4 Lightning
a n d t h e H a z a r d s It P r o d u c e s f o r E x p l o s i v e
Facilities
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
RODNEY B. BENT Atlantic Scientific Corp., P.O. Box 3201, Indialantic, FL 32903
Lightning is a natural phenomenon which poses a potential hazard to people, structures, and equipment unless adequate protection is provided. The type of protection required is r e lated to the nature and function of the facility. The decision making process involves a number of interrelated factors which should be considered when determining the need for protection. A knowledge of the basic lightning process can lead to a much better understanding of these lightning protection techniques and the resulting level of protection. The design of satisfactory lightning protection systems can, therefore, only be achieved with a knowledge of the mechanism and characteristics of a lightning strike and the related problems that a steep voltage wavefront has on inadequate bonding and grounding. Lightning induced line surges can also cause major damage to electrical or electronic systems. A considerable proportion of the damage caused by such surges can be eliminated with careful planning of protection equipment. These line surges can also cause extra bits in computer software, which may lead to false decision making by the computer. The
Lightning P r o c e s s in a Cloud-to-Ground A
Discharge
c l o u d - t o - g r o u n d l i g h t n i n g d i s c h a r g e i s m a d e u p of o n e o r
m o r e intermittent partial discharges.
T h e total d i s c h a r g e ,
w h o s e t i m e d u r a t i o n i s o f t h e o r d e r of 0. 5 s e c o n d s , flash; each component discharge,
m e a s u r e d i n t e n t h s of m i l l i s e c o n d s , a r e u s u a l l y three or four
is called a stroke.
strokes per flash,
s e p a r a t e d b y t e n s of m i l l i s e c o n d s .
is called a
whose luminous phase is There
the s t r o k e s b e i n g
Often lightning as
observed
0-8412-0481-0/79/47-096-079$12.25/0 ©
1979 A m e r i c a n C h e m i c a l Society
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
80 b y the e y e a p p e a r s
to f l i c k e r .
In t h e s e c a s e s t h e e y e
t i n g u i s h e s the i n d i v i d u a l s t r o k e s lightning stroke
dis-
which make up a flash.
Each
begins with a weakly luminous p r e d i s c h a r g e ,
the l e a d e r p r o c e s s ,
which propagates
f r o m c l o u d - t o - g r o u n d and
w h i c h is f o l l o w e d i m m e d i a t e l y by a v e r y l u m i n o u s r e t u r n which propagates
stroke
from ground-to-cloud.
It h a s b e e n f o u n d t h a t t h e e l e c t r o s t a t i c f i e l d t a k e s a b o u t 7 seconds
to r e c o v e r
to i t s p r e d i s c h a r g e v a l u e a f t e r t h e
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
of a l i g h t n i n g f l a s h at a d i s t a n c e
beyond 5 k m ,
occurrence
but w h e n the f l a s h
i s v e r y n e a r , t h e r e c o v e r y t i m e m a y b e d i f f e r e n t d u e t o the
pre-
s e n c e of s p a c e
field
takes
place
charge.
In b o t h c a s e s ,
regeneration
of the
exponentially.
Stepped L e a d e r .
The usual cloud-go-ground discharge
bably begins as a l o c a l d i s c h a r g e the c l o u d b a s e a n d the N - c h a r g e discharge frees
electrons
zed by attachment
pro-
region in
r e g i o n a b o v e it ( F i g u r e
1).
This
i n the N - r e g i o n p r e v i o u s l y i m m o b i l i -
to w a t e r
o v e r r u n the p - r e g i o n ,
b e t w e e n the p - c h a r g e
or ice p a r t i c l e s .
n e u t r a l i z i n g its
The free
electrons
s m a l l positive charge,
then continue their t r i p toward g r o u n d , w h i c h takes
about
msec.
to e a r t h
T h e v e h i c l e f o r m o v i n g the n e g a t i v e
charge
and
20 is
the s t e p p e d l e a d e r w h i c h m o v e s f r o m c l o u d - t o - g r o u n d i n r a p i d l u m i n o u s s t e p s a b o u t 50 m l o n g , leader
step o c c u r s
in less
as
shown in F i g u r e
than a m i c r o s e c o n d ,
1.
Each
a n d the t i m e
be-
t w e e n s t e p s i s a b o u t 50 Jj s e c . Return Stroke.
W h e n the s t e p p e d l e a d e r
relatively large negative tive c h a r g e
is near
surface
attract each other,
j o i n the l a r g e n e g a t i v e going d i s c h a r g e s .
(Figure
2).
Since
negative
charges
ground,
causing large propagates
100 M s e c .
W h e n the l e a d e r
to
determines
is attached
currents
to g r o u n d ,
to f l o w at g r o u n d a n d c a u s i n g
g r o u n d to b e c o m e v e r y l u m i n o u s .
The channel
c o n t i n u o u s l y u p the c h a n n e l a n d out
at a v e l o c i t y s o m e w h e r e b e t w e e n
the s p e e d of l i g h t . ctrons
attempts
and i n doing so initiates u p w a r d -
a t t h e b o t t o m o f t h e c h a n n e l m o v e v i o l e n t l y to
channel branches about
pro-
O n e of t h e s e u p w a r d - g o i n g d i s c h a r g e s
the l i g h t n i n g s t r i k e p o i n t .
the c h a n n e l n e a r
its
of p o s i -
opposite
the l a r g e p o s i t i v e c h a r g e
charge,
c o n t a c t s the d o w n w a r d - m o v i n g l e a d e r a n d t h e r e b y
luminosity
ground,
induces large amounts
o n the e a r t h b e n e a t h it a n d e s p e c i a l l y o n o b j e c t s
j e c t i n g a b o v e the e a r t h ' s charges
charge
1/2
T h e t r i p between ground and cloud
W h e n the l e a d e r
initially touches
f l o w to g r o u n d f r o m t h e c h a n n e l b a s e
and as
s t r o k e m o v e s u p w a r d , l a r g e n u m b e r s of e l e c t r o n s
the
and
1/10
takes
ground, the
f l o w at
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
ele-
return
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
4.
BENT
Lightning
and the Hazards
• • 7 / • • / • / 7 • • Figure 1.
Produces
81
/ s * s ss S > S ' * > y ^
V*">
Stepped leader initiation, (a) Cloud charge prior to p-N discharge, (b) stepped leader moving downward in 50-m steps.
*s s S ottom) normalized waveforms of the return stroke magnetic field for individual storms. ( ) Average of all storms, ( ) extreme average storm values.
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
4.
BENT
Lightning
and the Hazards
It
Produces
87
gap s p a c i n g i n m e t e r s
Figure 6.
Switching impulse breakdown voltage for H/D
i 0
I 20
1 40
I 60
: 80
i 100
i 120
= 1, which is average
I 140
— I 160
current, kA Figure 7.
Variation of striking distance with current amplitude
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
88 m e t e r s above ground.
These results,
therefore,
provide
q u a n t i t a t i v e e v i d e n c e a g a i n s t the b e l i e f i n l i g h t n i n g
concentration
areas. The
L i g h t n i n g R o d a n d Its The
Lightning Rod.
Conductors It i s a c o m m o n m i s c o n c e p t i o n t h a t
l i g h t n i n g r o d s d i s c h a r g e c l o u d s a n d thus p r e v e n t l i g h t n i n g .
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
rod only serves
as a m e a n s
g r o u n d b y d i v e r t i n g the l i g h t n i n g w h e n i t a p p r o a c h e s d i s t a n c e d i s c u s s e d i n the p r e v i o u s s e c t i o n . years
the
striking
In t h e t w o h u n d r e d
since B e n j a m i n F r a n k l i n investigated lightning,
manufacturers
many
h a v e t r i e d t o i n f l u e n c e t h e p u b l i c i n the
dissi-
p a t i o n p r i n c i p l e of l i g h t n i n g p r o t e c t i o n o r e l i m i n a t i o n . technique m o s t
The
to r o u t e t h e l i g h t n i n g h a r m l e s s l y to
c e r t a i n l y d o e s not w o r k a n d the
p h y s i c i s t s ' thoughts on this subject a r e f a s h i o n b y G o l d e i n the f o l l o w i n g
This
lightning
discussed in masterly
statement:
"It i s a m a n i f e s t a t i o n o f h u m a n w e a k n e s s
that a
pre-
j u d i c e o n c e a c q u i r e d t e n d s to b e r e t a i n e d e v e n i n t h e f a c e of o v e r w h e l m i n g f a c t u a l e v i d e n c e c o n t r a d i c t i n g the b a s i s o n w h i c h i t w a s f o u n d e d .
In t h e r e a l m o f
s c i e n c e a p r e j u d i c e m a y be t e r m e d a m i s c o n c e p t i o n . Such a m i s c o n c e p t i o n w h i c h has p e r s i s t e d for over hundred years
l i e f that a l i g h t n i n g c o n d u c t o r h a s the p u r p o s e ,
the a b i l i t y ,
There are
charge building
struck". several manufacturers
or lightning d i s s i p a t i o n s y s t e m s . belief,
be-
or indeed
of d i s s i p a t i n g s i l e n t l y the e l e c t r i c
i n a t h u n d e r c l o u d thus p r e v e n t i n g the " p r o t e c t e d " being
two
a n d w h i c h i s s t i l l w i d e s p r e a d i s the
however,
of e i t h e r r a d i o a c t i v e
lightning
The predominant scientific
i s that n e i t h e r of t h e s e s y s t e m s
are
any bene-
f i t o v e r the c o n v e n t i o n a l l i g h t n i n g p r o t e c t i o n s y s t e m .
Extensive
studies have been p e r f o r m e d r e c e n t l y on d i s s i p a t i o n a r r a y s which only serve
to e n h a n c e what s c i e n t i s t s
F r a n k l i n o v e r 200 y e a r s arrays
do no m o r e
p r o b a b l y do l e s s .
ago have
d a t i n g b a c k to
said; namely,
that t h e s e
than a c o n v e n t i o n a l lightning r o d and i n d e e d T h e s e s t u d i e s h a v e e x a m i n e d the h i s t o r i c a l ,
t h e o r e t i c a l a n d e x p e r i m e n t a l a s p e c t s of the a r r a y s i n v e s t i g a t e d the a r r a y s The arrays
are
and have
b e l i e v e d b y m a n y n o n - s c i e n t i s t s to g i v e o f f
significant corona discharge under thundercloud conditions that the e l e c t r i c a l c h a r a c t e r i s t i c s changed.
of the s t o r m a r e
because
this s o - c a l l e d e x c e s s i v e
so
drastically
T h e c l a i m s i n d i c a t e that a l a r g e a r e a a r o u n d the
is protected
also
o n s i t e at s e v e r a l i n s t a l l a t i o n s .
ionization
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
array
either
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
4.
