7 Latex Emulsions with Concrete PHILIP MASLOW
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
739 East 49th St., Brooklyn,NY11203
PART A - THEORY OF EMULSIONS Emulsions are intimate mixtures of two immiscible l i q u i d s , one of them being dispersed i n the other i n the form of fine d r o p l e t s . A mixture of two miscible l i q u i d s , e . g . , water and a l c o h o l , or oil and kerosene, w i l l not produce an emulsion, but a more intimate degree of d i s p e r s i o n : a s o l u t i o n . On the other hand, it i s not possible to form an emulsion with two immiscible l i q u i d s alone, since such a system would lack the important f a c t o r of stability. In shaking s t r a i g h t water with toluene, f o r instance, the two l i q u i d s will separate immediately when shaking i s discontinued. The conditions change completely when a d i l u t e soap s o l u t i o n , instead of s t r a i g h t water, i s used and it is shaken with an oil. In doing so, a milky l i q u i d develops, which remains i n t h i s state without separating for a considerable length of time. Then, a typical emulsion i s formed. Therefore, three components are necessary to produce emulsions: two immiscible l i q u i d s , and a substance which helps to promote the emulsion and to keep it stable, i.e., the emulsifying agent, o r e m u l s i f i e r . To the naked eye, emulsions appear as uniform, opaque l i q u i d s or pastes of white or s l i g h t l y yellowish c o l o r . The microscope reveals that emulsions are by no means uniform substances. They are non-uniform and consist of a multitude of small d r o p l e t s , usually of s p h e r i c a l shape, and varying diameters, f l o a t i n g in the surrounding liquid. Emulsions with p a r t i c l e s 0-8412-0523-X/79/47-113-079$05.50/0 © 1979 American Chemical Society
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
80
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N D
C A U L K I N G
C O M P O U N D S
of l a r g e d i a m e t e r are c a l l e d c o a r s e e m u l s i o n s , and those w i t h s m a l l p a r t i c l e s are f i n e e m u l s i o n s . The p a r t i c l e s and the l i q u i d s i n which they f l o a t are c a l l e d t h e phases o f an e m u l s i o n . The p a r t i c l e s are r e f e r r e d t o as the d i s c o n t i n u o u s phase, and the medium which i s the d i s p e r s i o n l i q u i d i s c a l l e d the c o n t i n u ous phase. A l s o , s i n c e the d r o p l e t s o f t h e d i s c o n t i n u ous phase are e n c l o s e d from a l l s i d e s , i t i s a l s o c a l l e d the i n t e r n a l phase, and the c o n t i n u o u s phase i s a l s o c a l l e d t h e e x t e r n a l phase. In the m a j o r i t y o f a l l e m u l s i o n s , one o f the phases i s water, o r an aqueous s o l u t i o n c o n t a i n i n g s a l t s , soluble organic material, c o l l o i d s , e t c . This i s a l s o c a l l e d the w a t e r phase. The o t h e r phase, t h e p a r t i c l e s o r d r o p l e t s , i s c a l l e d t h e o i l phase, even i f i t does not c o n s i s t o f o i l . Many s u b s t a n c e s c o n s t i t u t e the o i l phase, a l l h a v i n g one i m p o r t a n t common p r o p e r t y ; namely, t h e i r i n s o l u b i l i t y i n w a t e r . These may i n c l u d e h y d r o c a r b o n s , r e s i n s , waxes, n i t r o c e l l u l o s e , allcyds, r u b b e r , v i n y l s and a c r y l i c s . They are r e f e r r e d t o as " o i l " s i n c e t h e y behave i n e m u l s i o n s v e r y much l i k e o i l . The s u b s t a n c e s u s e d i n e m u l s i o n s may be c l a s s i f i e d i n t o two g r o u p s : t h o s e which e n t e r the w a t e r phase, and t h o s e w h i c h go i n t o t h e o i l phase. The f i r s t group making up t h e aqueous p o r t i o n , must be wat e r s o l u b l e , o r show a c e r t a i n a f f i n i t y toward w a t e r . T h i s group has t h e g e n e r a l name o f h y d r o p h i l i c subs t a n c e s (from t h e Greek "hydor", water, and " p h i l o s " , loving). The o t h e r group o f s u b s t a n c e s which go i n t o the o i l phase have no a f f i n i t y f o r water, are w a t e r r e p e l l e n t , b u t show marked a t t r a c t i o n t o o i l o r o i l like material. They are known as h y d r o p h o b i c subs t a n c e s (from "phobos", f e a r i n g ) . T y p i c a l h y d r o p h i l i c s u b s t a n c e s are w a t e r - s o l u b l e compounds, many m e t a l s a l t s , and s u b s t a n c e s c o n t a i n i n g a r e l a t i v e l y l a r g e number o f oxy- o r h y d r o x y l g r o u p s . T y p i c a l h y d r o p h o b i c s u b s t a n c e s are o i l s , f a t s , waxes and a l l compounds c o n t a i n i n g m a i n l y c a r b o n w i t h few o r no p o l a r g r o u p s . T h i s d i f f e r e n c e i s i m p o r t a n t i n the s e l e c t i o n o f o t h e r m a t e r i a l s which w i l l be b l e n d e d w i t h the e m u l s i o n , s u c h as pigments, f i l l e r s , cement, sand, and a l l o t h e r i n g r e d i e n t s which may go i n t o t h e making o f a c o n c r e t e o r m o r t a r .
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
7.
M A S L O W
Latex Emulsions with Concrete
81
W i t h any g i v e n p a i r o f i m m i s c i b l e l i q u i d s , two types o f emulsions are p o s s i b l e . One i s t h a t i n which w a t e r i s t h e e x t e r n a l , and o i l , t h e i n t e r n a l phase, known as o i l - i n - w a t e r e m u l s i o n , o r w a t e r o u t s i d e emuls i o n (o/w). The o t h e r t y p e , w i t h o i l as e x t e r n a l , and w a t e r as t h e i n t e r n a l phase, i s known as w a t e r - i n - o i l e m u l s i o n , o r o i l o u t s i d e e m u l s i o n (W/o). I f an emuls i o n c o n t a i n s 50% water o r o t h e r aqueous s o l u t i o n , and 50% o i l o r o i l - l i k e s u b s t a n c e , i t i s p o s s i b l e t o p r o duce an O/W o r a W/O e m u l s i o n , which w i l l show t h e same p e r c e n t c o m p o s i t i o n b u t , n e v e r t h e l e s s , be two e n t i r e l y d i f f e r e n t emulsions. T h i s a l l depends on the method o f e m u l s i f i c a t i o n , t h e e m u l s i f y i n g agent, the s o l u b l e m a t e r i a l s i n t h e w a t e r phase, and t h e f i n e n e s s of p a r t i c l e s . The c h a r a c t e r i s t i c p r o p e r t i e s o f an e m u l s i o n are d i c t a t e d by t h e e x t e r n a l phase. I f water i s the e x t e r n a l phase (O/W), t h e e m u l s i o n may be d i l u t e d w i t h w a t e r and not w i t h o i l o r o r g a n i c s o l v e n t s . Just the o p p o s i t e i s t h e case w i t h a W/o e m u l s i o n , where t h e o i l i s t h e e x t e r n a l phase, and i t c a n be t h i n n e d w i t h organic solvents. S h o u l d w a t e r be added t o t h i s type o f e m u l s i o n , t h e v i s c o s i t y w i l l i n c r e a s e . T h i s i s one way o f v i s u a l l y d i s t i n g u i s h i n g between the two t y p e s . The t h i n n i n g method, u s i n g water, w i l l i n d i c a t e an o i l in-water emulsion i f the v i s c o s i t y i s reduced. If visc o s i t y i s i n c r e a s e d , i t would i n d i c a t e a w a t e r - i n - o i l emulsion. There a r e many t y p e s o f e m u l s i f y i n g agents which are used i n p r e p a r i n g e m u l s i o n s . As i n d i c a t e d , t h e y f a c i l i t a t e the e m u l s i f i c a t i o n and impart s t a b i l i t y t o the p r e p a r e d e m u l s i o n . Chemically, they belong t o d i f f e r e n t c l a s s e s o f compounds among w h i c h a r e s a l t s , a c i d s , b a s e s , and e s t e r s . P h y s i c a l l y , t h e y a r e subs t a n c e s o f medium m o l e c u l a r weight (above 300), and the m o l e c u l e s a r e o f e l o n g a t e d shape and b e l o n g t o t h e mixed p o l a r : n o n - p o l a r t y p e . These e m u l s i f y i n g agents have a v e r y d e f i n i t e b e a r i n g on t h e type o f e m u l s i o n produced and t h e p a r t i c l e s i z e o f the d i s p e r s e d d r o p lets. The e m u l s i o n s w h i c h a r e g e n e r a l l y u t i l i z e d i n cementitious compositions are o f the o i l - i n - w a t e r t y p e , h a v i n g a t l e a s t 50% w a t e r i n the c o m p o s i t i o n , a l t h o u g h some have l e s s than 50% water, and a r e s t i l l
