) deS’illiers, J. P., Parrish, J. R., J . Poly. Sci. A2, 1331 (1964). (25) Dinius, R. H., Choppin, G. R., J . Phys. Chem. 68, 425 (1964). (35) John Thompson, Ltd., J . Appl. Chem. 14,229 (1964). (45) Verteshev, M. S., Komarovskii, A. A., Soviet Plastics 1964, p. 31.
Stability of Ion Exchange Resins (1K) Erofeev, B. V., Naumova, S. F., Makavetskii, M.I., Vestsi Akad. Navuk Belarusk. SSR, Ser. Fiz.-Tekhn. Navuk 1964, p. 48. (2K) Skorokhod, 0. R., Tabulo, &I. L., Dorofeeva, L. K., Kolloidn. Zh. 26, 100 (1964).
VOL. 38, NO. 5, APRIL 1966
0
179 R