Isotopes and Chemical Principles

observed when 1 3 C is substituted for 1 2 C, or l 5 N for. The source of this ... heavy water, 2 H2 0, whose hydrogen content is 99.8 atom percent 2 ...
1 downloads 0 Views 3MB Size
9 Isotope Chemistry and Biology J O S E P H J.

KATZ,

R O B E R T A. U P H A U S , and H E N R Y L . C R E S P I

Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on July 9, 2018 at 06:02:51 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Chemistry Division, Argonne National Laboratory, Argonne, Ill. 60439 M A R T I N I. B L A K E Department of Pharmacy, University of Illinois, College of Pharmacy, Chicago, Ill. 60612

I.

Introduction

The p a s t decade has seen a keen and growing intere s t in t h e application o f s t a b l e i s o t o p e s t o c h e m i c a l and biological problems ( 1 , 2 ) . There have been t h r e e main driving f o r c e s f o r this interest: (a) The applic a t i o n s o f magnetic resonance t e c h n i q u e s t o many complex c h e m i c a l and biological problems a r e greatly facilitated by j u d i c i o u s use o f s t a b l e i s o t o p e s ; ( b ) , t h e utility o f gas chromatographic-mass s p e c t r o m e t r i c t e c h n i q u e s i n m e t a b o l i c and e n v i r o n m e n t a l t r a c e r s t u d i e s is greatly enhanced by adjustment o f t h e isotopic c o m p o s i t i o n ; and, ( c ) , t h e availability of fully d e u t e r a t e d compounds and o r g a n e l l e s from fully d e u t e r a t e d m i c r o o r g a n i s m s (3) has made p o s s i b l e t h e investigation o f many r e f r a c t o r y problems o f biological interest. These, t o g e t h e r w i t h an e v e r i n c r e a s i n g availability o f C, N, O and d e p l e t e d C and N in h i g h isotopic p u r i t y have t r i g g e r e d a wide r e s p o n s e ( 4 ) . D e s p i t e t h e many uses t o which s t a b l e i s o t o p e s c a n be p u t , certain i n h e r e n t limitations still prevail. Deuterium as heavy water is available in large q u a n t i t i e s a t a relatively low p r i c e , but i n c o r p o r a t i o n o f deuterium i n t o living organisms can have s e v e r e t o x i c effects on h i g h e r p l a n t s and animals because o f p o s s i b l e l a r g e kinetic i s o t o p e e f f e c t s (5). The heavy i s o t o p e s o f c a r b o n , n i t r o g e n and oxygen a r e far less t o x i c t o living organisms t h a n is d e u t e r ium, b u t t h e quantities a v a i l a b l e a r e limited and t h e price tends t o be q u i t e h i g h . Hydrogen o f mass 2, d e u t e r i u m , was d i s c o v e r e d by Urey and his co-workers in 1932 (6). I n t h e decade f o l l o w i n g t h i s d i s c o v e r y t h e r e d e v e l o p e d a l a r g e body o f o f t e n c o n f u s i n g d a t a (7,8) c o n c e r n i n g t h e b i o l o g y o f heavy w a t e r . These e a r l y s t u d i e s were i n t e r p r e t e d t o i n d i c a t e t h a t d e u t e r i u m is toxic, and t h a t h i g h 13

12

15

18

14

184

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

9.

κΑτζ ET AL.

Isotope Chemistry and

Biology

185

concentrations are fundamentally incompatible with c e l l u l a r growth and r e p r o d u c t i o n . However, i n I 9 6 0 , a u t o t r o p h i c f r e s h - w a t e r green and b l u e - g r e e n a l g a e were s u c c e s s f u l l y c u l t u r e d i n heavy w a t e r c o n t a i n i n g 9 9 . 7 atom p e r c e n t H. T h i s work was s h o r t l y f o l l o w e d by t h e c u l t i v a t i o n o f a wide v a r i e t y o f f u l l y d e u t e r a t e d h e t e r o t r o p h i c m i c r o o r g a n i s m s (3,8). These s u c c e s s e s l e d to a considerable e f f o r t to achieve f u l l deuteration of h i g h e r p l a n t s and mammals, b u t t o d a t e t h e s e more com­ p l e x systems have r e s i s t e d f u l l r e p l a c e m e n t o f ^H by H. T o x i c e f f e c t s i n mammals, f o r example, a r e appar­ e n t even a t 1 0 - 1 5 atom p e r c e n t H i n t i s s u e f l u i d s . The marked b i o l o g i c a l e f f e c t s o f d e u t e r i u m a r e n o t o b s e r v e d when C i s s u b s t i t u t e d f o r C , o r N f o r The s o u r c e o f t h i s d i f f e r e n t i a l e f f e c t i s l i k e l y the much l a r g e r k i n e t i c i s o t o p e e f f e c t a s s o c i a t e d w i t h d e u t e r i u m , as compared t o the heavy, s t a b l e i s o t o p e s o f c a r b o n and n i t r o g e n . The s u b s t i t u t i o n o f a heavy i s o ­ t o p i c s p e c i e s i n a c h e m i c a l bond may change the r a t e o f any r e a c t i o n t h a t i n v o l v e s s c i s s i o n o f t h i s bond. In simple terms, the e f f e c t on the r e a c t i o n r a t e w i l l de­ pend on the mass r a t i o o f t h e i s o t o p i c atoms i n question. Thus, the mass r a t i o f o r the hydrogen i s o t o p e s , ^H/^H, i s 2, w h i l e the 1 3 c / l C r a t i o i s o n l y 1 . 0 8 , and t h a t of 1 5 N / N i s only 1 . 0 7 . Consequently, k i n e t i c isotope e f f e c t s perhaps an o r d e r o f magnitude l e s s would be e x p e c t e d f o r heavy carbon and n i t r o g e n t h a n f o r heavy hydrogen. The s u b s t i t u t i o n o f H for H also affects equi­ l i b r i u m c o n s t a n t s , p a r t i c u l a r l y the i o n i z a t i o n constants o f weak a c i d s and bases d i s s o l v e d i n D 0 (10_, 1 1 ) . The r a t e s o f a c i d - b a s e c a t a l y z e d r e a c t i o n s may be g r e a t l y d i f f e r e n t i n ! H 0 as compared t o H 0 (2,12). Deuter­ ium s u b s t i t u t i o n w i l l t e n d t o i n c r e a s e s l i g h t l y t h e s t r e n g t h o f hydrogen bonds, and d e u t e r i u m has a s i g ­ n i f i c a n t l y s m a l l e r s t e r i c r e q u i r e m e n t t h a n does ^H. Thus, r a t e s o f c o n f o r m a t i o n a l i n t e r c h a n g e i n d e u t e r a t e d b i o p o l y m e r s can be markedly d i f f e r e n t from those o f normal i s o t o p i c c o m p o s i t i o n . I t i s t h e r e f o r e not at a l l s u r p r i s i n g t h a t the o v e r a l l b i o l o g i c a l e f f e c t o f deu­ t e r i u m can be e x c e e d i n g l y complex. The i s o t o p e s o f c a r b o n and n i t r o g e n may be e x p e c t e d t o have q u a l i t a t i v e ­ l y s i m i l a r e f f e c t s , but the magnitude o f t h e e f f e c t s o f t h e s e i s o t o p e s a r e g e n e r a l l y s m a l l enough t o be w i t h i n the range o f the normal c e l l u l a r c o n t r o l mechanisms. 2

2

2

1 3

1 2

l 5

2

1 4

2

1

2

2

2

2

II.

Deuterium

1930,

Through t h e p a s t 45 y e a r s , s i n c e i t s d i s c o v e r y i n t h e s t a b l e , r a r e hydrogen i s o t o p e o f mass two

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ISOTOPES

186

AND

CHEMICAL

PRINCIPLES

(deuterium) has been an i n c r e a s i n g l y u s e f u l t o o l i n c h e m i s t r y and b i o l o g y . The h i s t o r y o f d e u t e r i u m has shown a p r o g r e s s i o n from the s i m p l e t o the complex, from t r a c e r a p p l i c a t i o n s t o massive s u b s t i t u t i o n , from k i n e t i c i s o t o p e e f f e c t s i n simple m o l e c u l e s t o i s o t o p e e f f e c t s i n l i v i n g organisms, and from i t s use t o s i m p l i f y the p r o t o n magnetic resonance ( Hmr) spectrum o f e t h y l a l c o h o l t o the s i m p l i f i c a t i o n o f the iHmr s p e c t r a o f proteins. These most r e c e n t a p p l i c a t i o n s r e s u l t from the a b i l i t y t o grow a l g a e and o t h e r m i c r o o r g a n i s m s i n heavy water, H 0 , whose hydrogen c o n t e n t i s 99.8 atom p e r c e n t H and o n l y 0.2 atom p e r c e n t 2