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
82
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N D
C A U L K I N G
C O M P O U N D S
o i l - i n - w a t e r e m u l s i o n , and are s t a b l e i n the presence o f the v a r i o u s s a l t s and o x i d e s c o m p r i s i n g the make-up o f cement. Not a l l e m u l s i o n s are c o m p a t i b l e w i t h cem ent and i t would be a mistake to s e l e c t an e m u l s i o n which i s p r i m a r i l y i n t e n d e d f o r p r o d u c t i o n o f p a i n t o r a d h e s i v e s t o a c t as an admixture f o r a cement i t i o u s mortar.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
PART Β - BUTADYENE STYRBNE LATICES As a r e s u l t o f the s y n t h e t i c rubber program i n s t i t u t e d d u r i n g World War I I , because o f the l a c k o f n a t u r a l rubber, methods f o r p r o d u c i n g s y n t h e t i c rubber were d e v e l o p e d which were b a s e d on the e m u l s i f i c a t i o n of d i f f e r e n t types o f l a t i c e s . Butadyene was, o f c o u r s e , the b a s i s f o r the s y n t h e t i c r u b b e r i n d u s t r y as a r e s u l t o f t h e s e programs. S t y r e n e was a m a t e r i a l i n p l e n t i f u l s u p p l y and was low i n c o s t . P o l y s t y r e n e , which i s a polymerized styrene, i s a hard m a t e r i a l which r e q u i r e s p l a s t i c i z i n g . I t may be p l a s t i c i z e d by one o f t h r e e ways: I n t e r n a l l y , where the p l a s t i c i z e r i s p a r t o f the c o p o l y m e r i c m o l e c u l e ; p r e - p l a s t i c i z e d , where the p l a s t i c i z e r i s added d u r i n g the p o l y m e r i z a t i o n ; p o s t - p l a s t i c i z e d , where the p l a s t i c i z e r i s emul s i f i e d s e p a r a t e l y and added t o the l a t e x . Polystyrene may be p l a s t i c i z e d i n t e r n a l l y by c o p o l y m e r i z i n g w i t h a r e a c t i v e monomer, such as butadyene. In the v a r i o u s e m u l s i o n s a v a i l a b l e , s t y r e n e c o n t e n t may be as h i g h as 85% w i t h the butadyene about 15%. The use o f b u t a d y ene i n t r o d u c e s a s m a l l amount o f u n s a t u r a t i o n i n the polymer which i s s u b j e c t t o o x i d a t i o n on a g i n g , w i t h p o s s i b l e h a r d e n i n g and y e l l o w i n g . The butadyene s t y r e n e l a t i c e s which are compa t i b l e w i t h c e m e n t i t i o u s compounds are copolymers. Ty p i c a l p h y s i c a l p r o p e r t i e s are g i v e n i n T a b l e 1. F o r purposes o f s i m p l i c i t y , the butadyene s t y rene l a t i c e s w i l l be r e f e r r e d t o as SBR l a t i c e s . Those w h i c h are c o m p a t i b l e w i t h cement, show e x c e l l e n t s t a b i l i t y i n the presence of such m u l t i v a l e n t c a t i o n s as c a l c i u m and aluminum. They are u n a f f e c t e d by the a d d i t i o n o f r e l a t i v e l y l a r g e amounts o f e l e c t r o l y t e s , such as sodium c h l o r i d e , c a l c i u m c h l o r i d e and h y d r o c h l o r i c acid. The SBR l a t i c e s may c o a g u l a t e i f s u b j e c t e d f o r
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
7.
M A S L O W
83
Latex Emulsions with Concrete
l o n g p e r i o d s o f time t o h i g h t e m p e r a t u r e s , f r e e z i n g temperatures o r s e v e r e m e c h a n i c a l a c t i o n . They a r e not s t a b l e t o most a i r - e n t r a i n i n g a g e n t s , and t h e y s h o u l d n o t be used i n c o m b i n a t i o n w i t h a i r - e n t r a i n i n g cements.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
T a b l e 1.
P r o p e r t i e s o f Butadyene S t y r e n e L a t e x
Percent S o l i d s Specific Gravity Weight p e r g a l l o n (pounds) pH P a r t i c l e S i z e Range (angstroms) V i s c o s i t y a t 25°C ( c e n t i p o i s e )
48 1.01 8.4 1°1900-2100 10-12
S u r f a c e T e n s i o n a t 25°C (dynes/Square cm.) T e n s i l e Strength (psi) E l o n g a t i o n (percent)
30-32 745 650
5
Structures Publishing Company
Suggested f o r m u l a t i o n s have been g i v e n f o r l a tex f o r t i f i e d cement m o r t a r s , used f o r t o p p i n g s and p a t c h i n g compounds, The r a t i o s o f sand t o P o r t l a n d cement a r e g e n e r a l l y 3:1; t h e p e r c e n t a g e o f l a t e x s o l i d s t o cement may range from 5%-20%, and the water/cement r a t i o may range from 0.35-0.50. i f t h e water/cement r a t i o i s t o o h i g h , f l o t a t i o n o f l a t e x s o l i d s may o c c u r , c a u s i n g the l a t e x p a r t i c l e s t o be unevenly d i s t r i b u t e d t h r o u g h t h e mix. There i s a d e f i n i t e d i f f e r e n c e i n r e s u l t s between wet cure and a i r - d r y c u r e . G e n e r a l l y , wet c u r e s o f unmodif i e d mixes g i v e b e s t p r o p e r t i e s , and a i r - d r y c u r e s o f l a t e x - m o d i f i e d mixes g i v e b e s t p r o p e r t i e s . S e t t i n g time o f an SBR m o d i f i e d cement composit i o n i s d e l a y e d . However, i n a c t u a l use, such mortar t o p p i n g s may o f t e n be walked on i n 12 t o 18 h o u r s , and may take l i g h t r u b b e r t i r e t r a f f i c i n 48 h o u r s . These times w i l l v a r y , depending upon t h e temperature, h u m i d i t y and t h e p e r c e n t a g e o f l a t e x i n the mix. T a b l e 2 shows the s e t t i n g time f o r SBR l a t e x / c e m e n t compositions .
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
84
P L A S T I C
T a b l e 2.
S E A L A N T S ,
A N D C A U L K I N G
C O M P O U N D S
S e t t i n g Time f o r SBR Latex/Cement
Latex/Cement Ratio 0.10 0.20 No L a t e x
M O R T A R S ,
Wa te r/Ceme nt Ratio 0.45 0.45 0.45
I n i t i a l Set (Hours) 6 5.5 2
F i n a l Set (Hours) 9 10 5
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
Structures Publishing Company
Water i n the l a t e x i s always i n c l u d e d i n the w a t e r / cement r a t i o . When t h e water/cement r a t i o i s r a i s e d and the l a t e x / c e m e n t r a t i o remains c o n s t a n t , t h e i n i t i a l and f i n a l s e t times a r e f u r t h e r d e l a y e d . In compressive s t r e n g t h development, the l a t e x m o d i f i e d m o r t a r s always have h i g h e r compressive s t r e n g t h s than the unmodified mortars, i n dry c u r e . A d d i t i o n s o f l a t e x t o a r a t i o g r e a t e r than 0.20 reduces compressive s t r e n g t h and i s e x p e n s i v e . T e n s i l e s t r e n g t h f o r SBR l a t e x m o d i f i e d m o r t a r s may average about 570 p s i . The t e n s i l e s t r e n g t h f o r wet c u r e d u n m o d i f i e d m o r t a r s i s about 410 p s i . I n g e n e r a l , t e n s i l e s t r e n g t h i s h i g h e r f o r the SBR modif i e d m o r t a r than f o r t h e u n m o d i f i e d m o r t a r u n d e r any c o n d i t i o n s o f c u r e . The h i g h e s t t e n s i l e s t r e n g t h i s o b t a i n e d a t the 0.20 l a t e x / c e m e n t r a t i o . F l e x u r a l s t r e n g t h f o r an SBR l a t e x m o d i f i e d mort a r may average 1650 p s i . F l e x u r a l s t r e n g t h f o r wet c u r e d u n m o d i f i e d m o r t a r i s about 810 p s i . These a r e f i g u r e s f o r a 0.20 l a t e x c e m e n t / r a t i o . At a 0.10 r a t i o , the f l e x u r a l s t r e n g t h s are about e q u a l . Bond s t r e n g t h f o r an SBR l a t e x m o d i f i e d m o r t a r i s about 580 psi. Bond s t r e n g t h f o r an u n m o d i f i e d P o r t l a n d cement m o r t a r i s about 250 p s i . The bond s t r e n g t h o f t h e m o d i f i e d m o r t a r s i s always h i g h e r t h a n t h a t f o r the u n m o d i f i e d m o r t a r under any c u r i n g c o n d i t i o n s . A n t i - f o a m agents are almost always used i n SBR l a t e x m o d i f i e d cement c o m p o s i t i o n s because t h e y i n c r e a s e mix d e n s i t y by m i n i m i z i n g a i r - e n t r a i n m e n t , thereby upgrading p h y s i c a l p r o p e r t i e s . Anti-foam agents may be added t o the SBR l a t e x b y the manufact u r e r o f the l a t e x and a d d i t i o n a l amounts may be a d ded by the f o r m u l a t o r o f the f i n a l c e m e n t i t i o u s m o r t a r c o m p o s i t i o n . The amount o f a n t i - f o a m added may range from 0.1% a n t i - f o a m s o l i d s on l a t e x s o l i d s up t o 3.5%.