BENT
Lightning
and
the
Hazards
It
Produces
89
r e a c h e s the c l o u d and l o w e r s i t p o t e n t i a l below the d i s c h a r g e l e v e l or p r o v i d e s a p r o t e c t i v e i o n c l o u d o v e r the p r o t e c t e d a r e a . T h e s e c l a i m s cannot be so as s u c h a p r o t e c t i v e c l o u d would have to c o n t a i n enough c h a r g e to m a k e i t m o r e d a n g e r o u s to the ground than the t h u n d e r c l o u d i t s e l f . Secondly, c o r o n a ions d i s s i pated f r o m an a r r a y would r e c o m b i n e i n n o r m a l a i r when o n l y a few h u n d r e d feet above the ground, and t h e r e would a l s o be l e s s ions f r o m an a r r a y than f r o m a single c o n v e n t i o n a l r o d or even a few t r e e s . A l l f a c t o r s r e l a t e d to these a r r a y s i n d i c a t e that they a r e not as good a l i g h t n i n g p r o t e c t o r as a c o n v e n t i o n a l s i n g l e c o n d u c t o r . A U.S. N a v y r e p o r t (4) and F A A r e p o r t (5) d i s c u s s both s i d e s of the topic. In o r d e r to e x a m i n e the c l a i m s r e l a t e d to r a d i o a c t i v e l i g h t n i n g r o d s , i t i s n e c e s s a r y to c o n s i d e r the p h y s i c a l p r o c e s s of a d i s c h a r g e to a c o n v e n t i o n a l r o d . When a l i g h t n i n g r o d i s i n the a r e a of a l i g h t n i n g l e a d e r the e l e c t r i c f i e l d a r o u n d i t s t i p would be e x t r e m e l y h i g h and the a i r i n this r e g i o n would be i n glow d i s c h a r g e w h i c h i n d i c a t e s m i l l i o n s of f r e e e l e c t r o n s m o v i n g at the point. A s the e l e c t r i c f i e l d i n c r e a s e s , this i o n i z a t i o n p r o c e s s or c o r o n a c u r r e n t a l s o i n c r e a s e s to a r c d i s c h a r g e and a s p a r k r e a c h e s out to m e e t the d o w n w a r d c o m i n g l e a d e r , f o r m i n g a path f o r e n o r m o u s c u r r e n t s to flow. Radioactive rods contain a c e r t a i n amount of radioactivity in the a r e a n e a r the t i p of the r o d , s u p p o s e d l y to enhance the i o n i z a t i o n and hence a t t r a c t the l i g h t n i n g l e a d e r o v e r l a r g e r d i s t a n c e s . T h e s e c l a i m s have been e x a m i n e d e x p e r i m e n t a l l y and t h e o r e t i c a l l y by m a n y s c i e n t i s t s with n e g a t i v e r e s u l t s . In effect, the a n a l y s i s shows the c o r o n a c u r r e n t f r o m the r a d i o a c t i v e r o d i s s l i g h t l y h i g h e r than that f r o m the c o n v e n t i o n a l r o d , as the m a n u f a c t u r e r c l a i m s , only when e l e c t r i c fields a r e low s u c h as u n d e r a f a i r sky. When a t h u n d e r h e a d a p p r o a c h e s and the e l e c t r i c f i e l d s b u i l d up, h o w e v e r , the r a d i o a c t i v e r o d gives off l e s s c o r o n a c u r r e n t than the c o n v e n t i o n a l r o d and i s , t h e r e f o r e , l e s s l i k e l y to be s t r u c k . T h i s c a n be e x p l a i n e d by the fact that the i o n i z a t i o n c l o u d p r o d u c e d a r o u n d the r o d by the r a d i o a c t i v e s o u r c e p r o v i d e s an i o n s h i e l d a r o u n d the t i p r e d u c i n g i t s e f f e c t i v e n e s s i n sending up the n e c e s s a r y u p w a r d l e a d e r s p a r k . T h e c o r o n a d i s c h a r g e f r o m a c o n v e n t i o n a l r o d was found to e x c e e d that f r o m a r a d i o a c t i v e r o d by an o r d e r of m a g n i t u d e u n d e r l i g h t n i n g - l i k e e l e c t r i c f i e l d s i n d i c a t i n g that r a d i o a c t i v e r o d s a r e m u c h l e s s c a p a b l e of i n f l u e n c i n g the path of a l i g h t n i n g d i s c h a r g e than a c o n v e n t i o n a l r o d . A n e x a m p l e of f a i l u r e of r a d i o a c t i v e l i g h t n i n g r o d s was i l l u s t r a t e d on the V a t i c a n ' s B e r n i
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
90
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
Colonade building in R o m e which is protected the 6th of M a r c h ,
1976,
the
Papal C r e s t was
by such r o d s .
a n d k n o c k e d o f f i n d i c a t i n g f a i l u r e of s u c h a p r o t e c t i v e T h e lightning r o d has lightning rods are common-sense
system.
the p u r p o s e of i n t e r c e p t i n g a
s t r i k e a n d d e f l e c t i n g i t f r o m the
structure.
to b e p u t o n a b u i l d i n g ,
On
struck by lightning
When
lightning
several
one s h o u l d d e v e l o p a
solution which will strike a reasonalble
balance
between protection and cost.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
It i s p o s s i b l e , w i t h c a r e ,
to u s e
existing gutter and r a i n
p i p e s to o b t a i n p r o t e c t i o n at r e d u c e d c o s t s , taken when i n c o r p o r a t i n g m o d e r n m e t a l i c p a r t of the s y s t e m .
Lightning can penetrate
1 m m thickness or m o r e , m i g h t be a c c e p t a b l e . tain codes
but c a r e m u s t metal
sheets
a n d p e r h a p s the c o s t of s u c h
to b e 0. 3 m m f o r c o p p e r ,
repair
a n d 0. 5 m m f o r o t h e r thickness.
Down Conductors.
When lightning strikes an air
some
terminal
b y the s h o r t e s t
possible but
the i n d u c t a n c e of t h i s d o w n c o n d u c t o r i s a m a j o r of the d a n g e r o u s
i n t e r n a l grounded object,
pedence
cause
effects.
T h e down conductor has this function,
i n d e t e r m i n i n g the o c c u r r e n c e
strike
but c a n
l a r g e a r e a s of f o i l to be t o r n o f f d u e to the m e c h a n i c a l
the i n j e c t e d c u r r e n t m u s t be t r a n s f e r r e d
metals.
A lightning
to t h i s t y p e of r o o f w i l l n o t o n l y b u r n a l a r g e h o l e ,
because
to b e
of
The m i n i m u m thickness is defined in cer-
S o m e r o o f s u s e m e t a l f o i l s of l e s s
p a t h to g r o u n d .
be
roofing materials
factor
s i d e - f l a s h to
it m u s t a l s o h a v e the l o w e s t i m -
that c a n be a f f o r d e d .
T h e i n d u c t a n c e of a d o w n c o n d u c t o r i s d i r e c t l y p r o p o r t i o n a l to i t s h e i g h t .
B y p a r a l l e l i n g two d o w n c o n d u c t o r s
their combined
i n d u c t a n c e i s r e d u c e d to a p p r o x i m a t e l y o n e - h a l f that of a
single
conductor and so on.
spaced
too c l o s e
together
accurate.
The down conductors
however,
The importance
is therefore
otherwise
s h o u l d not be
the a b o v e r u l e i s not
of h a v i n g at l e a s t
a considerable advantage
two d o w n
i n r e d u c i n g the
s i d e - f l a s h , the a c t i o n of w h i c h i s d i s c u s s e d l a t e r . bends in a down conductor also i n c r e a s e s
conductors dangerous
Right angle
the i n d u c t a n c e a n d
such
a design needs careful consideration. Once a lightning strike has the s u r f a c e discharge are
of the e a r t h , the c u r r e n t
been intercepted and passed
i n t o the g r o u n d .
the g r o u n d r e s i s t a n c e ,
Two important
ground resistivity is high, ground.
to
factors
which plays a part in side-flashing,
a n d the p o t e n t i a l d i s t r i b u t i o n o v e r the g r o u n d s u r f a c e . the d o w n c o n d u c t o r s
to
i t i s the f u n c t i o n of e a r t h e l e c t r o d e s
advantages
to w a t e r
If t h e
c a n be a c h i e v e d b y b o n d i n g
p i p e s to l o w e r the r e s i s t a n c e
T h e r i s k i n s i d e - f l a s h i n g is thus d e t e r m i n e d
to
exclusively
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
b y the
Lightning
and
the Hazards
It
91
Produces
inductance.
Side-flashing can also occur
b e l o w t h e g r o u n d to
buried
m e t a l p i p e s o r w i r e s a n d c a r e m u s t be t a k e n i n the d e s i g n a n d p o s i t i o n i n g of the g r o u n d i n g e l e c t r o d e s .
Typical values
pulse breakdown in soil are
2 to 5 k V / c m ,
flashes
In a i r
of s e v e r a l m e t e r s .
which leads
the v a l u e i s 9 k V / c m
and c o n c r e t e has a slightly lower b r e a k d o w n It i s i n t e r e s t i n g to n o t e
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
much more
of i m -
to
side-
and b r i c k
strength.
t h a t t h e l e n g t h of a g r o u n d r o d h a s
significant effect
o n the r e s i s t a n c e
C u r v e s d e m o n s t r a t i n g this effect are
than its
s h o w n i n F i g u r e 8,
which
a l s o i m p l i e s that l i t t l e b e n e f i t i s a c h i e v e d b y e x t e n d i n g the beyond 2 or
3 meters
Strip electrodes
are
exists below a layer Materials. ductors
or i n c r e a s i n g its d i a m e t e r
T h e t y p e of m a t e r i a l u s e d f o r r o o f a n d d o w n c o n -
to w h e t h e r
stranded f o r m .
the c o d e s code.
the m a t e r i a l
Stranded copper
C o p p e r or copper
A
strong corrosive off c o p p e r
be a v o i d e d a s
Copper,
but t h e r e a r e
aluminum conflicting
s h o u l d b e of r o d ,
tube,
strip
is not d e e m e d a c c e p t a b l e
although it is accepted
a l l o y s m u s t not be u s e d on a
in
i n the U S A building
fittings,
lead which are
effect
c a n be c a u s e d
conductors
onto s o m e
often u s e d on b u i l d i n g s . f a r as
stranded materials solid
a l l acceptable
of s e v e r a l c o u n t r i e s ,
with a l u m i n u m dripping
cm.
of l o w r e s i s t i v i t y .
and g a l v a n i z e d steel are or
rod
b e y o n d 1. 25
beneficial where high resistivity ground
s e e m s to be g o v e r n e d b y t r a d i t i o n .
opinions as
a
radius.
possible, are
more
by
rainwater
metals
such as
zinc or
Dissimilar metals
a n d one
s h o u l d be a w a r e
severely attacked
should
that
by c o r r o s i o n
than
conductors. C o r r o s i o n plays a high risk underground, in particular
a l u m i n u m which is totally unacceptable. perties
of s o m e
stray currents systems
where
The• e l e c t r o l y t i c
s o i l s c a u s e c o r r o s i o n to a l l t h e s e m e t a l s , p r o d u c e d by D C r a i l w a y l i n e s on D C h i g h the
earth is u s e d as
a return path.
to
proas
do
voltage
Cathodic pro-
t e c t i o n c a n h e l p e l i m i n a t e t h i s t y p e of p r o b l e m . The
Basic Requirements
of L i g h t n i n g
Protection
T h e r e l a t i v e n e e d f o r l i g h t n i n g p r o t e c t i o n at a f a c i l i t y i s pendent on m a n y f a c t o r s as or usage
indicated by Smith
(a)
Type
(b)
Personnel
safety;
(c)
Prevalence
of l i g h t n i n g ;
(d)
T y p e of
(6):
of f a c i l i t y ;
construction;
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
de-
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
92
0
I 1
| 2
I 3
i 4
L 5
length, m Figure 8.
Variation of ground resistance of rod electrodes of different diameter with length (British code)
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
Lightning
and the
(e)
Contents;
(f)
Economic
(g)
Degree
Hazards
It
Produces
93
risks;
of i s o l a t i o n ( r e l a t i v e
h e i g h t of s u r r o u n d i n g
structures); (h)
T y p e of t e r r a i n ;
(i)
H e i g h t of
and
structure.
T h e d e c i s i o n to p r o v i d e p r o t e c t i o n m a y be b a s e d p r i m a r i l y on one f a c t o r
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
sonnel meet
alone.