2

2

Algae. A f t e r a succession of f a i l u r e s i n other l a b o r a t o r i e s , Chorney and co-workers (13) succeeded i n c u l t u r i n g two s p e c i e s o f f r e s h - w a t e r green a l g a e i n heavy water. T h i s work was q u i c k l y f o l l o w e d by the s u c c e s s f u l c u l t u r e o f a number o f o t h e r a l g a e i n heavy water. The e x t r a c t i o n o f o r g a n i c s u b s t r a t e s (14) from t h e s e H - a l g a e then made p o s s i b l e the c u l t i v a t i o n o f a number o f h e t e r o t r o p h i c b a c t e r i a and f u n g i i n f u l l y deut e r a t e d form. Many k i n d s o f a l g a e r e q u i r e d a l e n g t h y p e r i o d o f a d a p t a t i o n b e f o r e r o u t i n e c u l t u r e i n heavy water was p o s s i b l e . O f t e n a s m a l l n u t r i t i o n a l s u p p l e ment ( i n the form o f y e a s t e x t r a c t ) h e l p e d the a l g a e t o overcome the problems o f t o t a l k i n e t i c r e o r g a n i z a t i o n i n the new c u l t u r e medium. Near a n a e r o b i c c o n d i t i o n s were a l s o b e n e f i c i a l , as t h e r e were i n d i c a t i o n s t h a t r e s p i r a t i o n i n a d a p t i n g organisms was u n c o n t r o l l e d . A f t e r a d a p t a t i o n , however, t h e a l g a e grew i n a normal manner b u t a t a s l o w e r than normal r a t e . A k i n e t i c i s o t o p e e f f e c t ( k / k ) o f 3.5 was observed i n the l i g h t s a t u r a t e d growth r a t e o f s e v e r a l green and b l u e - g r e e n algae. However, because the l a r g e - s c a l e p r o d u c t i o n o f i s o t o p i c a l l y - a l t e r e d a l g a e u s u a l l y i n v o l v e s growth under l i g h t l i m i t i n g c o n d i t i o n s , t h i s l a r g e i s o t o p e e f f e c t i s n o t a major h a n d i c a p i n the p r o d u c t i o n o f l a r g e amounts o f f u l l y d e u t e r a t e d a l g a e . 2

H

D

Deuterium Organisms i n E s r . The a v a i l a b i l i t y o f f u l l y d e u t e r a t e d a l g a e has p e r m i t t e d some s i g n i f i c a n t b i o l o g i c a l problems t o be a t t a c k e d i n new and e f f e c t i v e ways. Deuterium had been used as a t o o l t o a i d i n the s i m p l i f i c a t i o n and i n t e r p r e t a t i o n o f e l e c t r o n s p i n resonance (esr) and n u c l e a r magnetic resonance (nmr) s p e c t r a o f r e l a t i v e l y s i m p l e o r g a n i c m o l e c u l e s f o r many

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

9. κΑτζ

ET

Isotope Chemistry and

AL.

Biology

187

2

years.* In t h e s e c a s e s H was i n t r o d u c e d by c h e m i c a l synthesis. A s i m i l a r t e c h n i q u e can now be a p p l i e d t o some e x t r e m e l y complex b i o l o g i c a l m o l e c u l e s . One o f the more i m p o r t a n t r e s u l t s o b t a i n e d by s e l e c t i v e i n c o r p o r ­ ation of and H has been the e l u c i d a t i o n o f t h e c h l o r o p h y l l f r e e r a d i c a l species t h a t i s i n v o l v e d i n the l i g h t c o n v e r s i o n a c t o f p h o t o s y n t h e s i s (15). E s r s t u d ­ i e s on H - c h l o r o p h y l l s and H - o r g a n i s m s have shown t h a t the f r e e r a d i c a l s p e c i e s formed by the e x c i t i n g l i g h t i s comprised o f a p a i r o f c h l o r o p h y l l m o l e c u l e s arranged i n a s p e c i a l c o n f i g u r a t i o n which p e r m i t s them t o a c t as an energy t r a p . 2

2

2

D e u t e r a t e d P r o t e i n s i n Nmr, Deuterated p r o t e i n s can a l s o s e r v e as t h e b a s i s f o r t h e s i m p l i f i c a t i o n o f the h i g h l y complex ^Hmr s p e c t r a o f t h e s e m o l e c u l e s . Three b a s i c experiments t o t h i s end have been d e s c r i b e d i n the l i t e r a t u r e (16). (1) An a u t o t r o p h i c organism growing i n H 0 can be i n d u c e d t o u t i l i z e an lH-amino a c i d ; t h e o r g a n i s m t h e n b i o s y n t h e s i z e s H - p r o t e i n con­ t a i n i n g !H-amino a c i d r e s i d u e s embedded i n i t ; ( 2 ) , an 1 H p r o s t h e t i c group can be bound t o a f u l l y d e u t e r a t e d a p o p r o t e i n , making i t p o s s i b l e t o d e t e c t e a s i l y the p r o s t h e t i c group by Hmr; and ( 3 ) , the s l o w l y exchange­ a b l e amide p r o t o n s can be o b s e r v e d i n o t h e r w i s e f u l l y d e u t e r a t e d p r o t e i n s by o b s e r v i n g t h e time dependence o f t h e iHmr spectrum when t h e p r o t e i n i s d i s s o l v e d i n Ή α We d e s c r i b e here an example o f a t y p e (3) experiment, i e . , t h e o b s e r v a t i o n by J-Hmr o f amide p r o t o n s i n a f u l l y deuterated protein. ^ The p r o t e i n resonance l i n e s o b t a i n e d i n an Hmr experiment a r e g e n e r a l l y q u i t e b r o a d . The l a r g e p r o ­ t e i n m o l e c u l e s tumble s l o w l y i n s o l u t i o n , and many d i p o l e - d i p o l e magnetic i n t e r a c t i o n s and c h e m i c a l s h i f t a n i s o t r o p i e s a r e n o t averaged o u t . In g e n e r a l , amide p r o t o n resonance peaks i n m o l e c u l e s w i t h m o l e c u l a r w e i g h t s o f 10-20,000 d a l t o n s have l i n e w i d t h s o f the o r d e r o f 30-35 Hz. However, i n a d e u t e r a t e d p r o t e i n , the d i p o l e - d i p o l e i n t e r a c t i o n i s much d e c r e a s e d and most amide p r o t o n s have l i n e w i d t h s i n t h e range o f 15-18 Hz. These amide p r o t o n s appear 6 t o 11 ppm downf i e l d from t e t r a m e t h y l s i l a n e , and t h e p r o t o n resonances 2

2

2

1

2

Η has a s p i n o f 1/2 and a magnetic moment o f 2.793 n u c l e a r magnetons. H has a s p i n o f 1 and a magnetic moment o f 0.857 n u c l e a r magnetons. Thus, when a deu­ t e r i u m atom i s s u b s t i t u t e d f o r a p r o t i u m atom, c o u p l i n g c o n s t a n t s a r e r e d u c e d by a f a c t o r o f 6.5 and t h e f r e ­ quency a t w h i c h energy l e v e l t r a n s i t i o n s t a k e p l a c e i s a l s o reduced by a f a c t o r o f 6.5. 2

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ISOTOPES

188

A N DCHEMICAL

PRINCIPLES

t h a t o r i g i n a t e from t h e a r o m a t i c amino a c i d s i d e chains t h a t a r e n o r m a l l y p r e s e n t i n t h i s r e g i o n o f t h e Hmr spectrum a r e o f course absent i n t h e f u l l y d e u t e r a t e d protein. Thus, a c l e a r , w e l l - r e s o l v e d view o f t h e sLowl y exchangeable amide p r o t o n s can be had. These protons are p a r t o f t h e hydrogen-bonded s t r u c t u r e o f t h e h e l i x and p l e a t e d s h e e t p o r t i o n s o f p r o t e i n s and thus have considerable s t r u c t u r a l significance. F i g u r e 1 shows an example o f an ^Hitir study o f amide p r o t o n s i n a d e u t e r ­ ated a l g a l f e r r e d o x i n . 1

Deuterated N u c l e i c A c i d s . Deuterated algae are a s o u r c e o f d e u t e r a t e d s u b s t r a t e s f o r t h e growth o f bac­ t e r i a , y e a s t and molds (14). D e u t e r a t e d b a c t e r i a have been found u s e f u l as a s o u r c e o f d e u t e r a t e d n u c l e i c a c i d s f o r u s e i n u l t r a c e n t r i f u g a l d e n s i t y g r a d i e n t an­ a l y s i s o f t h e i n t e r a c t i o n s o f homologous DNA m o l e c u l e s . F u l l y d e u t e r a t e d DNA ( a l l C- H bonds) has a bouyant d e n s i t y 0.04 g/cm g r e a t e r than normal (normal DNA s have bouyant d e n s i t i e s i n t h e range o f 1.70-1.71 g/cm ) . T h i s t e c h n i q u e has been e x p l o i t e d r e c e n t l y i n t h e study o f t h e i n t e r a c t i o n o f b a c t e r i a l and b a c t e r i o p h a g e n u c l e i c acids (17). 2

3

1

Deuterated M e t a b o l i t e s . A number o f s t u d i e s on the p r o d u c t i o n o f e x t r a c e l l u l a r m e t a b o l i t e s by d e u t e r a t e d organisms have been completed i n r e c e n t y e a r s . These s t u d i e s have i n v o l v e d t h e p r o d u c t i o n and c h a r a c t e r i z a ­ t i o n o f a l k a l o i d s (18), a n t i b i o t i c s (19), and t h e v i t a ­ min r i b o f l a v i n produced by organisms grown i n 99.8 atom p e r c e n t H 0 (20_) . The use o f v a r i o u s *Η ( n a t u r a l abundance) s u b s t r a t e s i n c o n j u n c t i o n w i t h iHmr a n a l y s i s o f t h e p r o d u c t has made i t p o s s i b l e t o o b t a i n a q u a n t i ­ t a t i v e assessment o f t h e e x t e n t o f s o l v e n t p a r t i c i p a t i o n i n t h e b i o s y n t h e s i s o f these n a t u r a l p r o d u c t s . As might be e x p e c t e d , heavy water s t r o n g l y i n h i b i t s t h e production o f the e x t r a c e l l u l a r m a t e r i a l i n a l l o f the e x p e r i m e n t s . More r e c e n t l y , however, i t has been ob­ s e r v e d t h a t r i b o f l a v i n p r o d u c t i o n by t h e fungus Eremothecium a s h b y i i i s s t i m u l a t e d by heavy water (Table 1 ) . E v i d e n t l y , t h e r e i s an i n v e r s e i s o t o p e e f f e c t on t h i s p a r t i c u l a r m e t a b o l i c pathway. 2

2

H i g h e r P l a n t s . The e f f e c t s o f d e u t e r i u m on h i g h e r p l a n t s have a t t r a c t e d p a r t i c u l a r a t t e n t i o n . The e a r l y l i t e r a t u r e has been reviewed by Morowitz and Brown Π ) and more r e c e n t l y by Flaumenhaft e t a l . (Β). The f i r s t d e t a i l e d study o f t h e e f f e c t s o f e x t e n s i v e s u b s t i t u t i o n o f hydrogen by d e u t e r i u m on t h e growth and development o f h i g h e r p l a n t s was d e s c r i b e d by B l a k e e t a l . (21) who

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

9. ΚΑτζ E T A L .