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
7.
MASLOW
Latex Emulsions with Concrete
85
Some a n t i - f o a m m a t e r i a l s are b a s e d on s i l i c o n e r e s i n s , o t h e r s are b a s e d on p e t r o l e u m o i l s , and a l l o f them are i n t e n d e d t o d e p r e s s t h e s u r f a c e t e n s i o n o f t h e l a t e x e m u l s i o n . The a n t i - f o a m agents d e l a y the e n t r a p ment o f a i r i n mixes which i s always a p o s s i b i l i t y when m i x i n g l i q u i d s and s o l i d s , such as a m o r t a r i n a ceme n t m i x e r . T h i s r e s u l t s i n a d e n s e r m o r t a r which h a s b e t t e r abrasion r e s i s t a n c e , b e t t e r r e s i s t a n c e t o water a b s o r p t i o n , and h i g h e r c o m p r e s s i v e , t e n s i l e and bond strengths. M i x i n g o f a l l l a t e x m o d i f i e d cement c o m p o s i t i o n s s h o u l d be h e l d t o a minimum, i n any c i r c u m s t a n c e . A n t i foam agents c a n l o s e t h e i r e f f i c i e n c y i f they are o v e r mixed. They t e n d t o become e m u l s i f i e d a f t e r c o n t i n u o u s s h e a r a c t i o n and they no l o n g e r g i v e adequate p e r f o r m ance. I t has a l r e a d y been i n d i c a t e d t h a t SBR l a t i c e s are s t a b l e and are u n a f f e c t e d by t h e a d d i t i o n o f l a r g e amounts o f c a l c i u m c h l o r i d e . T h i s i s an i n d i c a t i o n t h a t c a l c i u m c h l o r i d e may be used w i t h an SBR l a t e x m o d i f i e d m o r t a r i n t h e same way t h a t i t i s used w i t h an u n m o d i f i e d cement m o r t a r . In g e n e r a l , t h e a d d i t i o n o f 2% c a l c i u m c h l o r i d e , b a s e d on the P o r t l a n d cement, improves t h e e a r l y compressive s t r e n g t h development, from 24 h o u r s t o 7 days. The w a t e r v a p o r t r a n s m i s s i o n c h a r a c t e r i s t i c s o f an SBR l a t e x m o d i f i e d m o r t a r are t w i c e as good as t h o s e o f an u n m o d i f i e d m o r t a r . The w a t e r v a p o r t r a n s m i s s i o n r a t e , as measured i n g r a i n s / s q u a r e foot/hour/inches mercury i s as f o l l o w s : U n m o d i f i e d Cement M o r t a r
WVTR = 9.9
SBR Latex/Cement M o r t a r (0.20 r a t i o )
WVTR = 4.1
PART C - POLYVINYL ACETATE LATICES The v i n y l r a d i c a l i s d e s i g n a t e d c h e m i c a l l y as CH2= CH-7 t h e r e f o r e , t h e term " v i n y l r e s i n s " c o u l d be a p p l i e d t o s u b s t i t u t e d e t h y l e n e s and t h e i r many c o p o l y m e r s . Among t h e s e c a n be i n c l u d e d p o l y e t h y l e n e , polystyrene, p o l y v i n y l chloride, p o l y v i n y l acetate, a c r y l i c e s t e r s , m e t h a c r y l i c e s t e r s and even some o f
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
86
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N D
C A U L K I N G
C O M P O U N D S
t h e s y n t h e t i c r u b b e r s , such as i s o p r e n e . V i n y l r e s i n s are c h i e f l y copolymers r a t h e r than homopolymers. Homopolymers are polymers i n which the monomeric u n i t s are a l l identical. T y p i c a l examples are p o l y v i n y l c h l o r i d e , p o l y v i n y l a c e t a t e and p o l y s t y r e n e . Copolymers are polymers i n which the monomeric u n i t s are d i f f e r e n t . T y p i c a l examples are p o l y v i n y l c h l o r i d e - p o l y v i n y l acetate resins, p o l y v i n y l c h l o r i d e - a c r y l o n i t r i l e res i n s , and p o l y s t y r e n e - b u t a d i e n e r e s i n s . However, comm e r c i a l v i n y l r e s i n s u s u a l l y c o n t a i n a s m a l l percentage o f a m o d i f y i n g r e s i n , s u c h as an a c i d o r an a c i d anhyd r i d e , which i s d i s t r i b u t e d randomly i n the polymer c h a i n s . The amount o f t h e s e m o d i f y i n g m a t e r i a l s i s r e l a t i v e l y s m a l l so t h e y may be c o n s i d e r e d copolymers. The p a r t i c u l a r v a l u e o f the c o p o l y m e r i z a t i o n t e c h n i q u e i s t h a t the p r o p e r t i e s o f the copolymer r e s i n s may be v a r i e d o v e r a wide range by a d j u s t i n g the type and amount o f the v a r i o u s monomers used i n t h e i r f o r m u l a tion. V i n y l r e s i n s are p o l y m e r i z e d and c o p o l y m e r i z e d c o m m e r c i a l l y by f o u r d i f f e r e n t p r o c e s s e s : b u l k , s o l v e n t , s u s p e n s i o n and e m u l s i o n . The e m u l s i o n p o l y m e r i z a t i o n p r o c e s s i s w i d e l y used i n the manufacture o f vinyl resins. In t h i s p r o c e s s , the monomer i s e m u l s i f i e d i n water, u s i n g a s u i t a b l e e m u l s i f y i n g agent. Of c o u r s e , the monomer must be s u b s t a n t i a l l y i n s o l u b l e i n w a t e r i n o r d e r t o o b t a i n a good e m u l s i o n . After polym e r i z a t i o n i s e s s e n t i a l l y complete, the e m u l s i o n may be b r o k e n and the r e s i n c o a g u l a t e d , washed and d r i e d ; or s u i t a b l e protective c o l l o i d s , buffers, corrosion i n h i b i t o r s , f u n g i c i d e s , e t c . may be added t o produce a s t a b l e l a t e x o f the p o l y m e r i c r e s i n . Non-Reemulsifiable
P o l y v i n y l Acetate
Latex
In p r o d u c i n g a p o l y v i n y l a c e t a t e l a t e x f o r use w i t h cement, the e m u l s i o n p o l y m e r i z a t i o n p r o c e s s i s utilized. A s m a l l p e r c e n t a g e , about 1%, o f a subs t a n c e l i k e m a l e i c a c i d i s added i n the p o l y m e r i z a t i o n r e a c t i o n so t h a t a copolymer i s formed. M a l e i c a c i d , i t s e l f , has an e t h y l e n i c type o f u n s a t u r a t i o n , b u t i t does not form homopolymers. S i n c e the amount i n t r o duced i s so s m a l l , the r e s u l t a n t polymer i s a c o p o l y mer. The i n t r o d u c t i o n o f the h i g h l y p o l a r c a r b o x y l
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
7.
M A S L O W
87
Latex Emulsions with Concrete
groups on m a l e i c a c i d improves t h e a d h e s i o n c h a r a c t e r i s t i c s o f the p o l y v i n y l acetate. J u s t as t h e p o l y s t y r e n e - b u t a d i e n e r e s i n s a r e g e n e r a l l y r e f e r r e d t o as SBR r e s i n s , the p o l y v i n y l acetate resins are g e n e r a l l y r e f e r r e d t o as PVA r e s i n s . T y p i c a l p h y s i c a l p r o p e r t i e s o f a p o l y v i n y l acet a t e copolymer e m u l s i o n s u i t a b l e f o r use w i t h cement are g i v e n i n T a b l e 3.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
T a b l e 3.