S o m e p o s s i b l e s i n g l e f a c t o r s c a n be
safety r e q u i r e m e n t s ,
reduced insurance
an imposed lightning protection Three basic
requirements
tection against direct
rates,
per-
or
m u s t be f u l f i l l e d to p r o v i d e p r o -
lightning
strikes
to a
structure:
(a)
A c o n d u c t i v e o b j e c t m u s t be p r o v i d e d to i n t e n t i o n a l l y
(b)
A p a t h m u s t be e s t a b l i s h e d that j o i n s t h i s o b j e c t
a t t r a c t the l e a d e r
stroke;
e a r t h w i t h s u c h a l o w i m p e d e n c e that the f o l l o w s it i n p r e f e r e n c e (c)
A low resistance b o d y of the
epted
set
codes
protection The
s t r i k e to e a r t h .
United States has
and that is
T h e p r i m a r y d i f f e r e n c e i n the
requirements
two n a t i o n a l l y a c c e p t e d
Protection Association's
( A N S I C 5 . 1),
Lightning
a n d the U n d e r w r i t e r ' s Protection
effective
of t h e s e two c o d e s
are
codes;
the
Protection
Laboratories
S y s t e m (Standard
b a b l y e q u a l l y u t i l i z e d on s t r u c t u r e s
Master
U L 96A).
The
quite s i m i l a r and are
pro-
t h r o u g h o u t the n a t i o n .
The
d i f f e r e n c e b e t w e e n the t w o i s that the M a s t e r
Label can
c e r t i f i e d u p o n b o t h a f a c t o r y i n s p e c t i o n a n d l a b e l i n g of the ing protection m a t e r i a l s
and upon p e r f o r m a n c e
spection by an authorized Lightning
be
lightn-
of a f i e l d i n -
inspector.
Protection by O v e r h e a d W i r e
D a n g e r f a c i l i t i e s of l a r g e
d i m e n s i o n s r e q u i r i n g the
p o s s i b l e p r o t e c t i o n s h o u l d be p r o v i d e d w i t h a s y s t e m pass
acc-
es-
guidelines.
one t h i n g i n c o m m o n
i s the p h i l o s o p h y u s e d i n a c h i e v i n g a n
Labeled Lightning
major
have been
system.
National Fire Code
s h o u l d c o n f o r m to a n
to p r o v i d e t h e n e c e s s a r y
requirement has
diverting a direct various
system
C o d e s and standards
tablished in many countries or
and
earth.
of g u i d e l i n e s .
E v e r y code
to a n y o t h e r ;
to
discharge
c o n n e c t i o n m u s t be m a d e w i t h the
The lightning protection
aries
to
code.
suspended f r o m tall masts. to g r o u n d s o m e d i s t a n c e
These
catenary
best
of
caten-
wires
a w a y f r o m the p r o t e c t e d
must
structure
s o t h a t t h e l i g h t n i n g c u r r e n t m a y g o to g r o u n d a t a d i s t a n t p o i n t .
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
94 The grounding wires strip conductors
should radiate
a w a y f r o m the s t r u c t u r e ,
overhead wires
s h o u l d be f a r
e n o u g h f r o m the
nate s i d e - f l a s h i n g w h i c h was d e s c r i b e d e a r l i e r t e c t i v e a n g l e s f r o m the w i r e s m u s t c o v e r Theoretical investigations vated
grounded structures are
figures.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
elevated
Figures
to
a n d the
pro-
the b u i l d i n g
of t h e e l e c t r i c
structure.
Hence,
such leader
a n d the
field
thunderstorm. leader
if two w i r e s w e r e
thus p r o t e c t i n g
the s t r u c t u r e
p r o t e c t i o n a r e a i s a f u n c t i o n of w i r e Figure
spaced
160
att-
feet a p a r t
a p p r o a c h i n g g r o u n d i n that r e g i o n w o u l d be
to t h e w i r e s ,
three
9 a n d 10 s h o w t h e e q u i p o t e n t i a l l i n e s a r o u n d a n
10 i t c a n b e s e e n t h a t i f a w e a k l i g h t n i n g
to i t .
ele-
s u m m a r i z e d i n the f o l l o w i n g
c a m e t o w a r d g r o u n d w i t h i n 8 0 f e e t o f t h e w i r e i t w o u l d be racted
elimi-
field around
grounded w i r e as d r a w n by a c o m p u t e r ,
Figure
The
structure
l i n e s a r o u n d a g r o u n d e d w i r e a t 2 50 f e e t d u r i n g a From
be
a n d s h o u l d n o t be b o n d e d to the s t r u c t u r e .
under them.
size and height,
any
attracted The
as
shown in
11.
Photographs
t a k e n of l i g h t n i n g s t r i k i n g a w i r e s t r e t c h e d
a canyon in N e w M e x i c o by D r .
over
M o o r e , v e r i f y that it d i d i n d e e d
s t r i k e the w i r e u n d e r n e a t h o n v a r i o u s
occasions.
a strong lightning leader
t h e f u n c t i o n of t h e w i r e ,
approaches,
in a high corona discharge thereby attracting
state,
At times
i s to p r o v i d e t h e u p w a r d
the d o w n w a r d s t r o k e
to the
when then
leader
wire.
If t h i s t y p e of l i g h t n i n g p r o t e c t i o n i s c a r e f u l l y p l a n n e d , c h a n c e s of f a i l u r e w i l l be e x t r e m e l y stallation and maintenance
small,
however,
the i n -
p r o b l e m s of s u c h a s y s t e m m a y
be
considerable. Electrical,
M e c h a n i c a l and T h e r m a l
Electrical Effects. attracted m o r e side-flash.
N o l i g h t n i n g s t r i k e to a s t r u c t u r e
a t t e n t i o n i n the l a s t d e c a d e s
It h a s
provided in order
t h a n the
has
so-called
been e x a m i n e d r e p e a t e d l y and its d a n g e r s
i l l u s t r a t e d i n the t e c h n i c a l l i t e r a t u r e . has
Effects
Its
prevention must
to s t o p i n c i d e n t s i n w h i c h a p r o t e c t e d
been struck and a p e r s o n in
are
be
building
such a building injured.
A n i l l u s t r a t i o n o f t h e p r i n c i p l e s o f t h e c o n d i t i o n s l e a d i n g to the r i s k of a s i d e - f l a s h a r e
shown in a simple example
in F i g u r e
12. T h e i l l u s t r a t i o n s h o w s t h e o u t l i n e s of a b u i l d i n g w i t h a lightning conductor highest point.
p r o t e c t i n g the c h i m n e y w h i c h c o n s t i t u t e s
In t h e a t t i c i s a n e l e c t r i c a l
point or a w a t e r
w h i c h i n t u r n i s c o n n e c t e d d i r e c t l y o r i n d i r e c t l y to g r o u n d . i n m i n d that a n e l e c t r i c a l
supply is
the pipe Bear
s t i l l a l m o s t at g r o u n d p o t e n -
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
BENT
Lightning and the Hazards It Produces
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
4.
Figure 9. Equipotential lines around an elevated grounded wire
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
95
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
96
Figure 10.
Electric field lines in the vicinity of an elevated grounded wire
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
Lightning
and the Hazards
It
Produces
97
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
height of wire (ft)
0
20
40
60
collection region radius Figure 11.
80
100
120
(ft)
Field line collection area as a function of wire size and height
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
98 tial as
f a r as
the e x t r e m e l y
high lightning voltages
are
con-
cerned. Let us now assume
t h a t the l i g h t n i n g c o n d u c t o r
c h i m n e y is struck by a lightning c u r r e n t current
i s t h e n d i s c h a r g e d a l o n g the r o o f c o n d u c t o r ,
down conductor
a n d i n t o the e a r t h
stitutes an inductance ctrode m a y
L,
electrode.
be d e s c r i b e d b y its e f f e c t i v e
The
the
single
T h i s path
w h i l e the i m p e d a n c e
T h e t o p of the l i g h t n i n g - p r o t e c t i v e
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
on the
of a m p l i t u d e i .
con-
of t h e e a r t h
ele-
ground resistance
system
R.
i s t h u s r a i s e d to a
p o t e n t i a l w i t h r e s p e c t to t r u e e a r t h w h i c h i s g i v e n b y : u = iR + For
the p u r p o s e
an intense
Ldi/dt
of a n u m e r i c a l e s t i m a t e ,
lightning current
g r o u n d r e s i s t a n c e of R =
10Q.
tical conductor
160 (j H p e r
is about
The inductance
of t h e f r o n t o f t h e l i g h t n i n g , a s be t a k e n a s above
50k a m p / / ^
g r o u n d is
10 m ,
100
assume
k a m p and a
of a s i n g l e
ver-
m a n d t h e r a t e of
reported
\j s e c .
1
we m a y
o f c r e s t v a l u e i = 100
rise
b y L l e w e l l y n (_1),
If t h e h e i g h t o f t h e
may
chimney
t h e t o p o f the l i g h t n i n g c o n d u c t o r
is
r a i s e d t o a p o t e n t i a l w i t h r e s p e c t to t r u e e a r t h w h i c h a m o u n t s = 10
u
= 10
6
5
10 + 10 "
x
+ 3. 2
x 10
6
X
1.6
x
x
10"
4
10
x
6
2 x 10
x
V = 4. 2 M V n e g l e c t i n g
to:
V
S
phase
differences. In c o n t r a s t ,
the i n t e r n a l g r o u n d e d w i r e o r p i p e r e m a i n s
g r o u n d p o t e n t i a l e v e n w h e n the h o u s e i s s t r u c k tial difference
of 4 . 2 M V i s s u d d e n l y i m p r e s s e d
lightning-conductor potential difference, lightning conductor
an electric breakdown occurs f r o m
The breakdown strength
voltage
c a n be t a k e n a s
900
elethat the
to t h e w a t e r t a n k ; a n d t h i s i s t e r m e d
flash.
the
If t h e
of the c l e a r a n c e D i s l e s s t h a n
at
poten-
between
s y s t e m a n d the i n t e r n a l p o i n t .
ctric breakdown strength
materialize.
s o t h a t the
a
side-
of a i r f o r a c h o p p e d i m p u l s e
k V / m , hence
S i m i l a r situations m a y
a 5m flash could
occur
if people a r e
standing
between a grounded a i r - t e r m i n a l lead and a grounded i n s t r u m e n t i n the b u i l d i n g . surface
great distances. ductor
Side-flashes may also occur
a n d i n the p r o c e s s c a n t h r o w u p r o c k s
Thermal Considerations. return
many
stroke 1-2
current
problems.
The lightning leader
cone w h i c h is s u r r o u n d e d by m u c h l a r g e r
is about
the
over
T h e s i m p l e s o l u t i o n of b o n d i n g the d o w n c o n -
to the g r o u n d e d o b j e c t w i l l a l l e v i a t e
narrow
under
and soil
is concentrated
centimeters diameter
stroke
corona.
in this c e n t r a l
and a m a x i m u m
has
a
The
cone which
temperature
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
4.
BENT
Lightning
and the Hazards It
Produces
99
Lightning Conductor
E l e c t r i c a l Supply
Water
Pipe
Figure 12.
Lightning strike to house and conductor showing distance to interior grounded unit
fi 6t, 2
Figure 13.
2
A s
Temperature rise in copper conductors (after Golde (3))
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
100
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
of a b o u t 60, 000
°F is reached after
T h e effects serious,
although there
w i l l be p e n e t r a t e d . i t, 2
on m e t a l s
is u s u a l l y not
is a p o s s i b i l i t y that a thin m e t a l
The temperature
rise
sheet
i s p r o p o r t i o n a l to
w h e r e a m a x i m u m v a l u e o f ^ i t d t i s a b o u t 10 ^ a m p 2
2
sec.
