Isotope Effects in Amination Reactions of Chlorocyclophosphazenes

Jul 23, 2009 - J. M. E. GOLDSCHMIDT, R. HALEVI, and E. LICHT. Department of Chemistry, Bar-Ilan University, Ramat-Gan 52100 Israel. Phosphorus ...
0 downloads 0 Views 727KB Size
109 Isotope Effects in Amination Reactions of Chlorocyclophosphazenes

Phosphorus Chemistry Downloaded from pubs.acs.org by IOWA STATE UNIV on 01/28/19. For personal use only.

J. M. E . G O L D S C H M I D T , R . H A L E V I , and E .

LICHT

Department o f Chemistry, Bar-Ilan U n i v e r s i t y , R a m a t - G a n 52100 Israel

The general substitution reactions of hexahalogenocyclotriphosphazenes, Ν Ρ X (X=F,Cl,Br; Y=Substituent) 3

3

6

can yield up to 12 products. Three of these arise from n = 1, 5 and 6 and the other 9 from n = 2, 3 and 4, for each of which gem-, cis- and trans- isomers can exist. As an example of these react­ ions, amination of the hexachloro-compound, Ν P Cl has been part­ icularly extensively investigated, mostly to isolate and character­ ize the products formed (1). In reactions which can lead to iso­ mers, mixtures of them are generally formed, though typically the quantity of one of them greatly exceeds that of the rest. In this behavior, called stereoselectivity, the operation of characteristic substitution patterns was revealed. Attempts to rationalize these isomeric preferences mechanistically have been widespread and many factors have been considered. Because the amination reactions have been demonstrated to be kinetically controlled (2), our experiments aimed at elucidating the stereoselectivity mechanistically have focused on detailed kinetic studies. The general mechanism that has been proposed (3,4) for the first stage of substitution of Ν Ρ CI by amine leading to (I) with X = C l , Y = NR (R = alkyl or H) and n = 1 is 3

3

3

3

6

6

2

This proposal rests on a combination of 3 chief experimental find­ ings. (1) The order of the reactions (5-9) is never less than one with respect to the concentration of the phosphazene and the amine requiring that both of these be involved in the rate-determining, or a prior, step. (2) The existence of a second-order term in the concentration of amine in non-polar solvents arising from base catalysis by amine (7). (3) The effect of the leaving group, the rate of reaction increasing in the order F < CI < Br (5). Corrobatorive evidence for the proposed mechanism comes from the values of the activation parameters measured in THF in which most of our 0097-6156/81/0171-0529$05.00/0 © 1981 American Chemical Society

PHOSPHORUS CHEMISTRY

530

TABLE I K i n e t i c D a t a i n T.H.F. f o r R e a c t i o n s N

P

3 3

C 1

6

+

2

R

i

R

2

Me H Me Me Piperidine Bu H

H

N

R

R

y

i a t 30 C

N

2

k

2

P

3 3

dm^mol ^*sec ^

C 1

N R

R

5 1 2 AH*

+

H

2

k J mol

23.2+0.6 11.5±0.2 1.33±0.02 0.0163±0.0003

N

R

R

+

1 2 AS*

C

JK^mol"

2.911.7 7.112.1 12.112.1 28.811.7

1

1

Refs

-20516 -19718 -18816 -18416

9 3 4 4

w o r k was p e r f o r m e d b e c a u s e o f t h e s i m p l e o v e r a l l s e c o n d - o r d e r i n v a r i a b l y found i n i t because t h e s o l v e n t a c t s as a base ( 3 ) . Some t y p i c a l v a l u e s o f ΔΗ* and AS* a p p e a r i n T a b l e I . The v a l u e s o f ΔΗ* a r e a l w a y s r a t h e r l o w w h i l s t v a l u e s o f AS* a r e so v e r y l o w t h a t i t i s a l w a y s r a t e - c o n t r o l l i n g . The b u l k o f t h e ΔΗ* i s a s c r i b e d t o t h e f i r s t p r e - e q u i l i b r i u m w h i l s t AS* i s l a r g e l y a s s o c i a t e d w i t h t h e s o l v a t i o n o f t h e CI i o n b e i n g formed i n the rate-determining step. This crude d i v i s i o n o f the a c t i ­ v a t i o n p a r a m e t e r s i s s u p p o r t e d b y t h e d a t a on t h e s t e r i c e f f e c t s o f t h e a l k y l g r o u p s o f t h e n u c l e o p h i l e ( T a b l e I ) . The r e d u c t i o n i n the r a t e o f r e a c t i o n w i t h i n c r e a s i n g s i z e o f t h e a l k y l groups r e ­ s u l t s o n l y f r o m i n c r e a s e s i n ΔΗ* , t h e v a l u e s o f AS* b e i n g v i r ­ t u a l l y c o n s t a n t , t h i s l a t t e r f a c t r e f l e c t i n g t h e common f i n a l s t e p i n a l l t h e r e a c t i o n s (4_) . T h e r e b e i n g d i s a g r e e m e n t on t h e d e p r o ­ t o n a t i o n s t e p , i t a l s o h a v i n g been c o n s i d e r e d c o n c e r t e d w i t h CI i o n d e p a r t u r e (_3), we c a r r i e d o u t c o m p a r a t i v e s t u d i e s u s i n g p i p e r ­ i d i n e and N - d e u t e r o p i p e r i d i n e , ( T a b l e I I ) . The c o m b i n a t i o n o f a second-order term i n p i p e r i d i n e c o n c e n t r a t i o n ( i n toluene) w i t h the absence o f a measurable i s o t o p e e f f e c t i n both s o l v e n t s s t u d i e d TABLE I I Rate C o n s t a n t s f o r Amines and N - D e u t e r a t e d Analogues i n R e a c t i o n s (10) N P,C1, + 2H(D)NR R Q