Properties
o f P o l y v i n y l Acetate Latex
Percent s o l i d s pH Weight/gal. Emulsion (lbs.) Weight/gal. S o l i d s (lbs.) Average P a r t i c l e S i z e F r e e Monomer Content Odor Borax Compatible P a r t i c l e Charge
52 410-6.5 8.9 9.76 Less than 2 Microns L e s s t h a n 1% Slight No Negative Structures Publishing Company
T h i s PVA l a t e x l e a v e s a d r i e d f i l m which i s f l e x i b l e w i t h o u t t h e a d d i t i o n o f a p l a s t i c i z e r . The f i l m has e x c e l l e n t w a t e r r e s i s t a n c e , l i g h t s t a b i l i t y , good a g i n g c h a r a c t e r i s t i c s and good f i l m c o n s o l i d a t i o n . T h i s p a r t i c u l a r PVA l a t e x may be used as a f i l m formi n g b i n d e r i n a water-based emulsion p a i n t . Its part i c u l a r c h a r a c t e r i s t i c s o f c o m p a t i b i l i t y w i t h cement have l e d t o wide uses o f t h i s l a t e x as an a d h e s i v e and an admixture f o r c e m e n t i t i o u s m o r t a r s and c o n c r e t e . There a r e a v a r i e t y o f d i f f e r e n t a p p l i c a t i o n s f o r a l l l a t e x e m u l s i o n s as b o n d i n g agents and admixtures. Some t y p e s have a g r e a t e r degree o f w a t e r r e s i s t a n c e than o t h e r s ; and, o f c o u r s e , t h e r e i s a wide range o f c o s t f a c t o r s . F o r purposes o f p r e s e n t a t i o n , i t i s assumed t h a t a l l t y p e s a r e u t i l i z e d a t about 4550% s o l i d s c o n t e n t . Re-emulsifiable
P o l y v i n y l Acetate Latex
In t h e d e s c r i p t i o n s o f PVA l a t i c e s , a l l t h e p r o p e r t i e s d e s c r i b e d a r e b a s e d on the f a c t t h a t t h e s e l a t i c e s , as w e l l as t h e SBR l a t i c e s , and t h e a c r y l i c l a t i c e s , are e s s e n t i a l l y non-reemulsifiable. When
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
88
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N D
C A U L K I N G
C O M P O U N D S
l a t i c e s were f i r s t d e v e l o p e d and used i n f o r m u l a t i n g p a i n t s , one o f the c h a r a c t e r i s t i c s t h a t was o b j e c t i o n a b l e was the l o n g p e r i o d o f time which had t o e l a p s e b e f o r e p a i n t f i l m s , c a s t from the o r i g i n a l SBR l a t i c e s , had c o a l e s c e d o r d r i e d enough t o be "washable." Sometimes, t h i s p e r i o d l a s t e d f o r as l o n g as s i x weeks. As p r o g r e s s was made i n p r o d u c i n g these l a t i c e s , p r o d u c t s were soon a v a i l a b l e on the market which produced f i l m s which c o u l d be washed i n v e r y q u i c k o r d e r . Where l a t i c e s are used as b o n d i n g agents i n themselves, an o b v i o u s problem d e v e l o p s . This i n v o l v e s the r a p i d d r y i n g o f a f i l m c a s t from a l a t e x c r e a t i n g a s i t u a t i o n whereby a subsequent placement o f a cement m o r t a r o r c o n c r e t e would not bond t o a d r i e d f i l m o f l a t e x . As an example, s h o u l d a f l o o r a r e a be t r e a t e d w i t h a l a t e x b o n d i n g agent i n i t s e n t i r e t y bef o r e the a p p l i c a t i o n o f a new c e m e n t i t i o u s t o p p i n g , the l a t e x f i l m would have d r i e d i n the f i r s t p a r t o f the area b e f o r e the l a s t p a r t o f the area had been coated. S i n c e the l a t e x f i l m becomes c o m p a r a t i v e l y h a r d , smooth and g l o s s y , the a d h e s i o n o f the subsequent t o p p i n g would be l e s s t h a n adequate. O t h e r t h a n by the method o f p r e p a r i n g a n e a t cement s l u r r y , u t i l i z i n g the l a t e x as p a r t of the gaugi n g water, t o p r o v i d e a b o n d i n g medium, t h e r e was one method a v a i l a b l e by which a l a t e x c o u l d be m o d i f i e d t o be u s e f u l as a f i l m - f o r m i n g b o n d i n g agent. T h i s i n v o l v e d m o d i f y i n g a l a t e x so t h a t i t would be r e e m u l s i f i a b l e , i . e . , a b l e t o be s o f t e n e d and r e t a c k i f i e d upon c o n t a c t w i t h a w a t e r - c o n t a i n i n g medium. Such a l a t e x would permit a p p l i c a t i o n o f a f i l m t o a s u r f a c e l o n g b e f o r e the subsequent a p p l i c a t i o n o f a water-based o v e r l a y . T h i s f i l m , o f c o u r s e , would dry, and r e semble a d r i e d f i l m o f a n o n - r e e m u l s i f i a b l e l a t e x . However, the d i f f e r e n c e would be t h a t t h i s f i l m would be r e s o f t e n e d upon c o n t a c t w i t h water, whereas the f i l m c a s t from the n o n - r e e m u l s i f i a b l e l a t e x would be a f f e c t e d very s l i g h t l y , i f at a l l . A f i l m c a s t from a r e e m u l s i f i a b l e l a t e x would have a t h i c k n e s s o f about one m i l , o r one t h o u s a n d t h o f an i n c h . A f i l m o f t h i s t h i c k n e s s would almost, o f n e c e s s i t y , have t o be a p p l i e d t o a smooth s u r f a c e i n order to leave a v i s i b l e f i l m . A p p l i c a t i o n t o a rough and/or porous s u r f a c e would r e s u l t i n the a b s o r p t i o n
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
7.
M A S L O W
Latex Emulsions with Concrete
89
o f most o f t h e f i l m , l e a v i n g v e r y l i t t l e i n the g l u e l i n e as an a d h e s i v e , o f course, a f i r s t coat a p p l i c a t i o n c o u l d be used as a p r i m e r , f o l l o w e d by one o r more s u c c e e d i n g c o a t s which would n o t be absorbed. T h i s , o f c o u r s e , i s l a b o r i o u s and c o s t l y . T h e r e f o r e , a reemuls i f i a b l e l a t e x b o n d i n g agent i s n o t recommended f o r r e p a i r and maintenance, u n l e s s t h e s u r f a c e t o which i t i s a p p l i e d i s smooth. The most w i d e l y used a p p l i c a t i o n o f a r e e m u l s i f i a b l e PVA l a t e x i s as a b o n d i n g agent f o r p l a s t e r . I t i s used t o bond f i n i s h o r base c o a t gypsum, a c c o u s t i c a l o r P o r t l a n d cement p l a s t e r t o i n t e r i o r s u r f a c e s o f c u r e d c o n c r e t e c a s t i n p l a c e , s t o n e , u n g l a z e d t i l e , met a l , plywood, rock l a t h , p a i n t e d s u r f a c e s and even glass. The l a t e x b o n d i n g agent d r i e s q u i c k l y t o form a t h i n , f l e x i b l e f i l m with outstanding adhesive prop e r t i e s , p r o v i d i n g a permanent bond f o r p l a s t e r . I t i s g e n e r a l l y u n a f f e c t e d by t h e a l k a l i n i t y o f gypsum, l i m e p u t t y , o r P o r t l a n d cement mixes. I t i s r e s i s t a n t t o a c i d s , v i b r a t i o n , f r e e z i n g and thawing. The t e n s i l e and s h e a r s t r e n g t h s f a r e x c e e d those o f the mat e r i a l s w h i c h a r e bonded t o g e t h e r . T h i s type o f bondi n g agent found wide use i n t h e a p p l i c a t i o n o f t h i n f i l m , white f i n i s h p l a s t e r to c e i l i n g s o f h i g h r i s e b u i l d i n g s , e l i m i n a t i n g t h e need f o r s c r a t c h c o a t s and brown c o a t s . The a d h e s i v e r e p l a c e d the i n t e r m e d i a t e c o a t s and p r o v i d e d a s t r o n g e r bond f o r the w h i t e f i n ish plaster. U n f o r t u n a t e l y , t h e use o f p l a s t e r i n new c o n s t r u c t i o n h a s dwindled t o t h e p o i n t where the p l a s t e r i n g t r a d e s have almost d i s a p p e a r e d . Dry w a l l board i s b e i n g used almost e x c l u s i v e l y f o r w a l l s u r f a c e s . C e i l i n g s a r e now b e i n g p a i n t e d , t i l e d , s p r a y e d w i t h a c c o u s t i c a l m a t e r i a l s , o r are c o n s t r u c t e d as hung c e i l ings. About t h e o n l y members o f a s t r u c t u r e which a r e s t i l l b e i n g f i n i s h e d i n w h i t e p l a s t e r a r e columns and beams. The s u r f a c e t o be c o a t e d w i t h a r e e m u l s i f i a b l e PVA b o n d i n g agent s h o u l d be t h o r o u g h l y c l e a n , f r e e o f g r e a s e , d i r t and e f f l o r e s c e n c e . I f t h e a r e a i s c o a t e d w i t h w a t e r - s e n s i t i v e m a t e r i a l s , such as whitewash, c a l c i m i n e , o r p o o r l y bonded cement p a i n t , t h e s e must be removed. The a d h e s i v e i s a p p l i e d a t t h e r a t e o f 300 t o 400 square f e e t p e r g a l l o n . I t i s generally col o r e d t o e n a b l e the a p p l i c a t o r t o see what has been
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
90
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N D C A U L K I N G
C O M P O U N D S
s p r a y e d . The f i l m which i s a p p l i e d has a low sheen which can be used as an i n d i c a t i o n o f adequate f i l m thickness. T h i s f i l m w i l l d r y and may be p l a s t e r e d i n as l i t t l e time as one h o u r . I t w i l l also retain i t s a d h e s i v e c h a r a c t e r i s t i c s and a b i l i t y t o be r e - e m u l s i f i e d f o r a p e r i o d as l o n g as 60 days, i n many c a s e s . However, i t i s a d v i s a b l e t o a p p l y p l a s t e r w i t h i n the f i r s t week a f t e r a p p l i c a t i o n o f the b o n d i n g agent. W i t h each s u c c e e d i n g p e r i o d o f time a f t e r t h i s f i r s t week, the a d h e s i v e q u a l i t i e s are reduced. Even though t h e r e i s a r e a c t i o n between the l i m e i n the p l a s t e r and the l a t e x f i l m , c a u s i n g i t t o s e t , the f i l m s t i l l r e t a i n s a degree o f s e n s i t i v i t y t o water. Therefore, i t i s i n d i c a t e d that these bonding agents not be used i n e x t e r i o r a p p l i c a t i o n s where w a t e r might r e s o f t e n the f i l m and l o o s e n the p l a s t e r . The same p r e c a u t i o n s would a p p l y i n u s i n g these a d h e s i v e s i n areas which might be s u b j e c t t o w a t e r damage, such as c e i l i n g s i n bathrooms o r k i t c h e n s where l e a k s might o c c u r from above. Figure 1 presents a t y p i c a l formulation f o r a ree m u l s i f i a b l e PVA l a t e x b o n d i n g agent. T h i s f o r m u l a t i o n i s based on a medium t o low m o l e c u l a r weight p o l y v i n y l a c e t a t e homopolymer which i s p l a s t i c i z e d e x t e r n a l l y to contribute to i t s re-emulsification properties. There are companies which make a v a i l a b l e a complete l a tex v e h i c l e which can be used d i r e c t l y w i t h l i t t l e o r no m o d i f i c a t i o n , e x c e p t the a d d i t i o n o f c o l o r and, poss i b l y , reduction o f s o l i d s content f o r cost reasons. G e n e r a l l y , a c o a l e s c i n g agent, i n the form o f a s o l v e n t , i s added t o the f o r m u l a so t h a t t h e r e w i l l be minimum d i f f i c u l t i e s i n f o r m i n g a c o n t i n u o u s f i l m a t low t e m p e r a t u r e s . Materials
Pounds/100 G a l l o n s
PVA Latex-homopolymer (NVM=55%) Chlorinated biphenyl Dipropylene g l y c o l dibenzoate Ammonium a c e t a t e C o l o r i n water d i s p e r s i o n Water Toluene
780 13 8 7 3 65 60 936 Structures Publishing Company
Figure 1.