N e g l e c t i n g d i s s i p a t i o n a n d r e f e r r i n g to F i g u r e
13,
the t e m p e r a t u r e
specified in most
lightning codes
rise as
the t e m p e r a t u r e
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
a few m i c r o s e c o n d s .
of t h i s t e m p e r a t u r e
of c o p p e r c o n d u c t o r s ,
30 t o 50 m m
2
,
as
is m o d e r a t e .
v a l u e s c a n be t a k e n as
1.5
one s e e s
For
that
aluminum
times those
for
copper. T h e r e is one a s p e c t sideration.
of h e a t d i s s i p a t i o n that n e e d s
through a high resistance lapping metal sheets, sparking.
con-
W h e r e the l i g h t n i n g c u r r e n t is b e i n g d i s c h a r g e d joint,
the h e a t
such as a poor contact
or
over-
g e n e r a t e d m a y g i v e r i s e to h e a v y
P e n e t r a t i o n m a y o c c u r i n t h e c a s e of t h i n m e t a l
such as u s e d in roofing m a t e r i a l or a i r c r a f t the h o l e i s a f u n c t i o n o f l i g h t n i n g c h a r g e , thickness.
For
20 m i l c o p p e r ,
skin.
sheets
The size
of
the m a t e r i a l a n d i t s
the h o l e c o u l d be u p to 300 m m
2
.
W h e n l i g h t n i n g s t r i k e s a n i n s u l a t i n g m a t e r i a l the p o i n t of contact
c o u l d be r a i s e d to a h i g h t e m p e r a t u r e
could result.
B y these
means
and penetration
c l e a n h o l e s of 2 c m d i a m e t e r
been punched i n glass by lightning d i s c h a r g e s .
have
If t h i s i n s u l a n t
c o n t a i n s m o i s t u r e the c u r r e n t w i l l f l o w p r e f e r e n t i a l l y a l o n g the p a t h of best c o n d u c t i v i t y . and explosions o c c u r .
M o i s t u r e c a n be c o n v e r t e d into
E n o r m o u s b l o c k s of c o n c r e t e
have
steam been
d e m o l i s h e d this w a y and on one o c c a s i o n r o c k y g r o u n d w a s r o w e d f o r 800
f e e t a n d 75 t o n s
explosive effect was
e q u i v a l e n t to 6 0 0
Mechanical Considerations. shock wave and bending f o r c e s . creases discussed earlier, pands extremely wave.
Figure
central cone, for thunder,
14 as
fur-
of r o c k a n d s o i l d i s l o d g e d .
The
l b s of T N T .
M e c h a n i c a l effects
concern
W i t h the r a p i d t e m p e r a t u r e
the a i r
s u r r o u n d i n g the c h a n n e l
rapidly and produces a supersonic
ex-
pressure
shows how this wave is propagated f r o m c a l c u l a t e d b y H i l l (7_).
the in-
the
It i s r e s p o n s i b l e n o t
b u t a l s o f o r w i d e s p r e a d l i f t i n g of t i l e s o n the
only
roofs
of b u i l d i n g s . Two parallel conductors s u b j e c t to a t t r a c t i v e
caught in a lightning d i s c h a r g e
f o r c e s and these f o r c e s are
are
responsible for
t h e f u s i n g of s t r a n d e d c o n d u c t o r s a n d f o r s q u a s h i n g h o l l o w c o n ductors. T h e r e i s one m o r e m e c h a n i c a l f o r c e w o r t h c o n s i d e r i n g . a lightning conductor follows a right-angle
If
bend on a b u i l d i n g and
t h i s c o n d u c t o r h a s to d i s c h a r g e a l i g h t n i n g c u r r e n t ,
it w i l l be
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
BENT
Lightning
and the Hazards
1
0
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
4.
It
Produces
2
3
101
5
4
radius, cm Figure 14.
D
J
Development of pressure from lightning channel
F
M
A
M
J
J
A
S
O
N
D
MONTHS
Figure 15.
Annual variation of thunderstorm activity in terms of flashes to ground in Orlando, Florida
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
102 subject
to a m e c h a n i c a l f o r c e
attempting
p r o p o r t i o n a l to t h e strokes
t r y i n g to s t r a i g h t e n i t a n d
to b e n d i t o u t w a r d . square
of t h e c u r r e n t ,
i t c a n o n l y r e a c h a b o u t 5, 000
bends i n conductors
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
3 per minute.
Sharp
rectangular
T h e d u r a t i o n of a
of 30 m i n u t e s ,
thunder-
with a flashing rate
Since a s t o r m contains
c e l l s at a n y i n s t a n t ,
is
large
be a v o i d e d .
F r e q u e n c y of S t r i k e s to G r o u n d . 2 or
but e v e n f o r
lbs.
should, therefore,
s t o r m c e l l i s of the o r d e r
thus,
T h e m a g n i t u d e o f the f o r c e
one o r two
3 to 4 f l a s h e s p e r m i n u t e i s n o t
unreason-
a b l e a s a n a v e r a g e w i t h a s t o r m d u r a t i o n of a p p r o x i m a t e l y hour.
T h e p r o p o r t i o n of d i s c h a r g e s storm.
follows,
over
therefore,
intracloud discharges
a possible occasional increase in a s e v e r e c a s e . Pierce
1 to 4 .
of
It
Figure
rate for flashes
round
to g r o u n d w i t h
to one e v e r y t h r e e o r f o u r
15 i l l u s t r a t e s
to g r o u n d f o r O r l a n d o ,
as
seconds
the a n n u a l v a r i a t i o n
calculated
of
by Cianos and
(8).
The
s p a t i a l d i s t r i b u t i o n of f l a s h e s
in lightning p r o b l e m s . well separated, observer
c a n be a s i g n i f i c a n t f a c t o r
T h e f a c t that c o n s e c u t i v e
often q u a s i - r a n d o m l y ,
of t h u n d e r s t o r m s .
c e p t that the d i s c h a r g e s still
is
that one p e r m i n u t e i s a n a p p r o p r i a t e
f i g u r e e s t i m a t e of t h e o c c u r r e n c e
discharges
o f the
T y p i c a l l y w i t h i n the U n i t e d S t a t e s the r a t i o
cloud-to-ground
one
that go to g r o u n d i s q u i t e
v a r i a b l e f r o m s t o r m to s t o r m a n d a l s o d u r i n g p h a s e s same
of
active
Nevertheless,
progress
flashes
are
i s f a m i l i a r to a n y
careful
the e r r o n e o u s
in a steady
con-
orderly pattern
is
prevalent. The only thunderstorm
statistics which are
a b l e i s the t h u n d e r s t o r m d a y .
readily avail-
A day is defined m e t e o r o l o g i c a l l y
a s a t h u n d e r s t o r m d a y i f t h u n d e r is h e a r d ; t h i s i m p l i e s the currence
of l i g h t n i n g w i t h i n a b o u t
No account
15 k m o f t h e o b s e r v i n g
oc
site.
i s t a k e n i n the t h u n d e r s t o r m d a y s t a t i s t i c of the
n u m b e r of t i m e s
thunder is h e a r d ,
t h u n d e r s t o r m events
per
n o r the n u m b e r of
thunderstorm day.
Figure
discrete 16
illus-
t r a t e s t h e n u m b e r of t h u n d e r s t o r m d a y s r e c o r d e d i n t h e U S A , a n d s h o w i n g a n e x c e s s of 100 s u c h d a y s i n t h e S t .
Petersburg
O r l a n d o r e g i o n o f F l o r i d a w i t h a v a l u e o f a b o u t 80 a t
to
Cape
Canaveral. C i a n o s and P i e r c e
give a useful relationship for d e t e r m i n i n g
the f r e q u e n c y o f s t r i k e s u n d e r a t h u n d e r s t o r m . a v a i l a b l e by w h i c h data for T of Q , n
n
the f l a s h i n c i d e n c e p e r k m
2
per month,
g r o u n d f l a s h i n c i d e n c e (pO ) p e r k m m
b y the p r o p o r t i o n p of f l a s h e s
Two methods
c a n be c o n v e r t e d 2
are
estimates
and hence,
per month,
that go to e a r t h .
into
the
by multiplying T h e two
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
methods
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
4.
BENT
Lightning
Figure 16.
and the Hazards
It
Produces
103
The average number of days per year on which thunder is heard in various parts of the USA
M o n t h l y Dependence
of T h u n d e r s t o r m
Activity
C a p e K e n n e d y 195 7- 1962 (P = 0.
Month T January
P CT
m
. 5
li n
. 12
. 02
February
1.8
.25
. 05
March
3, 7
. 53
. 10
April
3. 3
.45
. 08
May
6.7
1.42
. 26 1. 06
June
14. 0
5.91
July
13.8
5 . 75
1. 04
15. 8
7 . 52
1. 35
10. 5
3 . 35
.60
August September October
3.8
. 55
. 10
November
0. 7
. 15
. 03
December
0. 7
. 15
. 03
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
104
d o not d i f f e r g r e a t l y i n the r e s u l t s t h e y y i e l d n e a r (2 t o 10)
of T
m
of m o s t p r a c t i c a l i m p o r t a n c e .
the
Pierce
range concludes
that:
where a equals 3 x
10
2
= a T
2
a
.
B
+ a
T*
2
T a b l e 1 i l l u s t r a t e s these
C a p e K e n n e d y w h e r e the v a l u e s of p a r e
taken as
results
0.
at
18.
U s i n g t h e s e f o r m u l a s we c o n c l u d e that a p p r o x i m a t e l y f i v e
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
discharges
come
to g r o u n d e a c h y e a r p e r
square k m .
F r e q u e n c y of S t r i k e s to T a l l S t r u c t u r e s * s t r i k e s to t a l l s t r u c t u r e s t r o l l e d by two f a c t o r s .
O n e i s the a t t r a c t i v e
i s the t r i g g e r i n g f a c t o r . these
factors
cussed here.
T h e i n c i d e n c e of
e l e c t r i c a l l y c o n n e c t e d to g r o u n d i s P i e r c e and P r i c e
(9) h a v e
attractive
area A
height h.
The attractive
(= TTr
radius,
) are
r„ ,
and its
dis-
associated
p r i m a r i l y f u n c t i o n s of
r a d i u s is defined as
other
investigated
i n d e t a i l a n d a f e w of t h e i r f i n d i n g s w i l l b e The attractive
con-
r a d i u s a n d the
structure
the a v e r a g e
radius
at w h i c h a d o w n w a r d l e a d e r f r o m the c l o u d i s j u s t a b l e to i n d u c e an upward streamer
f r o m the s t r u c t u r e
that w i l l u n i t e w i t h
the
d o w n w a r d l e a d e r a n d t h u s d i v e r t t h e f l a s h t o the s t r u c t u r e . triggering factor
represents
t i a t e d at the t i p of the s t r u c t u r e ; but a s h i n c r e a s e s , c o m m o n and for
m
the t r i g g e r e d v a r i e t y of d i s c h a r g e
It i s p o s s i b l e to c a l c u l a t e
sentations
r
.
However,
the
calculations
c a n be c r i t i c i z e d i n m a n y r e s p e c t s .