Isotope Chemistry and Biology

e

ι

.

ι

1

Ferredoxin Oxidized Full Back Exchange

1

189

1

Γ

I

Out Exchanged Three Hours

ι—ι

Π

1

ι

ι

ι

ι

10

9

8

7

6

I

ppm Figure 1. Proton magnetic resonance spectra at 220 MHz (Varian HR 220 spectrometer in the fast fourier transform pulse mode) of fully deuterated algal ferre­ doxin. About 26 slowly exchangeable protons (Spectrum I) are observable after back exchange in H 0 buffer at pll 9. After 3 hrs at 60°C in Ή Ό buffer, pH 7.2, 11 of these protons have completely out exchanged and 15 have been quite resistant to exchange (Spectrum II). These data indicate that this ferredoxin molecule contains two segments of helix (or pleated-sheet) secondary structure. 1

2

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ISOTOPES

190

AND

CHEMICAL

PRINCIPLES

Table I S t i m u l a t i o n o f R i b o f l a v i n P r o d u c t i o n by E. a s h b y i i S u b c u l t u r e d from ^-E O i n t o V a r i o u s L e v e l s o f ^H 0 n

o

Atom P e r c e n t Deuterium i n N u t r i e n t Water

Day 0

0 25 50 99

0 0 0 0

Riboflavin Production (mg/liter) Day Day Day 22 15 8 2.7 3.5 8.5 15.8

4.6 5.4 13.0 23.5

5.6 7.3 15.0 25.1

used peppermint (Mentha p i p e r i t a L.) as the s t u d y p l a n t . Above the 20 p e r c e n t D 0 l e v e l t h e r e was a p r o g r e s s i v e i n h i b i t o r y e f f e c t on growth w i t h i n c r e a s e i n the D0 c o n t e n t o f the n u t r i e n t as r e f l e c t e d i n e l o n g a t i o n growth o f the a x i a l s h o o t . V e r y pronounced r e p r e s s i v e e f f e c t s were o b s e r v e d a t the 50 p e r c e n t l e v e l , and growth e s s e n t i a l l y s t o p p e d i n 70 p e r c e n t D 0. In a subsequent r e p o r t the h i s t o l o g i c e f f e c t s o f d e u t e r a t i o n on peppermint were r e p o r t e d by Crane e t a l . (22). The major e f f e c t o f d e u t e r i u m on the growth o f peppermint appeared t o be i n h i b i t i o n o f c e l l d i v i s i o n . In the deut e r a t e d p l a n t s parenchyma c e l l s were e n l a r g e d , w h i l e t h e r e appeared t o be a r e d u c t i o n i n the v a s c u l a r t i s s u e . In g e n e r a l , t h e e f f e c t s o f d e u t e r a t i o n were more appare n t i n a c t i v e l y growing t i s s u e s t h a n i n t i s s u e exposed t o D 0 i n the n u t r i e n t a f t e r d i f f e r e n t i a t i o n had occurred. The e f f e c t s o f c e r t a i n growth r e g u l a t o r s on peppermint grown a t d i f f e r e n t l e v e l s o f D 0 i n the nut r i e n t s o l u t i o n were r e p o r t e d by B l a k e e t a l . (23). The i n h i b i t o r y e f f e c t s o f d e u t e r i u m on the c e l l u l a r l e v e l were not r e v e r s e d by g i b b e r e l l i c a c i d , naphthal e n e - a c e t i c a c i d or i n d o l e a c e t i c a c i d . In some i n s t a n c e s the i n h i b i t o r y e f f e c t s on growth were even g r e a t e r than t h a t a t t r i b u t a b l e t o the D 0 i n the nutrient. I t i s i n t e r e s t i n g to note t h a t maleic hydraz i d e , u s u a l l y c o n s i d e r e d t o be a p l a n t growth i n h i b i t o r , a c t u a l l y s t i m u l a t e d the growth o f peppermint c u l t u r e d i n d e u t e r a t e d media. Perhaps the most i n t e n s i v e l y s t u d i e d h i g h e r p l a n t i s Lemna p e r p u s i l l a (duckweed), which was s u b j e c t e d t o e x t e n s i v e d e u t e r i u m r e p l a c e m e n t by Cope e t a l . (24). A l a r g e number o f growth f a c t o r s , i n d i v i d u a l l y and i n c o m b i n a t i o n , were i n c l u d e d i n the n u t r i e n t s o l u t i o n and t h e i r e f f e c t on the growth o f duckweed a t h i g h l e v e l s o f d e u t e r a t i o n was o b s e r v e d . A t d e u t e r i u m l e v e l s i n 2

2

2

2

2

2

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

9.

ΚΑτζ E T A L .

Isotope Chemistry and Biology

191

the n u t r i e n t between 50 and 63 p e r c e n t numerous abnor­ m a l i t i e s were produced, b u t t h e s e were l a r g e l y e l i m i n ­ a t e d by t h e a d d i t i o n o f k i n e t i n . None o f t h e o t h e r ad­ d i t i v e s produced a b e n e f i c i a l r e s p o n s e . Even k i n e t i n f a i l e d t o evoke a p r o t e c t i v e e f f e c t when t h e D 0 l e v e l exceeded 63 p e r c e n t . The i n c l u s i o n o f Η-glucose i n the n u t r i e n t s o l u t i o n (50 atom p e r c e n t D 0) r a i s e d t h e f i x e d d e u t e r i u m i n t h e p l a n t DNA t o 75 p e r c e n t . I n b e l l a d o n n a p l a n t s d e u t e r a t i o n had a d r a s t i c e f f e c t on f l o w e r development (25). The number o f c a l y x l o b e s , c o r o l l a l o b e s , and stamens, w h i l e i n v a r i a b l y 5 i n c o n t r o l f l o w e r s , i n c r e a s e d t o as many as 9 o r 10 i n p l a n t s grown i n 70 p e r c e n t D 0 medium. Abnormally shaped b e r r i e s formed i n p l a n t s grown i n heavy water. The e x t e n t o f m a l f o r m a t i o n depended on t h e D 0 c o n t e n t o f t h e medium and how l a t e i n t h e l i f e c y c l e o f t h e p l a n t t h a t t h e b e r r y formed. The shapes ranged from pear-shaped t o dumbbell-shaped t o c y l i n d r i c a l . The misshapened b e r r i e s r e s u l t e d from t h e t e n a c i t y w i t h which t h e c o r o l l a remained a t t a c h e d t o t h e r i p e n i n g b e r r y i n d e u t e r a t e d p l a n t s . As t h e b e r r y e n l a r g e d , a c o n s t r i c t i o n d e v e l o p e d where t h e c o r o l l a was a t t a c h e d t o t h e b e r r y . The s i z e and number o f seeds were s e ­ v e r e l y reduced i n d e u t e r a t e d b e r r i e s w i t h o n l y a few r u d i m e n t a r y seeds a p p a r e n t i n t h e 70 p e r c e n t b e r r i e s . A s i m i l a r study w i t h A r a b i d o p s i s t h a l i a n a gave much the same r e s u l t s ( 2 6 ) . A replacement c u l t u r e t e c h n i q u e was d e v e l o p e d by Crane e t a l . (27) t o study t h e e f f e c t o f d e u t e r a t i o n on a l k a l o i d production i n Atropa belladonna. P l a n t s were grown t o m a t u r i t y i n an aqueous (H^O) medium and were then t r a n s p l a n t e d t o media c o n t a i n i n g 50, 60, 75 and 99.7 p e r c e n t D 0. The p l a n t s i n 99.7 p e r c e n t D 0 show­ ed t h e d r a s t i c e f f e c t s o f d e u t e r a t i o n almost immediate­ l y and a l l p l a n t s d i e d i n s e v e r a l days. Plants trans­ p l a n t e d i n t o 75 p e r c e n t D 0 s u r v i v e d about 3 weeks, and t h e 50 and 60 p e r c e n t D 0 p l a n t s w i t h s t o o d t h e s t r e s s e s imposed by deuterium. These p l a n t s were h a r ­ v e s t e d a f t e r a growth p e r i o d o f 7.5 months. Alkaloid p r o d u c t i o n was reduced t o from o n e - t h i r d t o o n e - t e n t h t h a t o f t h e c o n t r o l p l a n t s . The a b s o l u t e amount o f a l k a l o i d formed and t h e t o t a l amount o f p l a n t m a t e r i a l produced were t o o s m a l l t o p e r m i t i s o l a t i o n o f a l k a l o i d . I t appeared from t h i s study t h a t a l k a l o i d p r o d u c t i o n was c o m p l e t e l y i n h i b i t e d upon t r a n s f e r o f t h e p l a n t s from normal growth i n H-O t o t h e d e u t e r a t e d medium. G e r m i n a t i o n o f seeds has been the o b j e c t o f study. Crumley and Meyer (28) o b s e r v e d a d e l a y i n t h e i n i t i ­ a t i o n of germination i n four species of p l a n t s , the e x t e n t o f which i n c r e a s e d w i t h t h e d e u t e r i u m 2