Reemulsified PVA latex bonding agent
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
7.
MASLOW
Latex Emulsions with Concrete
91
T h i s f o r m u l a t i o n has a t o t a l s o l i d s c o n t e n t o f 4 9 % and i s a p p l i c a b l e ( i n i t s v i s c o s i t y ) b y s p r a y . O f c o u r s e , i t can a l s o be a p p l i e d by b r u s h and r o l l e r . T a b l e 4 p r e s e n t s some t y p i c a l p r o p e r t i e s o f t h i s bonding agent as t e s t e d i n accordance w i t h M i l i t a r y S p e c i f i c a t i o n MIL-B-19235 (Docks) Bonding Compound, Concrete. T a b l e 4,
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
Tensile
P r o p e r t i e s o f PVA L a t e x Bonding Agent
Strength
Specimens P.S.I. Neat cement 600 Ottawa sand mortar, 1:3 420 P e r l i t e p l a s t e r , 1:3 100 Accoustical plaster 160 Base c o a t p l a s t e r , 1:3 270 Finish plaster 65 Shear S t r e n g t h Cement m o r t a r
Failures F a i l e d i n bond F a i l e d i n bond Failed in plaster Failed in plaster Failed in plaster
398 Structures Publishing Company
PART D - ACRYLIC LATICES The a c r y l i c e s t e r r e s i n s are polymers and c o p o l y mers o f the e s t e r s o f a c r y l i c and m e t h a c r y l i c a c i d s . These r e s i n o u s m a t e r i a l s range i n p h y s i c a l p r o p e r t i e s from s o f t e l a s t o m e r s h a v i n g more than 1000% e l o n g a t i o n t o h a r d p l a s t i c s w h i c h can be sawed and machined. These h a r d p l a s t i c s are commonly known under the t r a d e names P l e x i g l a s s and L u c i t e . They have e x c e l l e n t i n i t i a l c o l o r , a c t u a l l y water-white, t h e y are s t a b l e t o l i g h t , do not d i s c o l o r o r degrade on a g i n g o r o u t d o o r expos u r e . These r e s i n s are a v a i l a b l e f o r many purposes as s o l u t i o n s i n o r g a n i c s o l v e n t s and as o i l - i n - w a t e r emulsions . A wide range o f p h y s i c a l and c h e m i c a l p r o p e r t i e s may be o b t a i n e d by changing the s i d e c h a i n s on the monomer i n making homopolymers, and a l s o b y m i x i n g the v a r i o u s monomers b e f o r e p o l y m e r i z a t i o n t o form c o p o l y mers. There are many v a r i a t i o n s o f combinations poss i b l e as w e l l as many v a r i a t i o n s i n m o l e c u l a r w e i g h t . The a c r y l i c e s t e r s may be p o l y m e r i z e d b y one o f the f o u r methods d e s c r i b e d i n p r e v i o u s s e c t i o n s ; namely,
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
92
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N DC A U L K I N G
C O M P O U N D S
bulk, s o l u t i o n , suspension, o r emulsion. The b u l k method i s g e n e r a l l y u s e d t o produce the h a r d p o l y m e t h y l m e t h a c r y l a t e , the s o l u t i o n method f o r the polymers which are u l t i m a t e l y d i s s o l v e d i n s o l v e n t s , and t h e e m u l s i o n method f o r those polymers w h i c h are u s e d as latices. I n the e m u l s i f i c a t i o n p r o c e s s , a w a t e r s o l u b l e p e r o x i d e , such as hydrogen p e r o x i d e o r ammonium p e r s u l f a t e , i s used as the c a t a l y s t . The e m u l s i f y i n g agent may be a n i o n i c , c a t i o n i c o r n o n - i o n i c . E a c h w i l l have a d i f f e r e n t e f f e c t on the type o f l a t e x p r o d u c e d . T y p i c a l p h y s i c a l p r o p e r t i e s o f an a c r y l i c l a t e x e m u l s i o n s u i t a b l e f o r use w i t h cement are g i v e n i n T a b l e 5. T a b l e 5.
Properties
Percent s o l i d s pH Specific gravity Pounds p e r g a l l o n ^
J
o f A c r y l i c Latex 45% 9.4-9.9 1.054 8.8 M
4
_
Structures Publishing Company
The u s e s made o f t h i s e m u l s i o n as an admixture i n c e m e n t i t i o u s compounds are s i m i l a r t o t h o s e made w i t h SBR and PVA l a t i c e s . Among t h e s e , o f c o u r s e , we c a n i n c l u d e p a t c h i n g and r e s u r f a c i n g work, f l o o r u n d e r l a y ments, t e r r a z z o t i l e f l o o r i n g , s p r a y c o a t and f i l l c o a t a p p l i c a t i o n s , cement p l a s t e r and s t u c c o , t i l e g r o u t s , c r a c k f i l l e r s and p r e c a s t p a n e l s u r f a c i n g . The a d d i t i o n r a t e s o f a c r y l i c l a t i c e s are comparable t o t h o s e f o r the SBR and PVA l a t i c e s , r a n g i n g from 0.10 t o 0.20 l a t e x s o l i d s : cement. There are i n d i c a t i o n s t h a t the a c r y l i c r e s i n s may be added a t a r a t i o as low as 0.05. The u s u a l i n d i c a t i o n s about the v a r i a t i o n s i n s t r e n g t h c h a r a c t e r i s t i c s which depend on a d d i t i o n r a t e s a p p l y t o the a c r y l i c r e s i n s as w e l l . The same i s a l s o t r u e f o r water/cement r a t i o s and method o f c u r ing. The g e n e r a l l y recommended a d d i t i o n r a t e s f a l l i n the range o f 0.10 t o 0.20. Above t h i s l e v e l , some p r o p e r t i e s a c t u a l l y b e g i n t o drop. Below t h i s l e v e l , many p r o p e r t i e s are s t i l l more t h a n a d e q u a t e l y h i g h e r than f o r u n m o d i f i e d m o r t a r s . Many commercial f o r m u l a t i o n s are based on an a d d i t i o n r a t e a t t h i s l e v e l f o r p r i c e reasons.
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
7.