Cianos
(8) h a v e g i v e n a c o m p l i c a t e d e x p r e s s i o n f o r r
f u n c t i o n of h .
m,
increasingly
important.
that h a v e b e e n m a d e and P i e r c e
ini-
i t i s n e g l i g i b l e f o r h ^ 100
triggered flashes become
h ^250
i s b y f a r the m o r e
The
the i n c l i n a t i o n of f l a s h e s to be
T h i s i s b a s e d b o t h o n the m a t h e m a t i c a l
emerging f r o m theoretical analysis,
p i r i c a l f i t w e i g h t e d a c c o r d i n g to t h e d e g r e e v a r i o u s data s o u r c e s . N o t e that a b o v e about
Table 2 shows r 150 m ,
l a t i o n s i n d i c a t e t h a t f o r h ^ 150 m ,
a
and on an
em-
of r e l i a b i l i t y of the
a s a f u n c t i o n of h .
the a t t r a c t i v e
change with a further height i n c r e a s e . t w e e n the t i p of the s t r u c t u r e
a
as
repre-
radius does
not
T h i s is because
calcu-
the f i e l d d i s t r i b u t i o n b e -
a n d the d o w n c o m i n g l e a d e r i s n o t
m u c h i n f l u e n c e d b y the p r e s e n c e
of the g r o u n d .
P i e r c e h a s p o i n t e d out that r e p o r t e d i n s t a n c e s
of t r i g g e r e d
l i g h t n i n g o c c u r w h e n the a m b i e n t g e n e r a l e l e c t r i c f i e l d E b e t w e e n 3 a n d 30 k V / m a n d t h e v o l t a g e d i s c o n t i n u i t y V
lies
,
b e t w e e n the t i p of the c o n d u c t o r c a u s i n g the t r i g g e r i n g a n d the unperturbed atmosphere,
i s 0. 3 t o 6 M V .
t h a t f o r t h e l o w e r v a l u e s of E
or V ^ there a D
It s e e m s p l a u s i b l e i s a s m a l l but f i n i t e
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
chance
Lightning
and the Hazards
It
of l i g h t n i n g b e i n g t r i g g e r e d ;
be g r e a t e r t h e l o n g e r t h e v a l u e s As
E
a
Produces
and Vj^ increase
lightning,
this chance
of E
so w i l l the p r o b a b i l i t y of
but the c h a n c e
Table height.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
cations
3 summarizes
T h e data
base
in C o l u m n
is
so scanty
Also
of E
d u e to H o r v a t h (10).
overestimates
lightning as
h ^ 150
m,
that s u b s t a n t i a l future
by P i e r c e
b e c o m i n g b e t t e r f o r h*%/400 As
an example,
Cape Canaveral.
theoretical expressions
Horvath's work much of h ,
and
E x p r e s s i o n (1) f i t s w e l l for large
(2) u n d e r e s t i m a t e s
h.
throughout,
but the a g r e e m e n t
is
m.
let u s c o n s i d e r a 260
foot o r 80 m
a n d T a b l e 3 i n d i c a t e s a n a v e r a g e v a l u e o f . 16 f o r t h e t r i g g e r e d to n a t u r a l l i g h t n i n g . Thus,
gives
for
tower
T a b l e 2 g i v e s the a t t r a c t i v e r a d i u s as
g r o u n d at the C a p e h a s
modifi-
the i n f o r m a t i o n
and some
the i n c i d e n c e at l o w e r v a l u e s
but o v e r e s t i m a t e s
Expression
avail-
a f u n c t i o n of
N o n e of the t h e o r e t i c a l
for high h.
length
exist.
1 thelbest presently
a g r e e w e l l w i t h the e x p e r i m e n t a l d a t a . underestimates
and
shown in Table 3 are
d e r i v e d f r o m two e x p r e s s i o n s results
maintained. triggered
w i l l a g a i n be d e p e n d e n t on the
on the i n c i d e n c e of t r i g g e r e d
could occur.
will obviously
a n d V-p a r e
a
of t i m e f o r w h i c h a n y s p e c i f i c v a l u e s able data
105
310
ratio
T h e i n c i d e n c e of f l a s h e s
b e e n s h o w n i n T a b l e 1 to be 4 .
the a n n u a l i n c i d e n c e of n a t u r a l l i g h t n i n g to the
should be,
at m
of
to
7/km . 2
tower
, 4. 7
TT
x
x
(310)
2
10'
x
=1.42
T r i g g e r e d lightning should contribute a further
incidence
of
some, 0. 16 x 1 . 4 2 T h e t o t a l n u m b e r of s t r i k e s the o r d e r
o f 1. 65 p e r
= . 23 to the t o w e r
Lightning and Switching Surges and Surge elements
will,
or transient voltages of e l e c t r i c a l
are
o n e of the l e a s t
transients
The random characteristics
appear
that
of p o s s i b l y
can exist
even after component damage
or
of t h e i r m a g n i t u d e a n d is still
software
They
unsuspected,
default.
c a n be a r a p i d c o m p o n e n t f a i l u r e o r t r a n s i e n t s the c o m p o n e n t c a u s i n g d e g r a d a t i o n ,
several
in all
d i f f i c u l t to i d e n t i f y a n d a n a l y z e .
unexpedtedly and their p r e s e n c e
very
These unwanted sub-
thousand volts and s e v e r a l hundred amps them
understood
simple reason
subject.
m i c r o s e c o n d t i m e - t o - p e a k voltage systems.
be o n
Transients
e n e r g y f o r the
l i t t l e d a t a i s a v a i l a b l e on the
duration make
therefore,
year.
can
The
damage
slowly attack
which can produce
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
random
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
106
T a b l e II.
Relation Between H e i g h t (h) a n d
h
r
(m)
III.
)
~
150
50
~
250
100
~350
150
~
400
~
400
P r o p o r t i o n of T r i g g e r e d to N a t u r a l L i g h t n i n g
Structure
Actual
Height
Data
(m)
Expression (1)
50
~
0
~
0
100
~
0
~
0
0. 3
~ 0
150
a
(m)
a
25
>150
ble
Structure
A t t r a c t i v e R a d i u s (r
Expression (2)
Horvath Theory 0. 1
~0
0. 2 0. 5
0.4 0. 7
200
1
0. 1
2. 8
300
4
1. 3
16
1.4
400
10
6
38
3. 0
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
Lightning
erroneous failure
and
the Hazards
signals for
It
Produces
107
s e v e r a l weeks until total
T h e e l i m i n a t i o n of t h i s r a p i d e n e r g e t i c special devices or
overvoltage
power
surge
protectors
and
C o n s i d e r a b l e problems exist with filtering
unless they are
expected
insulation requirements
especially made and are
with m u c h higher
e x i s t s that t r a n s i e n t s
software
than
used in conjunction
specifically designed overvoltage
often c a u s e
gas d i o d e s ,
c o m m o n l y found in c o m p u t e r s
devices,
Evidence
requires
a n d c a n n o t be p r e v e n t e d b y c r o w b a r s ,
supplies.
with fast,
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
component
occurs.
protectors.
entering computer
systems
p r o b l e m s b y c a u s i n g b i t s to be c h a n g e d
b i t s to b e a d d e d t o m e m o r y l o c a t i o n s . a l s o b e e n s h o w n to b e c a u s e d
These transients
by c o m p u t e r
and
have
tape r e c o r d e r s
pro-
v i d i n g the i n d u c t i v e i m p u l s e . There are
three specific reasons
suppression requirements: lightning on s o l i d - s t a t e world weather semiconductor
(1)
components
pattern).
(2)
technology,
by a d e g e n e r a t i n g
in voltage
effect
of i n d u c e d
(also enhanced by a changing
M o r e and m o r e
sophistication in
s i m p l y s m a l l e r and s m a l l e r
(3) T h e v e r y m o n u m e n t a l e f f e c t caused
f o r the c h a n g e
The increased
of s w i t c h i n g
s u p p l y of c o m m e r c i a l p o w e r .
demand upon power companies
increases,
another,
loads are
constantly being
causing "surges"
short duration transients little as
one
same
cause high
speed,
o f e n e r g y a p p l i e d to
c a n c a u s e a s h u t d o w n of o p e r a t i o n s .
can either
rate.
s w i t c h e d f r o m one l i n e to
(which in turn,
i s a c o m p u t a t i o n b y O d e n b e r g (1JJ of e n e r g y
the
rate,
to p r o c e e d d o w n the p o w e r l i n e ) .
(1) n a n o j o u l e (1 x 10"^)
semiconductor
As
at a g e o m e t r i c
the a b i l i t y to p r o d u c e p o w e r d o e s n o t i n c r e a s e at the Therefore,
devices.
transients/surges
upset
As
the
Figure
17
showing how a s m a l l amount
or d e s t r o y a t r a n s i s t o r ,
I. C .
or
semiconductor. The major due
sources
of l i g h t n i n g
surges
in conductors
are
to a)
Ground potentials
b)
Induced effects a
caused
caused
by n e a r b y lightning
by lightning c u r r e n t
on
shield;
c)
Direct strikes
d)
S i d e - f l a s h e s to the c o n d u c t o r f r o m a n e a r b y
e)
A straight
to a w i r e ;
conductor
antenna for lightning f)
strokes;-
flowing
A looped conductor for lightning
acting as
strike;
an electrical field
change
effects;
a c t i n g as
a magnetic
field
antenna
effects.
B u r y i n g the c a b l e d o e s not r e m o v e
lightning effects,
c a b l e i s t h e n a n i d e a l g r o u n d p a t h f o r the c u r r e n t .
The
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
as
the
lightning
108
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
current may
s i d e - f l a s h s e v e r a l m e t e r s to the c o n d u c t o r
the g r o u n d ,
where
the d i s t a n c e
r e s i s t i v i t y a n d the r e s i s t a n c e of the c o n d u c t o r The largest line r e a c h e d
lightning voltage
recorded
i n F i g u r e 18, a n d t h e s t r i k e o c c u r r e d It i s
suggested
that c l o s e r
to the
transmission than
two
r e c o r d i n g is
shown
s o m e 4 m i l e s u p the
s t r i k e p o i n t the c u r r e n t
of r i s e w a s p r o b a b l y of the o r d e r
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
on a
The resulting oscilloscope
solid
to g r o u n d .
a p e a k v a l u e of 5 m i l l i o n v o l t s i n l e s s
microseconds.
under
is p r i m a r i l y a f u n c t i o n of
line. rate
o f 10 m i l l i o n v o l t s p e r
micro-
second. R e s i d e n t i a l 120V lightning associated transients nature, hertz
A C lines are
voltages
u p to 3 k V .
f o u n d to e x p e r i e n c e
peak
of u p to 6 k V a n d i n t e r n a l s w i t c h i n g
The transients
w i l l be o s c i l l a t o r y i n
w i t h a f u n d a m e n t a l f r e q u e n c y f r o m a f e w t e n s of k i l o -
to s e v e r a l m e g a h e r t z
h u n d r e d s of m e g a h e r t z . 100 m i c r o s e c o n d s
with components
ranging into
T h e y w i l l l a s t f r o m 100 n a n o s e c o n d s
a n d c a n be c l a m p e d w i t h i n a f e w c y c l e s .
grounding and bonding m a y reduce
the t r a n s i e n t s
to
Good
significantly.
I n t r a c l o u d l i g h t n i n g c a u s e s a c o n s i d e r a b l e n u m b e r of i n duced effects in cables hundred amps, discharge
of s e v e r a l t h o u s a n d v o l t s a n d
e v e n t h o u g h the
separation distance
m a y be s e v e r a l m i l e s .
e f f e c t i s that the p o w e r , antenna.