R

i

1

R

2

• N P C1-NR.. R

0

Solvent

0

T°C

Piper idine

T.H.F.

30

Piper idine

Toluene

0

T.H.F.

30

Η k_ = dm

mol

sec

0

. a 2

+

+ H ( D ) N R . R C1~"

0

0

HNR- R, 1 . 1

k

b

-

2.1311.3 xlO

1.71 10.5

0.0163 10.0003

-

k

mol

= dm

0

DNRk 3 k

7.41 10.19

0

a

2

1

k 2

I

k

7.40 10.18

k 3

-

1.7 2.l6i0.6 10.3 xlO 3

0.0163 10.0002 sec

b

k

-

109.

GOLDSCHMiDT

Amination

E T AL.

531

of Chlorocyclophosphazenes

i s i n t e r p r e t e d as supporting the s e p a r a t i o n o f the f a s t p r e - e q u i l i b r i u m deprotonation from the CI i o n departure step. G e m i n a l and n o n - g e m i n a l ( c i s and t r a n s ) i s o m e r s can b e f o r m e d i n the second stage o f the s u b s t i t u t i o n , l e a d i n g t o ( I ) w i t h X = C l , Y = NR^ and η = 2. A t t h i s s t a g e o f s u b s t i t u t i o n g e m i n a l i s o ­ mers a r e o n l y o b t a i n e d w i t h p r i m a r y a m i n e s ( e x c e p t a z i d i r i n e ) a n d t h i s i s accommodated b y t h e f o l l o w i n g p r o p o s e d conjugate-base Η NR ^NHR + NR / -cr μ ρ ι » { f f e ¥ W 2 2 W «Cl ( k a s e ) 2 4 3 ^ 7 7 ^ P

C

1

P

C

1

N

P

C

=

N

R

(

M

)

1

mechanism. A l t h o u g h k i n e t i c a l l y u n c o n f i r m e d , t h i s mechanism i s s u p p o r t e d b y t h e e n h a n c e d gem-isomer f o r m a t i o n o b s e r v e d on a d d i ­ t i o n o f base (11). With r e s p e c t t o the 2 non-geminal isomers which are the e x c l u ­ s i v e p r o d u c t s f o r m e d w i t h s e c o n d a r y a m i n e s , and w h i c h a r e p r o d u c e d i n v a r y i n g q u a n t i t i e s t o g e t h e r w i t h t h e gem-isomer w i t h p r i m a r y a m i n e s , t h e g e n e r a l mechanism o f t h e i r f o r m a t i o n r e s e m b l e s t h a t o f the f i r s t stage o f s u b s t i t u t i o n , but the r e a c t i o n i s slower and p r o c e e d s a t t h e u n s u b s t i t u t e d p h o s p h o r u s atom b e c a u s e o f m e s o m e r i c charge t r a n s f e r from the s u b s t i t u e n t amino-group ( 3 ) . W i t h a l l amines the t r a n s - i s o m e r s p r e d o m i n a t e i n the non-geminal r e a c t i o n s ( 1 2 ) . T h r e e e f f e c t s h a v e been a d v a n c e d t o e x p l a i n t r a n s - p r e f e r e n c e (1) The c i s - e f f e c t ( 1 3 ) , (2) t h e s t e r i c e f f e c t (14) a n d (3) t h e s u b s t i t u e n t s o l v a t i n g e f f e c t (SSE) ( 9 , 1 5 ) . To t e s t t h e s e p r o p o s a l s we p e r f o r m e d a k i n e t i c s t u d y i n THF o f c i s - a n d t r a n s - i s o m e r f o r m ­ a t i o n a t d i f f e r e n t t e m p e r a t u r e s f o r t h e r e a c t i o n s shown i n T a b l e I I I and e v a l u a t e d t h e v a l u e s o f t h e a c t i v a t i o n p a r a m e t e r s ( T a b l e III). TABLE I I I f