M A S L O W
Latex Emulsions with Concrete
93
Among t h e v a r i o u s a p p l i c a t i o n s which have n o t been t r e a t e d i n g r e a t e r d e t a i l are the spray coat a p p l i c a t i o n s and t h e underlayment a p p l i c a t i o n s . The s p r a y c o a t a p p l i c a t i o n s a r e based on combinations o f cement and o t h e r f i l l e r s , t o g e t h e r w i t h a l a t e x b i n d e r . These a p p l i c a t i o n s may be a p p l i e d by b r u s h , r o l l e r and t r o w e l , as w e l l as by s p r a y . They a r e o f t e n promoted as a s u b s t i t u t e f o r "rubbing" concrete. F l o o r underlayments a r e u t i l i z e d t o produce a l e v e l and smooth s u r f a c e b e f o r e p l a c i n g v i n y l t i l e , a s p h a l t t i l e , rubber t i l e , o r o t h e r r e s i l i e n t f l o o r i n g materials. A c r y l i c l a t e x m o d i f i e d underlayments a r e i d e a l l y s u i t a b l e f o r l e v e l i n g f l o o r s p r i o r t o the i n s t a l l a t i o n o f these s u r f a c i n g m a t e r i a l s , s i n c e these underlayments p r o v i d e an e x c e l l e n t s u b s t r a t e f o r bond i n g purposes, as w e l l as o f f e r i n g good c h e m i c a l r e s i s tance t o t i l e a d h e s i v e s and s o l v e n t s w h i c h some o f them c o n t a i n . PART Ε - DRY ACRYLIC ADMIXTURES There have been a number o f methods u t i l i z e d f o r i m p r o v i n g the p h y s i c a l p r o p e r t i e s and w o r k i n g c h a r a c t e r i s t i c s o f cement m o r t a r s by means o f d r y powder ad d i t i o n s t o t h e cement:sand m i x t u r e s . One o f t h e s e d r y powder admixtures i s a s y n t h e t i c polymer d e r i v e d from cellulose. There a r e s e v e r a l v a r i a t i o n s o f t h i s p o l y mer, two o f which have been w i d e l y used f o r t h i s p u r pose, namely, m e t h y l c e l l u l o s e and h y d r o x y e t h y l c e l l u lose. Both o f t h e s e a r e a v a i l a b l e i n d i f f e r e n t v i s c o s i t y ranges, when d i s s o l v e d i n water, and b o t h a r e s o l u b l e i n w a t e r . When t h e y a r e b l e n d e d i n t o a c e m e n t i t i o u s mix a t a d d i t i o n r a t e s o f 3% t o 5% on the cement c o n t e n t , t h e r e s u l t a n t p r o d u c t a c h i e v e s improved cha r a c t e r i s t i c s when mixed w i t h w a t e r . The p l a s t i c mor t a r i s more r e a d i l y workable and r e t a i n s w a t e r more completely. R e t e n t i o n o f w a t e r i s important, e s p e c i a l l y i n m o r t a r s which are used t o bond porous b r i c k s or o t h e r b u i l d i n g m a t e r i a l s . I n a d d i t i o n , g r e a t e r b o n d i n g c h a r a c t e r i s t i c s a r e o b t a i n e d . The use o f t h e s e c e l l u l o s i c m a t e r i a l s i n v a r i o u s a p p l i c a t i o n s has been c o v e r e d by many p a t e n t s i n the U n i t e d S t a t e s and i n Europe. Among t h e uses f o r these admixtures a r e the compounding o f g r o u t i n g systems, cement base p a i n t s ,
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
94
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N DC A U L K I N G
C O M P O U N D S
s t u c c o s , p a t c h i n g and r e p a i r f o r m u l a t i o n s , c e l l u l a r c o n c r e t e b l o c k s , sound i n s u l a t i n g m a t e r i a l s , r e f r a c t o r i e s , and even d e n t a l p r e p a r a t i o n s . One o f the major d i s a d v a n t a g e s o f t h e s e admixtures i s t h a t t h e y are wat e r r e s o l u b l e and t h e y may l e a c h o u t o f a c u r e d cement mortar. O t h e r attempts have been made t o u t i l i z e d r y powder p o l y v i n y l a l c o h o l and p o l y v i n y l a c e t a t e as admixtures f o r the same p u r p o s e . The p o l y v i n y l a l c o h o l i s r e a d i l y s o l u b l e i n water, and i t r e q u i r e s s i g n i f i c a n t amounts i n a d d i t i o n t o a c h i e v e any d i s t i n c t advantages. S i g n i f i c a n t amounts o f any v i s c o s i t y range o f p o l y v i n y l a l c o h o l c o n t r i b u t e t o an u n d e s i r a b l e i n c r e a s e i n v i s c o s i t y i n the cement m o r t a r . P o l y v i n y l a c e t a t e i n powder form has been used f o r t h i s purpose w i t h c o n s e quent improvements i n w o r k i n g c h a r a c t e r i s t i c s and phys i c a l properties. However, d r y powder p o l y v i n y l a c e t a t e does not form a t r u e polymer e m u l s i o n when d i s s o l v e d i n water. I t , t h e r e f o r e , may a l s o be d i s s o l v e d out o f a cement m o r t a r . The a c r y l i c r e s i n s may be s o p o l y m e r i z e d t h a t a r e s u l t a n t p r o d u c t may be o b t a i n e d which can be d i s p e r s e d i n w a t e r t o form a t r u e polymer e m u l s i o n . Such a p r o d u c t i s now a v a i l a b l e as a cement m o r t a r m o d i f i e r . By dry b l e n d i n g t h i s r e s i n w i t h appropriate cementitious m a t e r i a l s , i t i s p o s s i b l e t o f o r m u l a t e a one-package a c r y l i c m o d i f i e d cement m o r t a r . A d d i t i o n o f w a t e r t o the dry b l e n d w i l l produce a m o r t a r w i t h s u p e r i o r adh e s i o n and p h y s i c a l s t r e n g t h p r o p e r t i e s . Materials
pounds
S i l i c a sand No. 80 Mesh d r y P o r t l a n d cement, w h i t e A c r y l i c powder, d r y Sodium c i t r a t e Sodium c a r b o n a t e Dry w e t t i n g agent Hydroxyethyl c e l l u l o s e Water
250 100 10 0.5 1.0 2.0 0.5 70 434.0 Structures Publishing Company
Figure 2.
Dry acrylic cement mortar
Water i s added a t t h e time o f use on the j o b s i t e .
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
7.
M A S L O W
Latex Emulsions with Concrete
95
In a d d i t i o n t o t h e use of d r y a c r y l i c powders i n cement m o r t a r s , o t h e r t y p i c a l uses f o r t h e s e m o d i f i e r s are i n cement t o p p i n g s , c e r a m i c t i l e a d h e s i v e s , c e r a mic t i l e g r o u t s , w h i t e masonry p a i n t s and cement b l o c k fillers. I t i s o b v i o u s t h a t t h e s e compounds are more c o n v e n i e n t t o use w i t h the s i m p l e a d d i t i o n o f water, t h a n those compounds r e q u i r i n g the a d d i t i o n o f a l a t e x emulsion. As improvements are made i n t h e s e d r y powd e r s , t h e r e w i l l be more emphasis on t h i s type o f compound. At the p r e s e n t t i m e , the d r y powder a c r y l i c s are more c o s t l y than the l a t e x e m u l s i o n s on a d r y s o lids basis. PART F - EPOXY LATICES There has always been a d e s i r e f o r w a t e r - s o l u b l e epoxy r e s i n systems. A l t h o u g h epoxy r e s i n s were i n t r o duced a good many y e a r s ago, a l l attempts a t w a t e r s y s tems have met w i t h g e n e r a l f a i l u r e . The i n v e s t i g a t i o n s i n t o epoxy systems as e m u l s i o n s f o r use w i t h c o n c r e t e have been r o u g h l y d i v i d e d i n t o t h r e e g e n e r a l c l a s s i f i cations. The f i r s t attempts were i n the e m u l s i f i c a t i o n o f the epoxy r e s i n s t h e m s e l v e s . The problems and f a i l u r e s i n t h i s approach may be g e n e r a l i z e d as f o l l o w s : (a) The p o l a r i t y o f the epoxy r e s i n makes the c h o i c e o f s u r f a c t a n t o r e m u l s i f y i n g agent v e r y l i m i t e d and d i f f i c u l t ; (b) Poor c o m p a t i b i l i t y o f the epoxy r e s i n w i t h protective c o l l o i d ; (c) A l l s u r f a c t a n t s , e m u l s i f y i n g agents and comp a t i b l e p r o t e c t i v e c o l l o i d s promote h y d r o l y s i s o f the epoxy groups i n w a t e r systems; (d) Poor e m u l s i o n s t a b i l i t y and p o o r f r e e z e - t h a w s t a b i l i t y at b e s t ; (e) Phase i n v e r s i o n w i t h a l l c u r i n g a g e n t s ; (f) H i g h l e v e l s o f r e s i n r e q u i r e d . The second approach t o w a t e r systems has been the development and i n v e s t i g a t i o n o f w a t e r - s o l u b l e epoxy systems. The f a i l u r e i n t h e s e attempts may be summari z e d as f o l l o w s : (a)
A l l known w a t e r - s o l u b l e epoxy r e s i n s are
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
ali-
96
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N D
C A U L K I N G
C O M P O U N D S
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
p h a t i c p o l y - e p o x i d e s w h i c h e x h i b i t l i t t l e o r none o f the s t r e n g t h p r o p e r t i e s n o r m a l l y e x p e c t e d o f the epoxy resins; (b) A l l w a t e r - s o l u b l e epoxy r e s i n s h y d r o l y z e i n water; (c) R e a c t i o n , i f at a l l , w i t h c u r i n g agents, i s slow and s t i l l e x h i b i t s the s h o r t c o m i n g s o f low s t r e n g t h characte r i s t i c s . The t h i r d approach has been the d i r e c t a d d i t i o n o f epoxy r e s i n and c u r i n g agent t o cement. T h i s can be a c c o m p l i s h e d , b u t g e n e r a l l y r e q u i r e s the a d d i t i o n o f 20% t o 50% o f the r e s i n : c u r i n g agent c o m b i n a t i o n t o o b t a i n the d e s i r e d p r o p e r t i e s . T h i s approach i s a compromise, r e s u l t i n g i n a system which i s e c o n o m i c a l l y impractical. Because o f the g e n e r a l l y bad t o poor r e s u l t s o f p a s t attempts, i t became apparent t h a t an e n t i r e l y new and d i f f e r e n t approach t o the w a t e r d i l u t a b l e epoxy system had t o be f o l l o w e d , whereby the r e s i n e m u l s i o n c o u l d be added t o cement i n s m a l l q u a n t i t i e s and s t i l l a f f e c t the d e s i r e d i n c r e a s e i n p r o p e r t i e s . The p r o p e r t i e s d e s i r e d would be as f o l l o w s : (a) E m u l s i o n s t a b i l i t y and w a t e r d i l u t a b i l i t y from the time o f m i x i n g the r e s i n and c u r i n g agent u n t i l gellation; (b) A s e t time e q u i v a l e n t , o r n e a r l y e q u i v a l e n t , t o a cement system i t s e l f ; (c) H i g h s t r e n g t h p r o p e r t i e s ; (d) Good f r e e z e - t h a w s t a b i l i t y ; (e) R e t e n t i o n o f s t r e n g t h on r e w e t t i n g ; (f) T r o w e l i n g and f i n i s h i n g p r o p e r t i e s e q u i v a l e n t , o r n e a r l y e q u i v a l e n t , t o an u n m o d i f i e d m o r t a r system; (g) As low a r e s i n c o n t e n t as p o s s i b l e f o r economic r e a s o n s . I t becomes o b v i o u s t h a t many o f t h e s e p r o p e r t i e s c o u l d be o b t a i n e d by u s i n g a s t r a i g h t epoxy r e s i n , t y p i c a l l y , one o f the l i q u i d t y p e s , as one o f the components which would be e m u l s i f i e d a t the time o f mixing w i t h the c u r i n g agent. The c u r i n g agent, t h e r e f o r e , would have t o be an e m u l s i f y i n g agent, w e t t i n g agent and s u r f a c t a n t , as w e l l as a c u r i n g agent. Such
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
7.