Shorter
f l e c t i o n s at the c a b l e
The main reason
telephone or data
cables
give rise
surges
heaters, Force
can cause several
such as
53,000 damaging surges
A n example nautical Radio,
i.e.,
solenoids
conditioners per day.
over
and At an A i r
1 joule were
of w h i c h 10, 000
re-
occurred
of i n d u c e d v o l t a g e s 1967).
w o u l d be a p e a k of
30 v o l t i n d u c t i v e l o a d
in
systems.
T h i s w o u l d be g e n e r a t e d
like elevators
in hospitals.
s a y s t h a t 110
transients.
"3900
(Aero-
T h e N a v y r e g a r d a 2. 5 t h o u s a n d v o l t p e a k
as a m a x i m u m i n d u c t i v e s w i t c h i n g t r a n s i e n t
Institute
re-
(Odenburg).
v o l t s " p r o d u c e d by a 4. 0 a m p , voltage
air
thousand surges
c o r d e d d u r i n g a one m o n t h p e r i o d , one d a y
an
due to
ends.
and local m o t o r s ,
site over
to
for such an
cable acts as
to l a r g e r
Transients f r o m switching inductive leads, and r e l a y s ,
several
of c a b l e
by large
o n 110 V A C
inductive switching,
The A m e r i c a n National Standards
volt line faults can cause six thousand volt
Sparks f r o m a charged human can also reach
two
t h o u s a n d v o l t s i n one n a n o s e c o n d a n d s e v e r a l t e n s of t h o u s a n d s volts
shortly
of
after.
T h e utilitie's induce. surges gizing transformers
while e n e r g i z i n g and
i n a n e f f o r t to m a n a g e
utilitie's p r o v i d e p r i m a r y p r o t e c t i o n ,
loads.
de-ener-
Although
the f r o n t e n d of s u r g e s
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
may
BENT
Lightning
and the Hazards
MOST SUSCFPTIBLE-JO 9 10
8
10
7
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
IJKJ
1 0
6
—
10
4
10
3
10'
D I G I T A L IC's
2
10
HIGH SPEED T R A N S I S T O R S . IC's
-B •
10
4
10
3
10
2
10
1
-
+
UPSET
LOW-POWER TRANSISTORS SIGNAL DIODES
_ M E D I U M POWER TRANSISTORS ZENERS AND RECTIFIERS _ HIGH-POWER TRANSISTORS _ POWER SCR's, POWER D I O D E S
1
1
1
LEAST SUSCEPTIBLE
LOW-NOISfc — TRANSISTORS AND DIODES
u
5
10-
Produces
10 '
10" 10-
1 —
It
10
+ 1
10
+ 2
-
BURNOUT
N o t e : f o r t r a n s i e n t s i n the m i c r o s e c o n d r e g i o n
Figure 18.
Oscillogram of voltage surge on a HOW transmission line
50
\00
300
TIME (^sec)
Figure 17.
Upset and burnout energies for various semiconductors
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
110 not be e l i m i n a t e d .
Also,
the e n e r g y
stored in transformers
e n e r g i z e d a f t e r the p o w e r c o m p a n y ' s a r r e s t o r s f i r e a n d power for
1/2
also appears
cycle can also cause damaging surges.
A
surge
at p o w e r r e - i n i t i a l i z a t i o n .
Another important source a t t e m p t i n g to w i r e , ients are
de-
remove
adjust or
of s u r g e s service
is human error.
systems,
While
unwanted
trans-
p r o d u c e d w h i c h m a y p r o v e to be d e t r i m e n t a l to
semi-
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
conductors. Insulation Effects.
T h e e f f e c t of h i g h v o l t a g e s
c a n be q u i t e l a r g e a n d w h e r e a s s u l a t o r m a y n o t be c a t a s t r o p h i c , voltage transients
the r e p e t i t i v e
effects
w i l l p r o d u c e b r e a k d o w n at the
u n t i l the i n s u l a t o r c a n n o t e v e n s t a n d the s t e a d y electric
clock manufacturer
on i n s u l a t i o n
the i n i t i a l b r e a k d o w n of a n i n of h i g h
same
place
state voltage.
r e d u c e d h i s f a i l u r e r a t e to
An
one
h u n d r e d t h of h i s e a r l i e r f a i l u r e r a t e b y i n c r e a s i n g the i n s u l a t i o n l e v e l f r o m 2 to 6 k V .
S u r g e p r o t e c t i o n w o u l d h a v e the s a m e
Breakdown will also occur along a surface circuit board.
In t h i s c a s e ,
a p a t h of s l i g h t l y c o n d u c t i v e
bonized insulation will occur vaporized metal.
Steep wavefront voltages
m a y l e a d to
grounded object.
or it m a y
enclosure are
where a cable
(12).
s h o u l d be kept as
w h i c h a l l o w s the c u r r e n t enclosure.
This example
possible.
enclosure
to f l o w r a d i a l l y f r o m t h e (Figure
This indicates
s h i e l d to
If a s e p a r a t e g r o u n d l e a d i s u s e d t o c a r r y
it w i l l have an inductance o f o n e i n c h o f 0. 0 3 4 "
diameter
a n d w i t h a r a p i d c u r r e n t p u l s e of 100 d e v e l o p e d w i l l be
1340
volts.
v o l t s to d e v e l o p b e t w e e n over
1 c m long.
19b) w h i c h w i l l l e a d
amp/nsec,
T e n inches
should,
The in-
w i r e i s a b o u t 0. 0 1 3 4 JJh the
voltage
of w i r e w i l l e n a b l e
shield and e n c l o s u r e ,
The wire
the
surge
to a p o t e n t i a l d i f f e r e n c e b e t w e e n s h i e l d a n d e n c l o s u r e . ductance
effects
shield and an
s h o r t and d i r e c t as
19a s h o w s a s h i e l d b e i n g t e r m i n a t e d o n a n
current,
grounds
m u s t be c a r r i e d out w i t h c a r e
19,
connected together
that g r o u n d l e a d s
deve-
of t h i s
The inductive
s t i l l l e a d to h a z a r d o u s p o t e n t i a l d i f f e r e n c e s .
p r o b l e m is i l l u s t r a t e d in F i g u r e
Figure
T h e effects
B o n d i n g the
w o u l d h a v e r e m o v e d the p r o b l e m .
of s u c h b o n d i n g b e t w e e n t w o o b j e c t s
is
large potentials m a y
p r o b l e m have been illustrated e a r l i e r . together
break-
coil.
W h e n one g r o u n d e d c o n d u c t o r
conducting a steep wavefront current, l o p b e t w e e n it a n d a n o t h e r
car-
w h i c h m a y a l s o be i n f l u e n c e d b y
d o w n o f i n s u l a t i o n b e t w e e n the w i n d i n g s of a Grounding and Bonding.
effect.
s u c h as a p r i n t e d
therefore,
implying a be k e p t as
possible.
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
13k
spark short
as
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
(a)
Figure 19.
DAOIAI FLOW OF CURMMT
1
(b)
coNCiMTAATto FLOW or CUMCNI
Connections between shield and enclosure; (a) good, (b) bad
CNCLOSUiC
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
I
vvC
crc> 3-
H
w w
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
112
It i s a l s o a b s o l u t e l y e s s e n t i a l t h a t a s h i e l d b e g r o u n d e d a t both ends in short l i n e s .
The magnetic fields caused
by
lightning can induce voltages around open c i r c u i t loops and currents
around short circuit loops.
hardly ever
cause damage,
c e s s i v e l y high and will cause Ideally,
one m u s t
The induced
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
crowbar.
devices are
for
the
separate
point.
of two b a s i c t y p e s ,
state v o l t a g e ,
will conduct v e r y heavily.
voltage
This
i s b r o u g h t to a l o w l e v e l .
will never reduce
very
but a b o v e a c e r t a i n v o l t a g e
A c r o w b a r device in effect,
c i r c u i t s a h i g h v o l t a g e to g r o u n d . the c u r r e n t
constant
T h e constant voltage devices will conduct
l i t t l e at the s t e a d y
but
ex-
Devices
Protector and
systems
of a s y s t e m a n d c o m b i n e these
g r o u n d s at o n l y one c o m m o n r e f e r e n c e Protector
c a n be
damage.
set u p s e p a r a t e g r o u n d i n g
various electrical parts
currents
but the i n d u c e d v o l t a g e s
level
short
short w i l l continue until
A constant voltage unit
the l i n e v o l t a g e b e l o w i t s s t e a d y s t a t e v a l u e ,
the c r o w b a r d e v i c e o f t e n w i l l .
there is a continuing follow
T h i s c o u l d be a p r o b l e m i f
current.
Constant voltage devices in everyday use are zener diodes and v a r i s t o r s ,
avalanche and
or voltage dependent
S p a r k gaps and gas d i s c h a r g e tubes a r e
resistors.
the m o s t c o m m o n type of
crowbar. Low
pass filters are
capacitor filter,
often used as
suppression devices.
p l a c e d a c r o s s the t e r m i n a l s i s the s i m p l e s t f o r m
w h e r e t h e i m p e d e n c e i t s h o u l d p r e s e n t to t h e
w i l l be m u c h l o w e r t h a n the t r a n s i e n t
A of
transient
source
impedence.
a p p r o a c h w i l l w o r k w e l l u n l e s s the c a p a c i t o r
loads down
This the
d e s i r e d voltage and does not c r e a t e c u r r e n t i n - r u s h p r o b l e m s . A
resistor
in series
of t h e f i l t e r .
will help,
A capacitor
but w i l l r e d u c e
transient has high energy i n either p o l a r i t y . come
the
effectiveness
n e t w o r k i s a l s o i n e f f e c t i v e i f the F i l t e r s can
be-
e x p e n s i v e a n d m u s t be v e r y c a r e f u l l y d e s i g n e d .
Isolation t r a n s f o r m e r s
m a y allow surges
c o u p l e d a c r o s s the w i n d i n g s , system.
to b e c a p a c i t i v e l y
t h e r e b y p a s s i n g t h e m i n t o the
A t t i m e s the l o a d m a y be s u c h that the i n p u t s u r g e
d i f f e r e n t i a t e d at the i s o l a t i o n t r a n s f o r m e r , rapid r i s e t i m e and hence,
causing a much
m a k i n g it m o r e d a n g e r o u s .
Con-
s i d e r a b l e thought a n d c a l c u l a t i o n m u s t be p e r f o r m e d b e f o r e c i d i n g to p r o t e c t The
by such a
de-
transformer.
l e a d l e n g t h of s u p p r e s s i o n d e v i c e s c a n c a u s e
overshoot voltages
is more
d e p e n d i n g on the r a t e of r i s e
of the
large current.
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
It w a s
Lightning
and the
discussed earlier
overshoot
of o v e r
chase most
1300
Hazards
It
that a one i n c h w i r e c a n l e a d to a
volts.