2

2

2

2

2

2

2

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

192

ISOTOPES

AND

CHEMICAL

PRINCIPLES

c o n c e n t r a t i o n o f the s o l v e n t . However, t h e number o f seeds which f i n a l l y germinated was o n l y s l i g h t l y lower f o r pure D 0 t h a n f o r w a t e r . More r e c e n t l y , S i e g e l e t a l . (29) s t u d i e d the g e r m i n a t i o n o f 11 s p e c i e s o f seeds i n h i g h c o n c e n t r a t i o n s o f D 0, and o b s e r v e d o n l y r y e seeds were c a p a b l e o f g e r m i n a t i o n a t h i g h D 0 concentrations. B l a k e e t a l . (30) found a s i m p l e r e l a t i o n s h i p between the s i z e o f the seed and the g e r m i n a t i o n c a p a c i t y i n high deuterium c o n c e n t r a t i o n s . Larger seeds a r e a p p a r e n t l y more s u c c e s s f u l i n g e r m i n a t i n g because they c o n t a i n l a r g e r h y d r o g e n - c o n t a i n i n g f o o d r e s e r v e s . M e t a b o l i c d i f f i c u l t i e s a s s o c i a t e d w i t h deut e r i u m i n c o r p o r a t i o n a r e t h u s d e l a y e d u n t i l the hydrogen r e s e r v e s o f the seed a r e exhausted. I f the b a s i s f o r the o b s e r v e d e f f e c t s i s c o r r e c t , then the s p e c i e s s p e c i f i c d e u t e r i u m e f f e c t s s h o u l d be s e p a r a b l e from the e f f e c t o f h y d r o g e n - c o n t a i n i n g f o o d r e s e r v e s by growing t h e embryo i n t h e absence o f the h y d r o g e n - c o n t a i n i n g endosperm. Removal o f the seed s t r u c t u r e s from the embryos reduces t o a minimum the a v a i l a b i l i t y o f ^H. Crane e t a l . (31) s t u d i e d the e f f e c t o f d e u t e r i u m r e placement on t h e e l o n g a t i o n o f e x c i s e d embryos o f seve r a l s p e c i e s o f seeds and noted t h a t a l l embryos s u f f e r e d growth i n h i b i t i o n i n D 0. Added s u c r o s e m i t i g a t e d t h e r e p r e s s i v e e f f e c t s o f d e u t e r i u m on growth. S i e g e l and G a l s t o n (32) demonstrated t h a t b i o s y n t h e s i s does take p l a c e when w i n t e r r y e seeds a r e germinated i n 99.7 p e r c e n t D 0. F i v e i s o p e r o x i d a s e s i s o l a t e d from seeds germinated i n D 0 were shown t o be d e u t e r a t e d , and i t was c o n c l u d e d t h a t they were b i o s y n t h e s i z e d d u r i n g the g e r m i n a t i o n p r o c e s s . In g e n e r a l , h i g h e r p l a n t s show more complex D 0 e f f e c t s than do m i c r o o r g a n i s m s . T h i s i s t o be e x p e c t e d as t h e i r s t r u c t u r e i s more h i g h l y o r g a n i z e d . The r e sponse t o D 0 i n h i g h e r p l a n t s i s a graded one w i t h 60 t o 70 p e r c e n t the maximum l e v e l t o l e r a t e d i n the nut r i e n t medium. A p r i m a r y response t o d e u t e r a t i o n app e a r s t o be s u p p r e s s i o n o f the p r o d u c t i o n o f i m p o r t a n t metabolites including a l k a l o i d s , a n t i b i o t i c s , proteins, c a r b o h y d r a t e s , e t c . Some b e n e f i c i a l e f f e c t s i n h e l p i n g h i g h e r p l a n t s adopt t o d e u t e r i u m have been noted w i t h the p l a n t growth s t i m u l a n t k i n e t i n and w i t h the growth i n h i b i t o r maleic hydrazide. The complex n a t u r e o f h i g h e r p l a n t s makes d i f f i c u l t a s i m p l e e x p l a n a t i o n o f t h e o b s e r v e d e f f e c t s o f growth r e g u l a t o r s i n H 0, and f u r t h e r s y s t e m a t i c s t u d i e s w i l l have t o be undertaken i n o r d e r t o b e t t e r u n d e r s t a n d the phenomena t a k i n g place. The replacement t e c h n i q u e used s u c c e s s f u l l y f o r c u l t u r i n g c e r t a i n f u n g i and molds was u n f o r t u n a t e l y not found t o be a p p l i c a b l e f o r h i g h e r p l a n t s . 2

2

2

2

2

2

2

2

2

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ΚΑτζ E T A L .

9.

III.

Isotope Chemistry and

Biology

193

B i o l o g i c a l E f f e c t s o f Carbon-13

13 C u l t u r e Systems f o r the Growth o f C-Qrganisms. The c u l t u r e o f m i c r o o r g a n i s m s i n systems r e q u i r i n g o n l y the s u b s t i t u t i o n o f d e u t e r i u m p r e s e n t s no complex p r o b ­ lems i n a p p a r a t u s d e s i g n . U s u a l l y , the i s o t o p e i s p r e ­ s e n t e d i n the form of H 0, and o n l y the p r e v e n t i o n o f exchange w i t h i s o t o p i c a l l y normal water i n the ambient atmosphere i s r e q u i r e d . U t i l i z a t i o n of 13 presents somewhat more complex problems, because the i s o t o p e i n i t s most e c o n o m i c a l form i s a v a i l a b l e as 1 3 c o . Of c o u r s e , c a r b o n d i o x i d e i s the optimum s u b s t r a t e f o r t h e p r o d u c t i o n o f p h o t o s y n t h e t i c organisms, b u t i t does p r e s e n t problems i n m a n i p u l a t i o n and c o n s e r v a t i o n . The c u r r e n t p r i c e o f t h i s i s o t o p e makes mandatory a com­ p l e t e l y s e a l e d growth system, n o t , i n t h i s c a s e p r i m a r ­ i l y t o p r e v e n t i s o t o p i c a t t e n u a t i o n w i t h the e x t e r n a l c a r b o n d i o x i d e , b u t t o p r e v e n t l o s s o f the r a r e , ex­ pensive m a t e r i a l . Equipment f o r t h e c u l t u r e o f p h o t o s y n t h e t i c micro­ organisms i n the l i q u i d phase on 13C0 p r e s e n t s no l a r g e problem i n d e s i g n o r c o n s t r u c t i o n . A l l t h a t i s r e ­ quired, i n a d d i t i o n to a s u i t a b l e , t i g h t container f o r t h e a l g a l c u l t u r e , i s a s u f f i c i e n t l y l a r g e volume t o c o n t a i n t h e gas phase a t a r e a s o n a b l e c a r b o n d i o x i d e l e v e l and a c i r c u l a t i n g pump t o c a r r y the gas m i x t u r e o v e r the c u l t u r e . L i g h t i n g and o t h e r arrangements may be a r r a n g e d as i n the c u l t u r e o f t h e same organisms i n 2H 0. A u s e f u l c o n c e n t r a t i o n of carbon d i o x i d e i s around 20%, w i t h n i t r o g e n as a c a r r i e r gas. C u l t u r e of s a p r o p h y t i c microorganisms w i t h C c o m p o s i t i o n s i s o f t e n f a c i l i t a t e d by d i r e c t use o f sub­ s t r a t e s d e r i v e d from 13c a l g a e . Alternatively, specific m e t a b o l i t e s o r p r e c u r s o r s p r e p a r e d by o r g a n i c s y n t h e t i c methods may be added t o the s u b s t r a t e s o f whatever yeasts, f u n g i , b a c t e r i a , e t c . are d e s i r e d . The t e c h ­ n i q u e s u s e f u l i n many such growth e x p e r i m e n t s have been d e s c r i b e d (33). Growth o f t e r r e s t r i a l h i g h e r p l a n t s from C0 presents s e v e r a l complications i n apparatus design. The system must be c a p a b l e o f s u s t a i n i n g normal p l a n t s growth f o r l o n g p e r i o d s i n a c o m p l e t e l y s e a l e d con­ dition. O b v i o u s l y , p r o v i s i o n must be made t o a s s u r e i n o r g a n i c n u t r i e n t s u p p l i e s , adequate c a r b o n d i o x i d e l e v e l s , c o n t r o l o f temperature, h u m i d i t y , s o i l m o i s t u r e and l i g h t i n t e n s i t y . Such systems have been c o n s t r u c t e d and o p e r a t e d t o produce t o b a c c o and o t h e r h i g h e r p l a n t s a t l e v e l s o f o v e r 90% e n r i c h e d 1 C, and a r e d e s c r i b e d i n d e t a i l elsewhere (34J. I t i s t o be emphasized t h a t t h e s e growth chambers d i f f e r i n one i m p o r t a n t a s p e c t 2