M A S L O W
Latex Emulsions with Concrete
97
an agent i s now a v a i l a b l e c o m m e r c i a l l y f o r p r o d u c i n g epoxy e m u l s i o n s . These c u r i n g agents a r e p o l y m e r i c compounds w h i c h are w a t e r s o l u b l e , f o r m i n g e x c e l l e n t e m u l s i o n s w i t h epoxy r e s i n s . P o t l i f e may be v a r i e d , depending upon the c h o i c e o f c u r i n g a g e n t . P o t l i f e may a l s o be e x t e n d e d by t h e a d d i t i o n o f h i g h e r amounts o f w a t e r . The b a s i c p r i n c i p l e i n v o l v e s t h e p r e p a r a t i o n o f an epoxy e m u l s i o n j u s t p r i o r t o u s e . Previously, i n pree m u l s i f y i n g t h e epoxy r e s i n s and the c u r i n g a g e n t s , and p a c k a g i n g them s e p a r a t e l y , t h e e m u l s i o n s would b r e a k and s e p a r a t e i n t o phases, i n t h e package, o r upon m i x i n g . T h i s l a t e s t approach o f p r e p a r i n g t h e e m u l s i o n on job s i t e e l i m i n a t e s t h e s e problems. Upon p r e p a r i n g the e m u l s i o n s i n the f i e l d , and b l e n d i n g , t h e b l e n d i s a l r e a d y i n t h e p r o c e s s o f p o l y m e r i z a t i o n , and t h e r e i s no time f o r phase s e p a r a t i o n , e s p e c i a l l y , s i n c e t h e b l e n d i s added t o a c e m e n t i t i o u s c o m p o s i t i o n i n t h e same way t h a t a p r e v i o u s l y d e s c r i b e d l a t e x i s added. The u s e r i s aware t h a t t h e base m a t e r i a l i s 100% s o l ids. The amount o f w a t e r which i s added d e t e r m i n e s the s o l i d s content o f the emulsion. The u s e r knows e x a c t l y what t h e r e s i n : c e m e n t r a t i o i s . In p r e p a r i n g the e m u l s i o n i n t h e f i e l d , e q u a l p a r t s of a l i q u i d epoxy r e s i n h a v i n g an e p o x i d e e q u i v a l e n t o f 175-210 a r e mixed w i t h e q u a l p a r t s o f t h e e m u l s i f y ing c u r i n g agent. The m i x t u r e i s b l e n d e d and a l l o w e d t o sweat i n f o r 15 minutes f o r p o l y m e r i z a t i o n t o b e g i n . Water i s then added s l o w l y , m i x i n g c o n t i n u o u s l y , t o form t h e e m u l s i o n . The amount o f w a t e r added d e t e r mines whether i t i s a w a t e r - i n - o i l t y p e , o r an o i l - i n w a t e r t y p e . T h i s h a s a d e f i n i t e b e a r i n g on t h e r a t e o f polyme r i z a t i o n . When t h e epoxy r e s i n s a r e e m u l s i f i e d by t h i s method, and t h e e m u l s i o n i s added t o a c e m e n t i t i o u s mix, t h e r e i s an immediate s u r f a c e a c t i n g e f f e c t which g r e a t l y reduces t h e w a t e r r e q u i r e m e n t s o f cement. T h i s w a t e r - r e d u c i n g c h a r a c t e r i s t i c , o f a p p r o x i m a t e l y 15%, i s d e v e l o p e d w i t h low a d d i t i o n r a t e s o f t h e epoxy emuls i o n . The a d d i t i o n r a t e may be as low as 0.1 p a r t s o f e m u l s i o n s o l i d s p e r 100 p a r t s cement. The a d d i t i o n o f 2 p a r t s o f e m u l s i o n s o l i d s t o 100 p a r t s cement p r o d u ces s l i g h t l y lower w a t e r r e q u i r e m e n t s , b u t not below
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
98
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N D
C A U L K I N G
C O M P O U N D S
LATEX AND EPOXY ADHESIVES COMPARATIVE
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
A. Acrylic
Appearance
bill's Content
Milky White
45.0%
Primary Utt Bonding fresh concrete to old concrete. Concrete admiiture. Thin layer toppings.
B. PolyvinylAcetate
Milky White
55.0%
ReEmulsifiable
C. ButadieneStyrene
Bonding fresh concrete to old concrete. Concrete admixture. Thin layer toppings.
Milky White
48.0%
Bonding fresh concrete to old concrete. Concrete ad mixture. Thin layer toppings.
D. PolyvinylAcetate ReEmulsifiable
Milky White
Application Methods
Applicatiens
Brush, broom Underlayments spray, roller Stucco as adhesive. Grouting-mortar Terrazzo Home Kits Trowel as topping. Crack Fillers
Speciffcatitis MIL-B-19235
Cleaning Surface Preparation A. Remove oil, grease. Wet surface.
Brush, broom Underlayments spray, roller Stucco as adhesive. Grouting-mortar Terrazzo Trowel as Home Kits Crack Fillers topping.
Remove oil, grease.
Brush, broom Underlayments spray, roller Stucco as adhesive. Grouting-mortar Terrazzo Trowel as Home Kits topping. Crack Fillers
Remove oil, grease.
Bonding of plaster.
B.
Finishing Procedures Steel trowel, wood float. No excessive trowelling.
Steel trowel, wood float. No excessive trowelling.
Chemical las istance if Mortar ASTM-C-2S7-51T Acids—Fair Alkalis—Very Good Salts—Very Good Solvents—fair-Good
Acids—Fair Alkalis—Very Good Salts—Very Good Solvents—Fair-Good
Steel trowel Acids—Fair wood float. Alkalis—Very Good Salts—Very Good No excessive Solvents—Fair-Good trowelling.
MIX-Cement: Sand = 1:3 Latex Solids on Cement = 10-20% Water Cement Ratio = 0:45
Not used as an admixture.
I. Epoiies Cavering lata I. Epoxy — Polysulfk* a. Unfilled Β b. Filled
1:1 by volume Part A and PartB
a. 3040 min. b. 3040
a. 100 sq. ft. per I. as mortar sq. «. '/Γ thick, contain ing sand.
S
b. 25-38 sq. ft. P«r gal. II. Epoxy — Polyamide a. Unfilled Binder b. Filled
1:1 by volume Part A and Part Β
Light straw to amber
95 100%
a. 1-3 hours b. 1-3 hours
a. 100 sq. ft. per gal. as mortar 25 sq. ft. >/," thick, contain ing sand. b. 100-150 sq. ft. par ial.