It i s p o s s i b l e ,
protection devices
voltage
components most
must
equipment
be k n o w n o r levels.
c o m m o n types
the
circuit
estimated.
standards
Therefore,
m u s t be o b t a i n e d ,
f o r m e d or conservative
and
and devices,
conservatively
and c i r c u i t components,
from manufacturers
voltage
to p u r -
w i l l be n e g l i g i b l e .
w i t h s t a n d l e v e l of e q u i p m e n t s a n d
for lightning transient
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
overshoot
s e l e c t i o n of p r o t e c t i o n c o m p o n e n t s
transient
however,
in d i s c f o r m without w i r e s ,
w i t h c a r e f u l m o u n t i n g the v o l t a g e For
113
Produces
For
do not
exist
information available
laboratory
testing
engineering estimates used.
of e q u i p m e n t s a n d c o m p o n e n t s
are
per-
Limits for
provided for
guidance. Transistors
and Integrated C i r c u i t s :
2 times
normal
times
voltage.
voltage. Diodes:
1.5
Small motors, 10 t i m e s
their
n o r m a l operating
Large motors, 20 t i m e s
large
In a d d i t i o n t o t h e a b o v e ,
voltage As power
is
and light m a c h i n e r y :
voltage.
transformers
n o r m a l operating
and heavy
are
many times
punch-through voltage
limiting transients
to
1. 5 t i m e s
overlooked
for
transients
the D C w o r k i n g
recommended.
a n i n d i c a t i o n of l i n e t r a n s i e n t / s u r g e s , l i n e of 480
monitored for
v o l t s to a s a t e l l i t e
a
tracking
commercial
station
was
s p i k e s g r e a t e r than one j o u l e b y O d e n b u r g
T h e n u m b e r of s u r g e s
recorded
i n t e r e s t i n g to n o t e that the have
is d i s p l a y e d in F i g u r e
53, 020
alone is in keeping with other transients
machinery:
voltage.
capacitors
and unless their d i e l e c t r i c is known,
peak inverse
small transformers
been r e c o r d e d
surges
monitored in
published data.
It
is
September
At times
i n a 24 h o u r p e r i o d ,
(11).
20. 10,
000
m a n y of t h e m
occurring within m i l l i s e c o n d periods. A v a l a n c h e Diodes and Z e n e r s . istics
of a s e m i c o n d u c t o r
there are
diode are
three principle regions
The volt-ampere
of o p e r a t i o n .
b i a s e d r e g i o n i s l i m i t e d b y the e x t e r n a l region is where
the v o l t a g e
is r e v e r s e d ,
circuit,
W h e n the r e v e r s e v o l t a g e
this c r i t i c a l v a l u e ,
the r e v e r s e c u r r e n t
diodes are region,
made
increases
i n the b r e a k d o w n r e g i o n . suppressor
a n d the
increases
to o p e r a t e i n the f o r w a r d a n d
but t r a n s i e n t
The forward leakage
but it is s t i l l l e s s
the c r i t i c a l v a l u e .
the d i o d e i s o p e r a t i n g
character-
shown in F i g u r e 2 1 in which
than
beyond
s h a r p l y and
Normal
rectifier
reverse-biased
o p e r a t e a r o u n d the
breakdown
region.
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
114
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
at times over 10,000 surges in a 24 hour period
30k
25k
20k
1
Feb 1976
Figure 20.
M a r A p r M a y Jun July Aug Sept
Oct Nov Dec Jan !977
Surges greater than one joule suppressed at a USAF site, Odenburg
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
Lightning
and
the
Hazards
It
115
Produces
A v a l a n c h e d i o d e s e x h i b i t a s h a r p t u r n at the k n e e , d i o d e s go t h r o u g h t h i s t r a n s i t i o n m o r e that the a v a l a n c h e than z e n e r
diode is a better
These devices
are
the m o s t
"constant
where
the e n e r g y
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
silicon avalanche
a junction area diode.
over
use
larger
size,
to s e v e r a l h u n d r e d k W f o r a capacitance,
however,
devices
small volume
b y the
transient
Special suppression
w i l l c l a m p at
d e p e n d i n g on the
within a v e r y
technique are
ten t i m e s
These devices
and,
transients
voltage"
or heat generated
c a n c a u s e f a i l u r e at the j u n c t i o n . u s i n g the
for
zener
implies
i s o n l y s l i g h t l y d e p e n d e n t o n the
T h e operation takes place
of s i l i c o n ,
sec
suppressor
but
This
diodes.
a v a i l a b l e a n d the v o l t a g e current.
gradually.
that
have
than a one watt z e n e r speeds
i n e x c e s s of
the p e a k p o w e r
1 |d s e c
devices
manufactured
pulse.
^
10
r a t i n g c a n be u p
T h e y do have a
small
but w i t h c a r e f u l d e s i g n it i s p o s s i b l e
them in protection circuits
at f r e q u e n c i e s
in excess
to
of
100 M H z .
V a r i s t o r s - V o l t a g e Dependent Resistors. bulk semiconductor
device whose
A varistor
resistance varies
m a g n i t u d e but n o t the p o l a r i t y of the a p p l i e d v o l t a g e . are
composed
and
heating
of a p o l y c r y s t a l l i n e m a t e r i a l m a d e
special mixtures
(SiC) or oxides
containing either
of z i n c a n d b i s m u t h .
( M O V ' s ) have a m o r e better c l a m p i n g . surges.
silicon carbide
Metal-oxide
devices
of m a g n i t u d e , a
therefore developed
i n the
resistance d i m i n i s h e s by s e v e r a l
t h u s a b s o r b i n g the e n e r g y
voltage
the M O V p r e s e n t s
a v e r y h i g h r e s i s t a n c e at i t s t e r m i n a l s ; h o w e v e r , its
varistors
f r o m induced
In the a b s e n c e o f a b n o r m a l v o l t a g e s ,
s e n c e of a s u r g e ,
Varistors
highly nonlinear elements
r e c e n t l y f o r p r o t e c t i o n of e l e c t r i c
a
by p r e s s i n g
nonlinear V - I relationship and
They are
is
w i t h the
preorders
of the t r a n s i e n t
above
specified value. MOV's
current
provide low voltage
characteristics worse
nonlinear elements than z e n e r
diodes,
with
b i - p o l a r p r o p e r t y and high energy d i s s i p a t i o n / s i z e These devices, power
lines,
p r i m a r i l y intended for
step response
Typical V - I curves Gas edness
are
the
O n the
available.
50 n a n o s e c o n d
shown in F i g u r e
Breakdown Devices.
signal line
of M O V b e c o m e
of a n M O V i s i n the
spectrum are
(GDT's).
types
capability.
p r o t e c t i o n of A C
w i l l be a l s o a p p l i c a b l e to l o w v o l t a g e
protection when lower voltage The
surge
voltage-
but w i t h a
region.
22.
o p p o s i t e e n d of the
s p a r k gaps and g a s - d i s c h a r g e
T h e s e d e p e n d o n the f o r m a t i o n of a n i o n o i z e d
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
ruggtubes gas
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
116
Figure 21.
10
FORWARD
BIAS
REVERSE
BIAS
+
Schematic volt-ampere characteristic curve for a semiconductor diode
10
10 "
10*
10
C u r r e n t (A) Figure 22.
Volt-intensity curve for MOV
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
Lightning
and the Hazards
between m e t a l electrodes. s e v e r a l other f a c t o r s an arc
is formed,
currents
T h e gap length,
(~
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
are
state p o w e r
source
reaches
response
a high voltage
Druyvesteyn and Penning tant g l o w a n d a r c
is frequently
Many
time,
discharge
w h e r e one c a n see The arc
discharge
of a G D T a r e
(14),
here.
Its u s e i n t h e
s u r g e is shown i n F i g u r e 25,
r e g i o n c a n be s u s t a i n e d a t a l o w v o l t a g e ,
but
d e p e n d i n g o n the p o w e r
f i c a n t a n d m a y be s u f f i c i e n t to c a u s e As
the v o l t a g e p a s s e s
because
gas
ionized,
This
m a y be
to the
if the e l e c t r o d e s
are
It i s o f t e n a n a d v a n t a g e
p r o t e c t i o n to c l a m p t h e i n i t i a l v o l t a g e not c a p a b l e of p r o t e c t i n g a g a i n s t .
to p r o v i d e a d d e d
o v e r s h o o t that the G D T i s
This
c a n be d o n e i n
b y d e s i g n i n g h y b r i d c i r c u i t s w i t h the g a s
current protector initial
The
current
b u t c a n n o t be u s e d e f f e c t i v e l y i n p r o t e c t i n g l o w i n p u t
impedance circuits.
ways
hot
it m a y r e - i g n i t e o n the n e x t h a l f c y c l e .
tube is a n e x c e l l e n t d e v i c e f o r p r o t e c t i n g a g a i n s t h i g h
surges,
signi-
electrodes.
t h r o u g h z e r o at the e n d of e v e r y h a l f c y c l e ,
the G D T w i l l e x t i n g u i s h but at t i m e s , a n d the g a s
source,
damage
24
pro-
the A C v o l t a g e
m a y be s u f f i c i e n t to a l l o w a f o l l o w o r h o l d o v e r c u r r e n t . holdover current,
use
and
shown in F i g u r e
indicating an initial high c l a m p i n g voltage. t e c t i o n of a n A C l i n e
passing
A n e x c e l l e n t d e s c r i p t i o n of the
t h e i r m a i n c o n c l u s i o n s w i l l be b r i e f l y d e s c r i b e d
the a r c
gas
the i m p o r -
of s p a r k g a p s i s g i v e n i n a r e p o r t b y H a r t a n d H i g g i n s Typical volt-time curves
can
volts.
(1_3) d e s c r i b e t h e a c t i o n o f a
regions.
at l o w v o l t a g e .
such
s u c h that a
b e f o r e the a r c
n o t g e n e r a l l y f e a s i b l e b e l o w 90
d i s c h a r g e d e v i c e i n F i g u r e 23, high currents
and When
conducting until current and voltage
t e m p o r a r i l y d i s a b l i n g the s u p p l y .
fast-rising transient GDT's
pressure,
100V).
the s t e a d y
s u p p r e s s o r s also have a noticeable form.
gas
the s u p p r e s s o r i s c a p a b l e of c o n d u c t i n g h i g h
c a p a b l e of k e e p i n g the a r c reduced,
117
Produces
d e t e r m i n e the b r e a k d o w n v o l t a g e .
at a l o w v o l t a g e
Unfortunately, are
It
tube as
a n d a s o l i d - s t a t e d e v i c e to p r o t e c t
several the
initial
against
the
overshoot.
Results from
Protected
Systems
D u r i n g the l a s t two y e a r s
Atlantic Scientific Corporation
have been working with a large factures
O h i o b a s e d c o m p a n y that m a n u -
brain and body scanners
commonly called C A T scanners graphy),
and e a c h c o n s i s t s
microprocessor It w a s
for hospitals.
These
(Computerized Axial
of a l a r g e
are
Tomo-
computer and several
other
systems.
c o m m o n for some
systems
to h a v e o c c a s i o n a l b a d l y
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
118
10"
w*
w
6
w TIME
Figure 24.
s
70
10*
(SECONDS)
Small spark gap characteristics, Joslyn, 2301-14.
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
10
BENT
Lightning
and the Hazards
It Produces
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
4.
Figure 25.
Volt-time curves of transient with and without spark gap protection
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
119
120
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
formed images
o r f o r the c o m p u t e r
s t r u c t i o n s d u r i n g the c o u r s e vided with solid-state
to s u d d e n l y i s s u e f a l s e i n -
of a s c a n .
S e v e r a l units were
surge and transient
suppression.
pro-
Those
r a n g e d f r o m f r o n t e n d d e v i c e s c a p a b l e of c o n t r o l l i n g s u r g e s 2 5 , 000
A,
to l o w v o l t a g e c i r c u i t p r o t e c t o r s
in picosecond times Surprising time,
sec).
results were
system damage
Denver,
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
(10"^
obtained in terms
costs and s c a n q u a l i t y .
of s y s t e m
down-
One hospital in
C o l o r a d o i n d i c a t e d t h a t m a n y of t h e i r s o f t w a r e
dissappeared.
of
c a p a b l e of c l a m p i n g
problems
T h e s e w e r e f a l s e i n d i c a t i o n s that a s c a n had been
c o m p l e t e d and a l s o o c c a s i o n a l automatic patient table
movement
when not a s k e d f o r .
the i m -
A more
r e m a r k a b l e feature was
proved performance in s y s t e m downtime and electrical savings.