C

2

2

2

1

1

3

3

2

3

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ISOTOPES

194

AND CHEMICAL

PRINCIPLES

from most p r e v i o u s l y d e s c r i b e d " p h y t o t r o n s " o r " b i o t r o n s " (35). Whereas most s p e c i a l growth chambers i n use a r e by n e c e s s i t y n o t s e a l e d and a r e c l o s e l y l i n k e d t o the o u t s i d e environment t o p e r m i t easy c o n t r o l o f tempera­ t u r e and h u m i d i t y , and i n many c a s e s f o r a c o n t i n u o u s s u p p l y o f carbon d i o x i d e , the growth chambers d i s c u s s e d h e r e were d e s i g n e d w i t h the same p h i l o s o p h y used where manipulation of radioactive or other t o x i c materials must be employed. Our growth chambers thus a r e provided w i t h g l o v e p o r t s f o r i n t e r n a l m a n i p u l a t i o n s , hermetically s e a l e d bulkheads, e t c . The p r i n c i p a l s t r u c t u r a l f e a t u r e s a r e as f o l l o w s : c e i l i n g and w a l l s a r e 1/4" thick methacrylate p l a s t i c ; f l o o r and s t r u c t u r a l elements were aluminum. A p p r o x i ­ mate dimensions a r e : 1 χ 2 χ 3 M. A h e a t exchanger s u p p l i e d by e x t e r n a l c h i l l e d water p r o v i d e d temperature and h u m i d i t y c o n t r o l . Sensors b u r i e d i n the v e r m i c u L i t e or sand s u p p o r t medium a l l o w e d m o n i t o r i n g o f s o i l mois­ t u r e c o n t e n t . Carbon d i o x i d e was p r o v i d e d from e x t e r ­ n a l c y l i n d e r s , and n u t r i e n t was s u p p l i e d t o each p l a n t through a s e a l e d b u l k h e a d . Alternatively, solid i n ­ o r g a n i c n u t r i e n t was p r o v i d e d from a p e l l e t b u r i e d i n the s a n d / v e r m i c u l i t e s o i l medium, and the condensed water o f t r a n s p i r a t i o n r e c y c l e d and d i s t r i b u t e d t o each p l a n t by means o f an a u t o m a t i c d i s p e n s e r c o n t r o l l e d by a p r e s e t t i m e r . T h i s system was p r o b a b l y most s a t i s ­ f a c t o r y from the v i e w p o i n t o f e l i m i n a t i n g p e r i o d i c a d d i t i o n s o f e x t e r n a l l i q u i d n u t r i e n t and subsequent w i t h d r a w a l o f t h e condensed water o f t r a n s p i r a t i o n . Such an automated system i s c a p a b l e of smooth f u n c ­ t i o n i n g f o r l o n g p e r i o d s o f time w i t h o u t a t t e n d a n c e . A view o f t h e s e systems i s shown i n F i g u r e 2; t h e c r o p i s t o b a c c o , e n r i c h e d t o a l e v e l o f > 90% C. 3

13 . . . . . B i o l o g i c a l E f f e c t s of C Substitution i n Living Organisms. The consequences o f s u b s t i t u t i o n o f 1 C f o r i ^ C i n b i o l o g i c a l systems a r e o f i n t e r e s t as a problem i n i s o t o p e b i o l o g y , as w e l l as c a r r y i n g e n t i r e l y p r a g ­ matic i m p l i c a t i o n s . Numerous s u g g e s t i o n s have been made (36) i n v o l v i n g p o s s i b l e uses o f 13c compounds i n c l i n i c a l d i a g n o s i s and o t h e r m e d i c a l a p p l i c a t i o n s . It i s t h e r e f o r e o f paramount importance t o determine the e x t e n t o f any p o s s i b l e d e l e t e r i o u s e f f e c t s o f 13c sub­ s t i t u t i o n i n l i v i n g organisms. G i v e n the s m a l l d i f f e r e n c e i n the masses o f C and C , r e l a t i v e t o t h o s e o f hydrogen and d e u t e r i u m , i t would be e x p e c t e d t h a t the k i n e t i c i s o t o p e e f f e c t s and t h e r e f o r e t h e d i s r u p t i o n o f m e t a b o l i c f u n c t i o n when t h e s e i s o t o p e s are i n t e r c h a n g e d , would be much l e s s J

1

1 3

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

2

9.

ΚΑτζ E T A L .

Isotope Chemistry and

Biology

195

pronounced. T h i s e x p e c t a t i o n tends t o be b o r n out by e x p e r i m e n t a l f i n d i n g s . In t h e case o f u n i c e l l u l a r , p h o t o s y n t h e s i z i n g organisms, o n l y r e l a t i v e l y s m a l l d i f ­ f e r e n c e s a r e seen i n growth r a t e , s i z e d i s t r i b u t i o n o r g r o s s morphology (37), when 13c i s s u b s t i t u t e d f o r 12c a t l e v e l s above 90% enrichement. D i s t u r b a n c e o f normal b i o l o g i c a l f u n c t i o n by -*-C s u b s t i t u t i o n i s somewhat more e a s i l y demonstrated when t h i s i s o t o p e i s s u b s t i ­ t u t e d i n c o n j u n c t i o n w i t h d e u t e r i u m and o t h e r s t a b l e isotopes. .^ The e f f e c t o f a h i g h l e v e l o f C s u b s t i t u t i o n on complex organisms, p l a n t s o r a n i m a l s , i s ambiguous a t present. Experiments aimed a t growth o f l ^ C t o b a c c o and o t h e r f l o w e r i n g p l a n t s a t l e v e l s o f i s o t o p i c en­ richment around 90% p r o v i d e some e v i d e n c e . Compared t o c o n t r o l s , the i s o t o p i c a l l y s u b s t i t u t e d p l a n t s showed s l i g h t l y r e t a r d e d f l o w e r i n g , the p r o d u c t i o n o f fewer f l o w e r s , a b s c i s s i n g more f r e q u e n t l y , and s e e m i n g l y ab­ normal p o l l e n . Any a b n o r m a l i t y i n t h e r e p r o d u c t i v e c y c l e i s p a r t i c u l a r l y s u g g e s t i v e , i n l i g h t o f the ex­ p e r i e n c e w i t h d e u t e r i u m s u b s t i t u t i o n and i t s marked e f f e c t s on r e p r o d u c t i o n . E x a m i n a t i o n o f 13c p o l l e n by the t e c h n i q u e o f s c a n n i n g e l e c t r o n m i c r o s c r o p y r e v e a l e d a h i g h degree o f m o r p h o l o g i c a l a b n o r m a l i t y . Subsequent experiments w i t h morning g l o r y tended t o s u p p o r t t h e s e observations. I n v e s t i g a t i o n s o f v a r i o u s 13c p o l l e n s are s t i l l i n p r o g r e s s and any c o n c l u s i o n s a t t h i s time must be r e g a r d e d as t e n t a t i v e . The s u b s t i t u t i o n o f C at high levels i n highly e v o l v e d a n i m a l s evokes q u e s t i o n s o f g r e a t i n t e r e s t , o f b o t h p r a c t i c a l and t h e o r e t i c a l c h a r a c t e r . Conclusive answers are not, as y e t , e v i d e n t . The growth o f 13c tobacco provided p e r i p h e r a l evidence. In the c o u r s e o f c u l t i v a t i o n o f 13c t o b a c c o an a d v e n t i t i o u s i n f e s t a t i o n o f w h i t e f l i e s took p l a c e i n one o f the growth chambers, which had been i s o l a t e d from the e x t e r n a l environment f o r s e v e r a l weeks. S u p e r f i c i a l e x a m i n a t i o n by a t i m e o f - f l i g h t mass s p e c t r o m e t e r o f the waxes e l a b o r a t e d by the wings o f t h e s e i n s e c t s i n d i c a t e d a h i g h l e v e l o f 13c s u b s t i t u t i o n . The mass spectrum peaks are shown i n F i g u r e 3. I t was e s t i m a t e d t h a t the i n s e c t has somewhat more than 50% 13c i n i t s i s o t o p i c c a r b o n make­ up. T h i s u n s c h e d u l e d event p r o b a b l y produced the f i r s t highly enriched l c insect. Whether the d i s p a r i t y w i t h the s u b s t r a t e was due t o complex m e t a b o l i c f r a c t i o n ­ a t i o n p a t t e r n s o r whether performed embryonic t i s s u e made a s i g n i f i c a n t c o n t r i b u t i o n cannot now be d e c i d e d . An o b v i o u s l e s s o n t o be drawn would suggest the ease o f p r o d u c i n g 13c p a r a s i t i c a n i m a l s , g i v e n a s u i t a b l e 13c plant substrate. 3

3

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ISOTOPES

Figure 2.

1

PRINCIPLES

Automated culture of isotopically enriched pfonts in a closed growth system

l3

32

AND CHEMICAL

ilnll

.ill

50

C

11 ! !li I ii IIH1111111.. J 111 II i 1111 ^, > ι III 111 Mi h ΠΝ ι III II1 h M,H ill 111 Ii ι • ,ι. i, ] ih ih ι , //

64

g

• c 2

1 32

Figure 3.

1 III 50

1,1

MIII III .llllllll ι II ll 1 64

ι

ιιϊΐϊ

// I Hg

Mass fragment distribution of insect wax from normal abundance wax ( C) and C enriched wax 12

13

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

t

9.

κΑτζ E T A L .

