5510
Biochemistry 1985, 24, 5510-5516
Jovin, T. (1975) in Biochemical Fluorescence (Chen, R. F., & Edelhoch, H., Eds.) pp 305-374, Marcel Dekker, New York. Jovin, T., & Striker, G. (1977) in Chemical Relaxation in Molecular Biology (Pecht, I., & Rigler, R., Eds.) pp 245-28 1 , Springer-Verlag, New York. Kegeles, G. (1978) Methods Enzymol. 48, 308-320. Latt, S. A., & Sober, H. A. (1967) Biochemistry 6 , 3293-3306. LePecq, J.-B., & Paoletti, C. (1967) J . Mol. Biol. 27, 87-106. Li, H. J., & Crothers, D. M. (1969) J. Mol. Biol. 39,461-477. Mandal, C., Englander, S. W., & Kallenbach, N. R. (1980) Biochemistry 19, 5819-5825. Marcandalli, B., Winzek, C., & Holzwarth, J. F. (1984) Ber. Bunsen-Ges. Phys. Chem. 88, 368-374. McGhee, J. D., & von Hippel, P. H. (1974) J . Mol. Biol. 86, 469-498. Neidle, S . , & Abraham, Z. (1984) CRC Crit. Rev. Biochem. 17, 73-121. Pohl, F. M., & Jovin, T. M. (1972) J. Mol. Biol. 67, 375-396. Ramstein, J., Ehrenberg, M., & Rigler, R. (1980) Biochemistry 19, 3938-3948. Reinhardt, C. G., & Krugh, T. R. (1978) Biochemistry 17, 4845-4854.
Ryan, D. P., & Crothers, D. M. (1984) Biopolymers 23, 537-562. Scatchard, G. (1949) Ann. N . Y . Acad. Sci. 51, 660-672. Schellman, J. A. (1974) Zsr. J . Chem. 12, 219-238. Sobell, H. M., Sakore, T. D., Jain, S. C., Banerjee, A., Bhandary, K. K., Reddy, B. S., & Lozansky, E. D., (1982) Cold Spring Harbor Symp. Quant. Biol. 47, 293-3 14. Steiner, R. F., & Kubota, Y . (1983) in Excited States of Biopolymers (Steiner, R. F., Ed.) pp 203-254, Plenum Press, New York. Torgerson, P. M., Drickamer, H. G., & Weber, G. (1980) Biochemistry 19, 3957-3960. Visser, A. J. W. G., Li, T. M., Drickamer, H. G., & Weber, G. (1977) Biochemistry 16, 4883-4886. Wakelin, L. P. G., & Waring, M. J. (1980) J. Mol. Biol. 144, 183-214. Weber, G., & Drickamer, H. G. (1 983) Q. Rev. Biophys. 16, 89-1 12. Weber, G., Tanaka, F., Okamoto, B. Y., & Drickamer, H. G. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 1264-1266. Winkle, S. A., Rosenberg, L. S., & Krugh, T. R. (1982) Nucleic Acids Res. 10, 821 1-8223. Zasedatelev, A. S., Gurskii, G. V., & Volkenshtein, M. V. (1971) Mol. Biol. (Mosow) 5, 245-251.
Kinetics of Creatine Kinase in Heart: A 31PNMR Saturation- and Inversion-Transfer Study? Hadassa Degani,* Maren Laughlin, Sharon Campbell, and Robert G. Shulman Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 0651 1 Received October 25, 1984
ABSTRACT: The kinetics of the phosphate exchange by creatine kinase (CK) was studied in solution and in the Langendorff-perfused rat heart at 37 "C. 31Pinversion-transfer (IT) and saturation-transfer (ST) methods were applied. The kinetic parameters obtained by the two magnetization transfer methods were the same, whether in solution or in the perfused heart. Inversion transfer is the more efficient method, yielding the kinetic constants for the exchange and the relaxation rates of the transferred phosphate in both substrates, in one experiment. In solution the forward (kF)and reverse (kR)pseudo-first-order rate constants for the CK reaction (kF = k,[MgADP][H+]; kR = k-l[creatine]) as well as the concentrations of phosphocreatine (PCr), MgATP, and creatine (Cr) remained constant between pH 6.9 and pH 7.8. Equilibrium at this pH region is therefore maintained by compensating changes in the concentration of MgADP. The forward and reverse fluxes in the perfused heart were equal with an average flux ratio (fluxF/fluxR) of 0.975 f 0.065 obtained by both methods. Average values of kF and kR were 0.725 f 0.077 and 1.12 f 0.14 s-l, respectively. These results clearly indicate that the CK reaction in the Langendorff-perfused heart is in equilibrium and its rate is not limited by the diffusion of substrates between different locations of the enzyme. There is therefore no indication of compartmentation of substrates of the CK reaction.
' E e function of creatine kinase (CK) in myocardial cells is to catalyze the transfer of a high-energy phosphate between ATP and phosphocreatine (PCr). The reaction has an apparent equilibrium constant Kapp= K,[H+] = [MgATPI[Cr]/( [PCr] [MgADP]) of 166 at pH 7,38 OC, ionic strength 0.25, and 1 mM Mg2+ (Lawson & Veech, 1979). Its rates 'Supported by NIH Grant AM 27121 and NSF Grant PCM 80 21715. * Address correspondence to this author at the Isotope Department, The Weizmann Institute of Science, 76100 Rehovot, Israel.
0006-2960/85/0424-5510$01.50/0
in myocardial cells appear to be much higher than those of the myocardial ATPase or ATP synthetase reactions (Matthews et al., 1982). Therefore, when ADP