Part A — Light straw IN. Epoxy Coal Tar & Unfiled
1:1 by volume Part A
Part Β — Black
100%
3040 min.
a. 30-50 sq. ft. pariai.
d con crete and other ma a. MMM-B-350A terials to hardened b. MMM-G-650A concrete. Setting dow New Jersey Turnpike els. Type lb, lib. Section 4.9.3 b. Filling cracks in con Standard Specifications crete to bond both 1965 sides of crack into an integral member. Type AASHO Specification la and lia. Designation M-200431 c. Bonding plastic con II. crete to hardened con Virginia Dept. of crete. Type lb and lib. Highways d. Preparation of epoxy mortars by adding sand. Types la, lia, III. e. Bonding skid-resistant materials to hardened concrete. Types lb, lib, III. f. Membrane between asphalt and concrete. Type III.
AASHO Specification Designation ^200431 III. AASHO Specification Designation M-200431 New Jen Section • Standard Specifications 1965 Ν. Y. State Dept. of Public Works Item #6006
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Excellent to acids, alkalis, solvents, salts with maximum properties. Also maximum resistance to hydro static water pressure.
7.
MASLOW
99
Latex Emulsions with Concrete
AND BONDING AGENTS CHART
(•empressm
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
Strength: 2" Cubas ASTM-ClOf-M 3200 psi4100 psi
3400 psi3600 psi
3300 psi4000 psi
Strength: 1" Thick Briauettas ASTM-CltO-59 580 psi615 psi
350 psi450 psi
450 psi580 psi
ASTkK 34M1T 950 psi1400 psi
1000 psi1250 psi
D. PolyvinylAcetate Emulsifiable
NOTE- These compositions do not contain latex, but are applied over the latex film previously applied as an adhesive.
StrtRfth ISTM-C-IM-S Neat cement — 250-300 psi
Strength ASTIW-
1.3 Ottowa sand mortar 350420 psi 1 3 Perlite plaster 150-200 psi Finish plaster 30% Gauging plaster 70% Lime plaster 120-150 psi 1:3 Cowbay sand mortar 200-290 psi
1250 psi1650 psi
ButadieneStyrene
Accoustical plaster 100-170 psi 1:3 Brown coat 100-150 psi Unmodified mortar. 3000 psi Wet cure
Unmodified mortar. 410 psi Wet cure
Unmodified mortar. 750 psi
Tensile Compressive Strength Strength Α$ΤΙΜΜ0β ASTM-O-MI a. Binder with sand 12,00015,000 psi a. 30003500 psi b. Unfilled 8,00010,000 psi a. Binder with sand 10,00013,000 psi.
b. 35004000 psi
Tensile EwngatNi ASTM-D-3*!
a. 2.5-15%
Compressive Double) Shear Strength MMM-S-650A
a. 900-1000 psi b. 700-1000 psi
a. 6-25%
a. 400-500 psi b 500-650 psi
b. Unfilled 6,000-8,000 psi
Binder with sand 40005000 psi Unfilled 30004000 psi
VIBRATION TESTS — No failure DETERGENTS & ACIDS - No failure, slight stain
PolyvinylAcetate Re-Emulsifiable
a. 35-40%
a. 300-400 psi
Whin Nat Ta Usa May be used as a plas ter bond within 4540 :nin. Not for extreme chemical exposure. Do not use with airentrainers. Not for i-jnditions of high hy drostatic pressure.
Indoor and outdoor exposures. On con crete, steel, wood. Guniting. Thin sec tion topping can be used with accelerators, re tarded, water re ducing agents.
May be used as a plas ter bond within 45-60 min. Not for extreme chemical exposure. Do not use with airentrainers. Not for conditions of high hy drostatic pressure.
Indoor and outdoor May be used as a plas exposures. On con ter bond within 45-60 crete, steel, wood. min. Do not use with Guniting. Thin sec accelerators Not for tion topping. extreme chemical. Not for constant water immersion. Do not use with airentrainers. Indoors—ceilings primarily.
b. Cost is highest. c. For maximum chemical and physical properties. II. a. Generally proprietary compounds. b. Use where longer life is required and cost is factor.
a. On surfaces treated with rubber or resin curing membranes. b. On dirty surfaces. c. On weak concrete. d. On bituminous surfaces. a. On surfaces treated with rubber or resin curing membranes. b. On dirty surfaces. c. On weak concrete.
d. a. III. a. For lower cost applications of non-skid b. membranes. b. On bituminous concrete.
Limited use as a con crete bonding agent. Do not use as an ad mixture. Do not use under wet or humid conditions. Do not use at temperatures below 50 °F.
Where Net Te Use
Where To Use 1. a. Generally, on government agency projects.
c. For maximum chemical and physical properties.
a. 400800 psi
Whin Ta Usa Indoor and outdoor exposures. On con crete, steel, wood. Guniting. Thin sec tion topping.
On bituminous surfaces. Do not use for bonding new wet con crete to old. Oo not use where black color will be undesirable.
c. For resistance to grease, oil, gasoline and traffic wear.
Structures Publishing Company
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by COLUMBIA UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: November 27, 1979 | doi: 10.1021/bk-1979-0113.ch007
100
P L A S T I C
M O R T A R S ,
S E A L A N T S ,
A N D
C A U L K I N G
C O M P O U N D S
the s t o i c h e m e t r i c amounts o f w a t e r r e q u i r e d t o h y d r o l y z e the cement. T h i s low a d d i t i o n r a t e i s i n c o n t r a s t t o the recommended a d d i t i o n r a t e f o r o t h e r l a t e x emuls i o n s o f 10% t o 20%· The a d d i t i o n o f s m a l l amounts o f epoxy e m u l s i o n t o a c e m e n t i t i o u s m i x t u r e improves t r o w e l a b i l i t y o f the r e s u l t a n t p r o d u c t tremendously, i n c o n t r a s t t o a t y p i c a l l a t e x admixture m o r t a r where the h i g h a d d i t i o n r a t e c r e a t e s d i f f i c u l t y i n t r o w e l i n g , because the l a t e x s o l i d s are b r o u g h t t o the s u r f a c e , e x e r t i n g a d r a g on the t r o w e l . The i n i t i a l s e t time o f an epoxy admixtured m o r t a r i s c o n s i d e r a b l y r e d u c e d , and t i e f i n a l s e t time i s a l s o a c c e l e r a t e d . T h i s r a p i d s e t t i n g o f an epoxy e m u l s i o n admixtured cement m o r t a r may be a t t r i b u t e d t o the p o l y m e r i z a t i o n o f the epoxy r e s i n , as w e l l as t o the a c c e l e r a t i o n i n the r a t e o f h y d r a t i o n o f the cement. The p h y s i c a l p r o p e r t i e s o f t h e s e m o r t a r s show phenomenally h i g h f l e x u r a l and t e n s i l e s t r e n g t h s , w i t h l i t t l e o r no l o s s i n compressive s t r e n g t h . For a l l p r a c t i c a l p u r p o s e s , a l e v e l o f 2% as an a d d i t i o n r a t e , produces r e s u l t s which a r e o u t s t a n d i n g , w i t h o u t e x c e s sive cost. Cured m o r t a r specimens have been exposed t o c o n t i n u o u s water immersion w i t h no l o s s i n p r o p e r ties . A d d i t i o n a l p o s s i b i l i t i e s f o r u s i n g t h e s e epoxy emuls i o n s are a p p a r e n t . A water-based epoxy system c o u l d c e r t a i n l y be used as a c u r i n g compound f o r f r e s h l y p l a c e d c o n c r e t e . There would be no i n c o m p a t i b i l i t y because b o t h are i n a w a t e r phase. A n o t h e r p o s s i b i l i t y i s t o use the epoxy e m u l s i o n s systems as b o n d i n g agents f o r p l a c i n g f r e s h c o n c r e t e onto hardened concrète» Even though most epoxy b o n d i n g agents a r e 100% s o l i d s , t h e y do p r e s e n t a problem o f f a s t s e t t i n g , so t h a t f r e s h c o n c r e t e must be p l a c e d q u i c k l y w h i l e t h e b o n d i n g agent i s s t i l l t a c k y . In u s i n g an epoxy e m u l s i o n system, a f i l m c o u l d be a p p l i e d f a r i n advance o f p l a c i n g conc r e t e , the p r e s e n c e o f w a t e r would p r o l o n g the s e t t i n g time, and i f c o n c r e t e s h o u l d be p l a c e d t o o soon, t h e r e would be no problem o f e n t r a p p i n g s o l v e n t , such as might be p r e s e n t i n o t h e r b o n d i n g a g e n t s . A n o t h e r advantage o f t h e epoxy e m u l s i o n s i s t h a t they do not p r e s e n t f i r e o r h e a l t h h a z a r d s . W i t h s t r e s s b e i n g l a i d by governmental a g e n c i e s on problems o f a i r p o l l u t i o n , wat e r based epoxy systems p r o v i d e an a l t e r n a t i v e answer. R E C E I V E D
April 2,
1979.
In Plastic Mortars, Sealants, and Caulking Compounds; Seymour, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.