Isotope Chemistry and

Biology

197

Long term experiments i n v o l v i n g 13c s u b s t i t u t i o n i n mice have been attempted, w i t h i n c o n c l u s i v e r e s u l t s on t h e p o s s i b l e d e l e t e r i o u s e f f e c t s o f the i s o t o p e (38). These a n i m a l s were f e d on a d i e t o f performed l c mater­ i a l s d e r i v e d from l a b o r a t o r y s y n t h e s i s , t o g e t h e r w i t h added v i t a m i n s , e t c . o f i s o t o p i c a l l y normal c o n t e n t . A t p r e s e n t a l o n g term s t u d y i s under way t o determine p o s s i b l e b i o l o g i c a l e f f e c t s o f 13c i n f e t a l mice tissue (16). 3

13 A p p l i c a t i o n s of C S u b s t i t u t i o n . The w i d e s p r e a d use o f h i g h l y e n r i c h e d J-^C f o r use i n i n c o r p o r a t i o n i n compounds and organisms of s p e c i a l i n t e r e s t has o n l y begun, but a l r e a d y i t i s e v i d e n t t h a t 13c w i l l have extensive f u t u r e uses. L i m i t a t i o n s a r e imposed o n l y by the i n v e s t i g a t o r ' s s p e c i f i c i n t e r e s t s and the ease o f s y n t h e s i z i n g the m a t e r i a l s d e s i r e d , whether by the b i o s y n t h e s i s i n a s p e c i f i c organism o r by l a b o r a t o r y organic synthesis. I t i s c l e a r , from a l r e a d y r e p o r t e d a p p l i c a t i o n s i n e s r (39) and nmr (40), t h a t the use o f 13c may w e l l become a r o u t i n e t e c h n i q u e i n c e r t a i n k i n d s o f magnetic resonance s t u d i e s . The s i g n i f i c a n t p r o p e r t y o f l c h e r e i s the non-zero n u c l e a r s p i n , b u t o t h e r a p p l i c a t i o n s depend upon the i s o t o p i c mass d i f ­ ference i t s e l f . S e p a r a t i o n o f c o n s t i t u e n t s by d e n s i t y g r a d i e n t u l t r a c e n t r i f u g a t i o n , as f i r s t used i n the c a s e o f 15N (£1) i s an o b v i o u s p o s s i b i l i t y . Another a p p l i ­ c a t i o n , a l r e a d y w i d e l y e x p l o i t e d i s the use o f 13c in mass s p e c t r o m e t r y , e i t h e r w i t h h i g h l y e n r i c h e d systems or a t n a t u r a l abundance l e v e l s . The p r o p o s e d a p p l i ­ c a t i o n s i n c l i n i c a l m e d i c i n e , w i t h mass s p e c t r o m e t r y used i n c o n j u n c t i o n w i t h c h r o m a t o g r a p h i c t e c h n i q u e s , has a l r e a d y been mentioned (42^) . 3

IV.

Nitrogen-15

Nitrogen-14 n u c l e i have a q u a d r u p o l e moment, which means t h a t nmr s i g n a l s from N a r e b r o a d and d i f f i c u l t to detect. An a d d i t i o n a l d i s a d v a n t a g e i s the f a c t t h a t c o u p l i n g between N and o t h e r n u c l e i i s o f ­ t e n u n o b s e r v a b l e due t o the v e r y s h o r t r e l a x a t i o n time o f the N n u c l e u s . Thus, 1 4 N - H c o u p l i n g i s not ob­ s e r v e d i n the p e p t i d e bond. I t i s t h e r e f o r e advanta­ geous t o p e r f o r m magnetic resonance s t u d i e s w i t h b i o ­ l o g i c a l m a t e r i a l s s u b s t i t u t e d w i t h 1%, which has a s p i n o f 1/2 and no q u a d r u p o l e moment. D e u t e r a t e d p r o ­ t e i n c o n t a i n i n g N a l l o w s d i s c r i m i n a t i o n between hydrogen bonds i n v o l v i n g amide groups o r h y d r o x y l groups. 1 4

i 4

i 4

1 5

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ISOTOPES

198

AND

CHEMICAL

PRINCIPLES

Recent work by Boxer e t a l . (4_3) has l e d t o the assignment o f f o u r 3* N nmr t r a n s i t i o n s i n c h l o r o p h y l l a and i t s magnesium-free d e r i v a t i v e p h e o p h y t i n . An analy­ s i s o f the c h e m i c a l s h i f t changes i n d u c e d by complexa t i o n w i t h magnesium r e v e a l e d t h a t the magnesium atom s e l e c t i v e l y p e r t u r b s low l y i n g ηττ* s t a t e s . The charge d e n s i t y i n the f o u r p y r r o l e r i n g s becomes more n e a r l y e q u i v a l e n t so t h a t the energy d i f f e r e n c e s among lowl y i n g π π * s t a t e s are decreased. 5

V. B i o l o g i c a l E f f e c t s of M u l t i p l e Isotope S u b s t i ­ tution Taken t o g e t h e r , compounds o f the elements hydro­ gen, oxygen, n i t r o g e n and carbon c o n s t i t u t e o v e r 99% o f the mass o f l i v i n g p r o t o p l a s m . A l l o f t h e s e elements p o s s e s s s t a b l e , r a r e heavy i s o t o p e s . Although k i n e t i c i s o t o p e e f f e c t s i n i s o t o p e s o f elements o t h e r t h a n hydrogen might be e x p e c t e d t o have g r e a t l y l e s s e n e d k i n e t i c i s o t o p e e f f e c t s , and t h e r e f o r e d i m i n i s h e d b i o l o g i c a l e f f e c t s , i t i s o f i n t e r e s t t o c o n s i d e r the r e s u l t s o f s u b s t i t u t i o n o f more than one element by i t s heavy i s o t o p e . The o v e r a l l p r e s e n t c o s t s o f H , " C , 1% and 18Q p r o h i b i t growth o f organisms on any b u t t h e s m a l l e s t s c a l e , i f a l l o f t h e s e heavy i s o t o p e s are t o be i n c o r p o r a t e d s i m u l t a n e o u s l y . There have been o n l y two e x t e n s i v e i n v e s t i g a t i o n s t o d a t e o f organisms i n c o r p o r a t i n g deuterium plus other s t a b l e isotopes at h i g h enrichment. The b a s i s f o r a l l such s t u d i e s must be a t o t a l l y deuterium-adapted organism, t o which the o t h e r i s o t o p e s o f i n t e r e s t may be added i n the c o u r s e o f c u l t u r e . An o b v i o u s c o m b i n a t i o n i s p r e s e n t e d by d e u t e r i u m and 13c; t h i s was c a r r i e d o u t by Flaumenhaft e t a l . a t e n r i c h ­ ment l e v e l s o f 99% + D and 95% C (44). C . vulgaris was grown i n a l l combinations o f 1H,~~2*H, l ^ C and l ^ C . The v a r i o u s i s o t o p i c a l l y a l t e r e d c e l l s were compared on the b a s i s o f s i z e and shape, g r o s s morphology, and s t r u c t u r a l changes i n s u b c e l l u l a r o r g a n e l l e s , as i n ­ d i c a t e d by c y t o l o g i c a l s t a i n i n g t e c h n i q u e s . The i n c o r p o r a t i o n o f had no o b v i o u s e f f e c t on the growth c y c l e o f the a l g a e . The c - H a l g a e grew a t about the same r a t e as * C - H c u l t u r e s , as the 1 3 c - I H grew a t the r a t e seen i n normal 1 C - ! H c u l t u r e s . An e x a m i n a t i o n o f c e l l s i z e d i s t r i b u t i o n , however, r e ­ v e a l e d t h a t i n the change o f i s o t o p i c c o m p o s i t i o n from H C t o H - C , a marked change t a k e s p l a c e , as seen i n F i g u r e 4. E v i d e n t l y , the s u b s t i t u t i o n o f in a d e u t e r i u m adapted c e l l r e s u l t s i n a tendency t o undo some o f the d i s r u p t i v e e f f e c t s o f deuterium, a t l e a s t 2

1

3

1

2

3

2

2

2

2

1

2

2

1

3

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

κΑτζ E T A L .

9.

Isotope Chemistry and Biology

199

as r e g a r d s such a g r o s s and s t a t i s t i c a l parameter as c e l l size distribution. S t u d i e s on s u b c e l l u l a r morphology and c y t o l o g y tended t o b e a r o u t t h e f i n d i n g s on s i z e d i s t r i b u t i o n . The p a r t i a l r e v e r s a l o f e f f e c t s a t t r i b u t a b l e t o d e u t e r ­ ium s u b s t i t u t i o n were b o r e o u t by i n v e s t i g a t i o n o f t h e following features: (1) N u c l e a r s i z e . Nuclei of C - H c e l l s were l a r g e r t h a n t h o s e o f 1 3 C - 1 H c e l l s , but s m a l l e r than those o f the C - H cells. (2) Nudear shape. The n u c l e a r s i z e range seen i n 1 3 C - 1 H c e l l s i s about t h a t seen i n 1 2 C - 1 H c e l l s ? C - H c e l l s have l a r g e r n u c l e i and a r e l e s s s p h e r o i d a l . (3) Nucleic a c i d c o n t e n t . DNA d i s t r i b u t i o n was d e t e r m i n e d by c y t o chemical s t a i n i n g . The s t a i n i n g f o r DNA and RNA o f 13 H c e l l n u c l e i was found t o be i n t e r m e d i a t e between t h o s e o f t h e 1 C - 1 H c e l l s and t h o s e o f 1 C - H . As r e ­ gards s t a i n i n g o f c y t o p l a s m i c DNA, a g a i n , t h e c h a r a c t e r of C - H c y t o p l a s m was somewhere between t h a t seen i n 1 3 C - 1 H c y t o p l a s m and t h a t o f 1 C - H . The c o n c l u s i o n s i n r e g a r d t o the RNA was somewhat a t v a r i a n c e t o t h e above p a t t e r n . 1 3 C - 2 H c e l l s produced RNA t a k i n g t h e form o f t h r e a d - l i k e a c c r e t i o n s . These s t r u c t u r e s were never seen i n c e l l s made up o f 1 C , whether i n combin­ a t i o n w i t h hydrogen o r d e u t e r i u m . (4) P r o t e i n and amino acid content. Staining of c e l l u l a r p r o t e i n material d i s c l o s e d about t h e same p a t t e r n s o f i n t e n s i t y and o c c u r r e n c e as was seen f o r the n u c l e i c a c i d s . The s t a i n i n g f o r f r e e amino a c i d s i n d i c a t e d , a g a i n , t h a t c e l l s w i t h t h e 1 C - H c o m p o s i t i o n s t a i n e d most h e a v i l y . Other f e a t u r e s r e v e a l e d by c y t o l o g i c a l s t u d y i n ­ c l u d e d i n d i c a t i o n s t h a t t h e RNA c o n t e n t may be more n e a r l y normal i n C - H c e l l s than i n t h e p r e v i o u s l y much s t u d i e d 1 C - H c e l l s . T h i s o b s e r v a t i o n must be q u a l i f i e d , as t h e d i s t o r t i o n o f c y t o p l a s m i c RNA was so g r e a t i n c c o n t a i n i n g c e l l s t h a t comparisons were difficult. The most o b v i o u s changes b r o u g h t about by 13c s u b s t i t u t i o n , as seen by phase c o n t r a s t m i c r o s c o p y , was i n the t h i c k n e s s o f c e l l w a l l s . C e l l w a l l s o f both t y p e s o f 13c-grown c e l l s were much t h i c k e r than e v e r seen i n C c e l l s , t h e 1 3 c - H showing up as b e i n g even t h i c k e r than those of 13C-1H c e l l s . A l l these observations i n d i c a t e that p r e d i c t i o n o f l i k e l y changes when two heavy i s o t o p e s a r e s u b s t i ­ t u t e d i n an o r g a n i s m i s n o t p o s s i b l e . Simple assump­ t i o n s o f l i n e a r a d d i t i v e k i n e t i c i s o t o p e e f f e c t s can­ n o t a c c o u n t f o r t h e v a r i a t i o n s seen i n t h i s s t u d y . The second c o n c l u s i o n , t h a t s u b s t i t u t i o n o f C for 1 C in d e u t e r a t e d organisms t e n d s t o d e c r e a s e t h e magnitude o f the a b n o r m a l i t y produced a f t e r a d a p t a t i o n t o a i 3