1

f

N P Cl NMe 3

3

5

f

2

A c t i v a t i o n Parameters f o r Reactions (15) + 2HNMe , ( N M -2'2 e ), 2 2 T r a n s } N3J P3C l4 C i s

+

0

Cis-Isomer ΔΗ*

8.8

AS*

-239

H

N

M

e

+

C

1

0

Trans-Isomer

± 0.5

28.5

± 1.3

± 8

-159

± 8

"

Units kJ

mol -1 ,-1 JK mol

T h e s e v a l u e s c a n o n l y b e r e c o n c i l e d w i t h SSE i n w h i c h t h e f o l l o w i n g t r a n s i t i o n s t a t e s t r u c t u r e which i s p a t e n t l y ίΟ.-Η-, s t e r i c a l l y i m p o s s i b l e f o r the r e a c t i o n t h a t \ leads t o the c i s - i s o m e r i s p o s t u l a t e d . This i s - - - \ . ci(2> formed by r e p r o t o n a t i o n on the a m i n o - s u b s t i t u e n t pli^N^ \ a f t e r p r i o r d e p r o t o n a t i o n o f tljie p r i m a r y p r o d u c t 2 f o r m e d . The f o r m a t i o n o f a n H C I i o n p a i r , r a t h e r t h a n a ' b a r e CI as i n the c i s - r e a c t i o n , i n the r a t e - d e t e r m i n i n g step accounts f o r t h e h i g h e r v a l u e s o f A S * i n t h e t r a n s - r e a c t i o n compared w i t h the c i s - r e a c t i o n . S u p p o r t i n g e v i d e n c e f o r t h i s p r o p o s a l comes f r o m the r e s u l t s o f e x p e r i m e n t s ( T a b l e IV) i n w h i c h t h e r a t i o s o f nong e m i n a l i s o m e r i c p r o d u c t s u s i n g p i p e r i d i n e and N - d e u t e r o p i p e r i d i n e were determined. The a v e r a g e r a t i o ( t r a n s / ( c i s + t r a n s ) ) ^ R

Ν

2

N

p

x

N

R

1

532

PHOSPHORUS CHEMISTRY

(trans/(cis + trans)) is equal to 0.95. The reduced amount of trans-isomer found with the deuterium compound adds support for the SSE mechanism involving a Η-bonded transition state structure. However a full study of the kinetics of the cis- and trans- re­ actions at various temperatures using normal and N-deuteropiperidine needs to be carried out to validate this conclusion. TABLE IV N-Deuterium Effect on Ratio of Trans to Total Νon-Geminal Isomers in Reaction N P C1 NC H 3

3

5

5

10

+ 2H(D)NC H 5

1 - HNC H 5

10

• N ^ C ^ ( N C ^ ) + H (D^N^H^Cl""" 2

2 « DNC H

1()

5

Tr

Exp t.

/ ans I |Cis+Trans4

1 2 3 4 5

82.6+1.6 79.0+2.7 75.7±1.1 72.310.4 75.612.1

Xl00

10

I Trans | Icis+TransJ^ 79.711.1 73.611.5 72.712.0 70.713.7 71.512.2

£

2 / 100

l

0.964 0.932 0.959 0.978 0.946

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

Krishnamurthy, S.S.; Sau, A.C.; Wood, M. Adv. Inorg. Chem. Radiochem. 1978, 24, 41. Friedman, N.; Goldschmidt, J.M.E.; Sadeh, U.; Segev, M. J. Chem. Soc. Dalton Trans. 1981, 103. Goldschmidt, J.M.E.; Licht, E. J . Chem. Soc. A 1971, 2429. Goldschmidt, J.M.E.; Licht, E. J . Chem. Soc. Dalton Trans. 1979, 1012. Moeller, T.; Kokalis, S.G.J. Inorg. Nucl. Chem. 1963, 25, 1397. Krishnamurthy, S.S.; Sundaram, P.M. Inorg. Nucl. Letters 1979, 15, 367. Capon, B.; Hills, K.; Shaw, R.A. J . Chem. Soc. 1965, 4059. Eliahu, S. M.Sc. Dissertation, Bar-Ilan University, 1969. Goldschmidt, J.M.E.; Licht, E. J . Chem. Soc. Dalton Trans. 1972, 728. Licht, E. Ph.D. Dissertation, Bar-Ilan University, 1971. Gabay, Z.; Goldschmidt, J.M.E. J . Chem. Soc. Dalton Trans. 1981 (in press). Biran, Z.; Goldschmidt, J.M.E. J . Chem. Soc. Dalton Trans. 1979, 1017. Keat, R.; Shaw, R.A. J . Chem. Soc. A 1966, 908. Schmutz, J . L . ; Allcock, H.R. Inorg. Chem. 1975, 14, 2433. Goldschmidt, J.M.E.; Goldstein, R. J . Chem. Soc. Dalton Trans. 1981 (in press).

RECEIVED

July 7, 1981.