2

1

2

2

1 2

C

2

2

2

2

3

2

2

2

2

2

2

1

2

3

2

2

1 3

i 2

2

1

3

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

2

ISOTOPES

200

AND CHEMICAL

PRINCIPLES

d e u t e r a t e d m e l i e u i s q u i t e unexpected and cannot be explained at present. The o t h e r s t u d y d e a l i n g w i t h m u l t i p l e i s o t o p i c s u b s t i t u t i o n i n c l u d e d a l l f o u r heavy i s o t o p e s o f hydrogen, carbon, oxygen and n i t r o g e n . Uphaus e t a l . (45) grew c u l t u r e s o f deuterium-adapted C. v u l g a r i s i n v o l umes o f 1-2 ml. The r e s u l t s o f t h i s study a r e o f cons i d e r a b l e i n t e r e s t , when t a k e n as a p r e l i m i n a r y e f f o r t , b u t t h e experiments s u f f e r e d from two s h o r t c o m i n g s . One o f t h e s e a r o s e from t h e use o f o n l y p a r t i a l l y enriched (55% m o l e - p e r c e n t 13c), which made any conc l u s i o n s r e g a r d i n g the p o s s i b l e e f f e c t s o f C substit u t i o n ambiguous. The o t h e r weakness o f t h e study was t h a t t h e g r e a t expense o f t h e i s o t o p e s made i t i m p o s s i b l e t o f o l l o w p a t t e r n s o f change i n the organism, i f each i s o t o p e were added s t e p w i s e i n sequence. The i s o t o p i c enrichments o f t h e m a t e r i a l s used were: H , 99%, C , 55%, N , 98%, 0, 97%. The r e s u l t s o f e x t e n s i v e i s o t o p i c s u b s t i t u t i o n o f a l l f o u r major elements i n t h e biomass r e s u l t e d i n d r a s t i c changes, t h e p r o c e s s e s o r c e l l u l a r m e t a b o l i c d i s r u p t i o n and growth a b n o r m a l i t y p r o g r e s s i n g f a r beyond t h a t seen d u r i n g d e u t e r i u m a d a p t a t i o n . The s i z e d i s t r i b u t i o n s of the i s o t o p i c s p e c i e s studied are given i n F i g u r e 5. V i s u a l o b s e r v a t i o n s by l i g h t m i c r o s c o p y gave the i m p r e s s i o n o f even g r e a t e r h e t e r o g e n e i t y t h a n t h a t i m p l i e d by t h e c u r v e s as determined w i t h a c e l l counter. I t i s p o s s i b l e t h a t the "monster" o r g i a n t c e l l s seen a f t e r complete i s o t o p i c s u b s t i t u t i o n may be p a r t o f the a d a p t i v e p r o c e s s and l i f e c y c l e o f t h e s e cells. C e l l d i v i s i o n may n o t always o c c u r . A l a r g e q u a n t i t y o f c e l l u l a r d e b r i s was p r e s e n t i n mature c u l t u r e s , much more i n mass t h a n c o u l d be accounted f o r by t o t a l d i s i n t e g r a t i o n o f the o r i g i n a l innocum, which was about 1% o f t h e f i n a l c e l l mass. C e l l s grown i n 1 H - 1 8 O - 1 3 C - 1 N media appeared t o resemble more c l o s e l y i s o t p p i c a l l y normal c e l l s than d i d those grown i n H - 0 - C - N media, b u t many o f t h e i r c h a r a c t e r i s t i c s were i n t e r m e d i a t e between the extremes. Cytological studies, using appropriate stains f o r v a r i o u s c e l l u l a r components, produced the f o l l o w i n g observations: 2 _16Q.13 .15 c e l l s : A g r e a t e r amount o f n u c l e i c a c i d was produced by t h e s e c e l l s than any o t h e r type s t u d i e d . L a r g e amounts o f DNA appeared i n b o t h the n u c l e u s and the p e r i p h e r y o f c h l o r o p l a s t s . By cont r a s t , the RNA c o n t e n t o f t h e s e c e l l s was t h e l o w e s t found f o r any system. N u c l e i o f t h e s e c e l l s were greatl y e n l a r g e d and had a u n i f o r m d i s t r i b u t i o n o f DNA, suggesting e i t h e r polyploidy or nuclear degeneration. The f a s t - g r e e n s t a i n used t o v i s u a l i z e p r o t e i n s appears t o I

3

2

1 3

1

1 8

5

5

2

6

1 2

1 4

h

c

n

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ΚΑτζ E T A L .

Isotope Chemistry and Biology

1

J 2

Figure

1 4

5.

1 6

1 8

,

j

I 10

I I 12

r

I I I 14 !6 18 2 0 SIZE, MICRONS

I 22

i 24

I 26

I 28

L_ 30

Size distributions of various Chlorella cells after multiple isotopic substitution

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

ISOTOPES

202

AND CHEMICAL

PRINCIPLES

be d e e p l y and u n i f o r m l y d i s t r i b u t e d throughout the cell. S t a i n i n g f o r carbohydrate d i s t r i b u t i o n revealed t h a t t h e s e c e l l s c o n t a i n e d much more such m a t e r i a l than e i t h e r o f the I H o r H c o n t r o l s o r the H - 1 8 o c e l l s . 2

2

°0- c°N C e l l s . These c e l l t y p e s showed t h e g r e a t e s t v a r i a b i l i t y i n s t a i n i n g o f components and the l e a s t l o c a l i z a t i o n o f a p a r t i c u l a r component b e i n g stained. Young c e l l s w i t h t h i s i s o t o p i c c o m p o s i t i o n tended t o resemble o r d i n a r y H - 1 0 - 1 C - 1 N c e l l s , w i t h round and p e r i p h e r a l l y l o c a t e d n u c l e i which tended w i t h a g i n g t o become m u l t i l o b a t e ; m u l t i p l e n u c l e i were commonly found. C h l o r o p l a s t s o f t h e s e c e l l s appeared t o produce more DNA than t h o s e o f o t h e r t y p e s . Protein s t a i n i n g i n d i c a t e d a l a r g e amount o f t h i s m a t e r i a l , p r o b a b l y l a r g e r than i n o t h e r i s o t o p i c t y p e s ; t h i s was a l s o true of carbohydrate content. These c e l l s had the most h e a v i l y s t a i n e d and t h e t h i c k e s t w a l l s o f any c e l l type. J

1

6

2

4

H - 0 - C - N Cells. The t r e n d s i n s t a i n i n g i n t h i s c e l l t y p e i n d i c a t e d t h a t i t s h o u l d be p l a c e d i n t e r m e d i a t e between c e l l s o f normal i s o t o p i c c o n t e n t and those of H - 1 0 - C - 1 % , t e n d i n g t o resemble the l a t t e r more than t h e former. N u c l e i appeared t o c o n t a i n more RNA than d i d the I H - I ^ O c o n t r o l . The most s i g n i f i c a n t d i f f e r e n c e between 1^0 and l ^ o - c o n t a i n i n g c e l l s appeared i n t h e n a t u r e o f t h e c a r b o h y d r a t e d i s t r i b u t i o n and content. Those c o n t a i n i n g the heavy oxygen i s o t o p e showed l e s s c l e a r s t a i n i n g o f the c e l l w a l l s . Perhaps the most i m p o r t a n t g e n e r a l i z a t i o n t o app e a r from t h i s study was t h a t i t i s q u i t e o b v i o u s t h a t d e v i a t i o n s from normalcy appear more and more as heavy i s o t o p e s a r e s u b s t i t u t e d i n t o t h e organism. The t e n dency t o form g i a n t c e l l s , some w i t h a volume s e v e r a l o r d e r s o f magnitude g r e a t e r than normal c e l l s , and a suggestion of increasing s u b c e l l u l a r disorganization, i s q u i t e common. The e x a c t c o n t r i b u t i o n o f each heavy i s o t o p e cannot be a s s e s s e d a t p r e s e n t and must await f u r t h e r s t u d i e s on o t h e r organisms and l a r g e s i z e d cultures. The a p p l i c a t i o n s o f m u l t i p l y s u b s t i t u t e d organisms i s a t p r e s e n t l i m i t e d by the h i g h c o s t o f the heavy i s o t o p e s , e s p e c i a l l y 1 0. The even r a r e r 0 may have g r e a t f u t u r e p o t e n t i a l , because o f i t s non-zero n u c l e a r spin. A s i d e from a r e a s o f o b v i o u s a p p l i c a t i o n , such as mass s p e c t r o m e t r y , t h e r e appears t o be g r e a t p o t e n t i a l f o r t h e study o f b i o l o g i c a l problems by means o f m u l t i p l e resonance t e c h n i q u e s as endor ( e l e c t r o n - n u c l e a r doab l e resonance), with the use of multiply substituted organisms. 1 8

1

2

1 3

6

1 5

1 2

8

i 7

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

9.

KATZ

Literature 1.

Isotope Chemistry and Biology

E T AL.

203

Cited

3.

P r o c e e d i n g s , First I n t e r n a t i o n a l Conference on S t a b l e I s o t o p e s in Chemistry, B i o l o g y and Medicine, P. D. Klein and S. V. P e t e r s o n , Eds., Argonne N a t i o n a l L a b o r a t o r y , Argonne, Illinois, 1973. N a t i o n a l T e c h n i c a l I n f o r m a t i o n S e r v i c e , U.S. De­ partment o f Commerce, Springfield, Va., 22151. CONF-730525. K a t z , J. J. and Crespi, H. L., " I s o t o p e Effects in Chemical R e a c t i o n s , " C. J. Collins and N. S. Bowman, Eds., 286-363, Van Nostrand R e i n h o l d , New York, 1970, Chap. 5. K a t z , J. J. and Crespi, H. L., S c i e n c e (1966) 151,

4.

Matwiyoff,

5.

Thomson, J. F., "Biological Effects o f Deuterium," Pergamon, O x f o r d , 1963. Urey, H. C., Brickwedde, F. G. and Murphy, G. Μ . , Phys. Rev. (1932) 39, 164; I b i d . , (1932) 40, 464; Urey, H. C., S c i e n c e (1933) 78, 566. Morowitz, H. J. and Brown, L . Μ., U.S. N a t i o n a l Bureau o f Standards R e p r i n t (1953) No. 2179. Flaumenhaft, E . , Bose, S., C r e s p i , H. L. and K a t z , J. J., I n t e r n a t . Rev. C y t o l . (1965) 18, 313. Wiberg, Κ. Β., Chem. Rev. (1955) 55, 713. Salomaa, P., S c h a l e g e r , L . L. and Long, F. Α . , J. Amer. Chem. Soc. (1964) 86, 1. Salomaa, P., S c h a l e g e r , L. L. and Long, F. Α . , J. Amer. Chem. Soc. (1964) 68, 410. Long, F. Α., Ann. Ν . Y. Acad. Sci. (1960) 84, 596. Chorney, W., Scully, N. J., C r e s p i , H. L . and K a t z , J. J., B i o c h i m . B i o p h y s . A c t a (1970) 37, 280; C r e s p i , H. L . , Conrad, S. M., Uphaus, R. A. and Katz, J. J., Ann. Ν . Y. Acad. Sci. (1960) 84, 648. C r e s p i , H. L. and K a t z , J. J., in "Methods in Enzymology," C. H. W. H i r s and S. N. T i m a s h e f f , Eds., Academic, New York, 1972. N o r r i s , J. R., Uphaus, R. Α . , Crespi, H. L. and K a t z , J. J., P r o c . Nat. Acad. Sci. U.S.A. (1971)

2.

6. 7. 8. 9. 10. 11. 12. 13.

14. 15. 16. 17.

18.

1187.

181, 1125.

N. A. and O t t , D. G., S c i e n c e

(1973)

68, 625.

K a t z , J. J. and Crespi, H. L., Pure and A p p l . Chem. (1972) 32, 221. C r e s p i , H. L., Marmur, J. and K a t z , J. J., J. Amer. Chem. Soc. (1962) 84, 3489; Stewart, C. R., C a t e r , M. and Click, Β., V i r o l o g y (1971) 46, 327; Smith, I . , Dubnau, D., Morell, P. and Marmur, J., J. Mol. Biol. (1968) 33, 123. Mrtek, R. G., Crespi, H. L., B l a k e , M.I.and K a t z , J. J., J. Pharm. Sci. (1967) 56, 1234.

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

204

19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.

34. 35.

36.

37. 38. 39.

ISOTOPES

AND

CHEMICAL

PRINCIPLES

Nona, D. Α., B l a k e , M. I . and K a t z , J . J., J . Pharm. Sci. (1968) 57, 975. P l u t a , P., u n p u b l i s h e d . B l a k e , M. I . , Crane, F. Α., Uphaus, R. A. and K a t z , J . J . , J. Pharm. Sci. (1964) 53, 79. Crane, F. Α., B l a k e , M. I . , Uphaus, R. A. and K a t z , J . J., J. Pharm. Sci. (1964) 53, 612. B l a k e , M. I . , Crane, F. Α., Uphaus, R. A. and K a t z , J . J., Lloydia (1964) 27, 254. Cope, B. T., Bose, S., C r e s p i , H. L. and K a t z , J . J., Botan. Gazz. (1965) 126, 214. Uphaus, R. A., Crane, F. A., B l a k e , M. I . and K a t z , J . J . , J. Pharm. Sci. (1965) 54, 202. B h a t i a , C. R. and Smith, H. H., P l a n t a (1968) 80, 176. Crane, F. Α., Mohammed, K., B l a k e , M. I . , Uphaus, R. A. and K a t z , J . J., L l o y d i a (1970) 33, 11. Crumley, H. A. and Meyer, S. L., J . Tennessee Acad. Sci. (1950) 25, 171. S i e g e l , S. M., H a l p e r n , L. A. and Giumarro, C., N a t u r e (1964) 201, 1244. B l a k e , M. I . , Crane, F. Α., Uphaus, R. A. and K a t z , J . J., P l a n t a (1968) 78, 35. Crane, F. Α., B l a k e , M. I . , Uphaus, R. A. and K a t z , J . J., Can. J . Botany (1969) 47, 1465. S i e g e l , Β. Z. and G a l s t o n , A. W., P r o c . Nat. Acad. Sci. U.S.A. (1966) 56, 1040. Kollman, V. H., Gregg, C. T., Hanners, J. L., Whaley, T. W. and O t t , D. G., P r o c e e d i n g s o f the First I n t e r n a t i o n a l Conf. on S t a b l e I s o t o p e s i n C h e m i s t r y , B i o l o g y and M e d i c i n e , May 9-11, 1973, Argonne N a t i o n a l L a b o r a t o r y , Argonne, Illinois, p. 30. Uphaus, R. Α., B l a k e , M. I . , K o s t k a , A. G. and K a t z , J . J., J. Pharm. Sci., in p r e s s . An e x t e n s i v e study o f b o t h commercial u n i t s and o n e - o f - a - k i n d r e s e a r c h systems is g i v e n in: " L i g h t i n g f o r P l a n t Growth," E. D. B i c k f o r d and S. Dunn, Eds., Kent S t a t e U n i v e r s i t y P r e s s , 1972. Shreeve, W. W., P r o c e e d i n g s o f the First I n t e r ­ n a t i o n a l Conf. on S t a b l e I s o t o p e s in C h e m i s t r y , B i o l o g y and M e d i c i n e , May 9-11, 1973, Argonne N a t i o n a l L a b o r a t o r y , Argonne, Illinois, p. 390; Sweetman, L., I b i d . , p. 404. Flaumenhaft, Ε., Uphaus, R. A. and K a t z , J . J., B i o c h i m . B i o p h y s . A c t a (1972) 215, 421. Gregg, C. T., Los Alamos Scientific Laboratory, p r i v a t e communication. N o r r i s , J . R., Uphaus, R. A. and K a t z , J . J., B i o c h i m . B i o p h y s . A c t a (1972) 275, 161.

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.

9.

KATZ

40. 41. 42.

43. 44. 45.

ET AL.

Isotope Chemistry and Biology

205

K a t z , J. J. and Janson, Τ. R., A n n a l . Ν . Y. Acad. Sci. (1973) 106, 579. Meselson, M. and Wergle, J. J., P r o c . Nat. Acad. Sci. U.S.A. (1961) 47, 857. Sweeley, C. C., Young, N. D., B i e b e r , M. A. and H o l l a n d , J . F., P r o c e e d i n g s o f t h e First I n t e r ­ n a t i o n a l Conf. on S t a b l e I s o t o p e s in C h e m i s t r y , B i o l o g y and M e d i c i n e , May 9-11, 1973, Argonne N a t i o n a l L a b o r a t o r y , Argonne, Illinois, p. 273. Boxer, S., C l o s s , G. L . and K a t z , J. J., J. Amer. Chem. Soc., in p r e s s . Flaumenhaft, Ε . , Uphaus, R. A. and K a t z , J. J., B i o c h i m . B i o p h y s . A c t a (1970) 215, 421. Uphaus, R. Α., Flaumenhaft, E. and K a t z , J. J., B i o c h i m . B i o p h y s . A c t a (1967) 141, 625.

Rock; Isotopes and Chemical Principles ACS Symposium Series; American Chemical Society: Washington, DC, 1975.