The graphs
t i m e f o r two F l o r i d a since kit installation. one of t h e s e s i t e s w a s over
190
tection.
systems
s h o w n i n F i g u r e 26 systems,
cost
s h o w the p e r c e n t
The P. C .
b o a r d r e p a i r c o s t s a v i n g s on
o v e r $ 4 , 000
per month.
S i n c e that t i m e ,
have been retrofit with solid-state
surge
built c o n n e c t o r / p r o t e c t o r Unfortunately, and p o w e r
pre-
c o m b i n a t i o n to b e i n c o r p o r a t e d .
the p r o t e c t o r
provided in many O E M c o m -
supplies is for overvoltage or
overcurrent
p r o t e c t i o n f o r f a i l i n g components, and its r e s p o n s e too l o n g f o r the r a p i d l y r i s i n g the
pro-
M a n y o f the u n i t s w e r e d e s i g n e d f o r e a s e o f i n s t a l l a t i o n
a n d n e e d e d o n l y s e p a r a t i o n o f a p l u g a n d s o c k e t to a l l o w a
puters
down-
with virtually zero downtime
surges
time is
and transients
far
entering
system. T h e r e s u l t s f r o m t h i s s t u d y o n the C A T s c a n n e r s
that s y s t e m s
c a n be a d e q u a t e l y p r o t e c t e d ,
indicates
but c a u t i o n m u s t
p l a c e d on the p e r f o r m a n c e of a n y o f f - t h e - s h e l f b l a c k b o x . k n o w l e d g e of its c o n t e n t s
be A
i s a m u s t i n o r d e r to a l l o w c o r r e c t
d e v i c e s e l e c t i o n a n d p r o v i d e the a d e q u a t e p r o t e c t i o n r e q u i r e d .
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
Lightning
and
the
Hazards
It
Lightning W a r n i n g and T r a c k i n g Most instruments
and techniques
for
lightning warning,
r a n g e or
o c c u r r i n g and an excellent
comprehensive
One The
l o c a t i o n at w h i c h l i g h t n i n g i s
justifiably acceptable approaches
f i r s t d e s i g n of a w a r n i n g d e v i c e b u i l t i n 1962;
until
c o m b i n i n g t h e s e two
this e m p l o y e d a corona
i s n e c e s s a r y as
tech-
p o i n t to
l i g h t n i n g w a r n i n g that a r e i s t i n g l i g h t n i n g , a n d the
important.
measure
i t s e l f to g r o u n d f o r the f i r s t
c h a r g e b u i l d u p i n a c l o u d i s to u s e
of
of
of a c h a r g e d
m o d e r n and satisfactory method
e l e c t r i c field below it.
The
two a s p e c t s
O n e i s the d e t e c t i o n
o t h e r i s the d e t e c t i o n
t h a t i s a b o u t to d i s c h a r g e most
there are
re-
recordings.
a n d a c i r c u i t to d e t e c t e l e c t r i c f i e l d c h a n g e s .
combination approach
The
the
(8).
b e e n a c o m b i n a t i o n of f i e l d a n d f i e l d c h a n g e
niques was the f i e l d ,
d e s c r i p t i o n of
given by C i a n o s and P i e r c e
of t h e m o r e
cently has
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
Instrumentation
f u n c t i o n b y m o n i t o r i n g the m a j o r i t y of t h e m i s
121
Produces
time.
of m o n i t o r i n g
a f i e l d m i l l to m e a s u r e
When lightning develops
i n the
is affected Field
by wind Mill.
cloud,
current
to
indication
speed.
Fair
weather
a t a l o w p o s i t i v e v a l u e o f + 100 commonly produce
A n y corona
electric fields are V / m ,
and s t o r m
h i g h f i e l d s i n the r a n g e
a s t o r m is m o v i n g in,the v e r y
of - 5, 000
sudden excursions
is building up in a cloud overhead,
typically
measured
conditions
to c l o u d d i s c h a r g i n g c a n b e e a s i l y r e c o g n i z e d .
V / m .
When
i n the f i e l d W h e n the
due
charge
a c h a n g e i n the p o l a r i t y of
e l e c t r i c f i e l d c a n b e o b s e r v e d f r o m the p o s i t i v e f a i r
weather
value
a field
- 2 , 000
to a h i g h n e g a t i v e
value.
V / m c a n be u s e d as
is possible.
However,
For
a first
such
accurate information.
peculiarities make
of s t o r m
development
a p e r i o d of t i m e
There are
can
problems
give
with
f i e l d s and c o n c e a l i n g of true f i e l d s
that
a fixed value warning unreliable.
Considering negative
overhead
and m o r e
distant
c h a r g e c e n t e r i n the l o w e r p a r t
relative
clouds,
the
distances
and angular
o f the c l o u d .
relationships
field
strong
though,
Depending the
p o s i t i v e c h a r g e c e n t e r at the v e r y b a s e of the c l o u d c o u l d times
of
s h o u l d not be r e l i e d o n
s t u d y i n g the
m i l l r e a d i n g r e s p o n d s m o s t l y to t h e f i e l d s d u e to t h e on
the
e s t i m a t e that l i g h t n i n g
such a fixed value
b u i l d u p of the e l e c t r i c f i e l d o v e r
much more
situations,
order
solely for determining warning levels; and
the
the
t h e r e i s a n e l e c t r o s t a t i c f i e l d c h a n g e that c a n be m o n i t o r e d g i v e a n e s t i m a t e of f l a s h d i s t a n c e .
ex-
cloud
have a dominating effect,
c h a r g e i n the u p p e r p a r t
a n d s o c o u l d the
of a m o r e
distant
cloud.
large Such
small some-
positive variable
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
122
TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES
Melbourne, Florida
aver. per month
$39,000
$3,714 $
0
$65,000
$4,062
$
0
costs since kit
kit installed
•
40 -
costs before kit
20 -
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
o
40.
• Nov
V i " i — May Jan Mar
:\
J
r 0
40-
1 Mar
1 Sept
July
1 Nov
i Jan
Mar
'!
Temple University
20.
^\
\
kh Ml
J
f May
/
kit installed
\
— r — Jul y Sept Nov
Jan
i Mar
St. Petersburg, Florida kit installed
20. 0
^
\
—i Aug Figure 26.
Figure 27.
/
y
1 Oct
, 1 Dec 1
,
,
i
\ i
,
i Feb Apr Jun Aug
Advantages of surge protection on large system
Electrostatic field change from lightning as a function of flash distance
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
BENT
Lightning
and the Hazards
c o n d i t i o n s h a v e to
It
Produces
be r e c o g n i z e d i n o r d e r
i n t e r p r e t a t i o n s of the f i e l d m i l l
123
to a c h i e v e
The major problem in determining correct caused by space
charge
screening.
by c o r o n a g i v e n off f r o m vegetation sources fumes,
etc.
sharp points on structures
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
r e l i a b l e d e t e r m i n a t i o n of c h a r g e
round structure
s u c h as a water
Field Change Equipment. i n the e l e c t r i c the r e c e i v e r
tower.
build up,
T h e f i e l d at of
T h e i n s t r u m e n t counts
f i e l d c a u s e d b y l i g h t n i n g to the d i s t a n c e
a n t e n n a a n d the l i g h t n i n g f l a s h .
3 V / m a t 4 0 m i l e s a n d 5, 0 0 0 o c c u r at a g r e a t d i s t a n c e ,
somewhat closer selectiveness
change
between
It a l s o t e n d s t o
Flashes
current
t h e n a f a l s e i n d i c a t i o n of a Considering however
of the e q u i p m e n t a n d the p h y s i c s of the
it i s s h o w n b y the f o l l o w i n g a r g u m e n t s
t h a t the u n c e r t a i n t y i n the
great.
i n s t r u m e n t s h o u l d be d e s i g n e d to o p e r a t e 0 t o 100 m i l e s .
i n the
fre-
T h i s d e t e r m i n e s that the
m e n t r e s p o n d s e s s e n t i a l l y to the n e a r f i e l d e l e c t r o s t a t i c p o n e n t of the e l e c t r i c
field change,
the d i s t a n c e d e t e r m i n a t i o n i s q u i t e r e l i a b l e .
3
and hence,
The 1/d
relation-
3
s h i p i s b a s e d o n the a p p r o x i m a t i o n that t h e l e n g t h of the c h a n n e l i s s m a l l c o m p a r e d w i t h i t s d i s t a n c e f r o m the Within a
deviations f r o m
10km range,
Figure 27illustrates
the
com-
The radiation component
of the e l e c t r i c f i e l d c h a n g e v a r i e s w i t h ( 1 / d i s t a n c e )
hence,
over
equip-
which for these conditions is
d o m i n a n t o v e r the r a d i a t i o n c o m p o n e n t .
point.
the
problem,
q u e n c y r a n g e b e l o w 1 k H z , a n d t h u s be s e n s i t i v e to l i g h t n i n g a distance f r o m
dis-
T h i s f i e l d change i s on
V / m at 3 m i l e s .
s t r o k e w i l l be g i v e n .
d i s t a n c e d e t e r m i n a t i o n is not so
such a
lightning
not of i d e n t i c a l i n t e n s i t y , a n d i f s o m e v e r y l a r g e
The
a
3.
e s s e n t i a l l y b y r e l a t i n g the s i z e of the
c r i m i n a t e i n f a v o r of g r o u n d d i s c h a r g e s .
strokes
mask
and produce false field indications.
s h o u l d b e p l a c e d a b o v e m u c h o f the c o r o n a o n t o p o f a
flashes and operates
are
and natural
also by ions in exhaust
l o c a t i o n w o u l d o n l y be e n h a n c e d b y a b o u t a f a c t o r
average,
is
S u c h c h a r g e d r e g i o n s c l o s e to a f i e l d m i l l c a n
T o obtain a m o r e large
field values
Ion c l o u d s c a n be f o r m e d
under high fields,
the e f f e c t of the c l o u d o v e r h e a d , field m i l l
accurate
data.
lightning
observation
this does not a l w a y s hold true and
1/d
3
r e l a t i o n c a n be
some electrostatic
m e n t s w h i c h f o l l o w the t h e o r e t i c a l c u r v e U s i n g t h i s t y p e of e q u i p m e n t a s
expected.
field change
measure-
closely.
the b a s i c
sensor,
Atlantic
S c i e n t i f i c C o r p o r a t i o n d e v e l o p e d a n e w i n s t r u m e n t that
integrates
the n u m b e r of l i g h t n i n g c o u n t s o v e r a v a r i a b l e t i m e i n t e r v a l f r o m 10 t o 6 0 counts
seconds and presents
a d i g i t a l d i s p l a y of the n u m b e r of
separated in four distance
ranges,
0-5
miles,
5-10
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
miles,
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
124
Electric Field (V/m) 105786
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
n
— c
21
S I o * ; ; u&b
• ; ;
16**5
1
;
,\i*tsx
tUal;TJimle!(h*$)! j | < • fiif-- -i- '
v ct
d v.
I -t— • T • -
mm
1
^IK! *: :fti :
:
TT
| ...j:
I I If
1
1
1 1
|;;.jvl::;j!k:LL:L:fel: "11 r
Figure 28. Results for lightning warning instrumentation at a naval station. The top three graphs are of electric field and the lower three of electric field change excursions greater than three preset values.
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
4.
BENT
Lightning and the Hazards It Produces
125
10-20 miles and 20-100 miles. An integration time of one minute makes erroneous distance readings easier to recognize, since the integrated count at the incorrect distance is much smaller than the simultaneous count in the correct distance range. An audible warning that can be set at any range level is also included. In addition, an output of each lightning strike separated into the four distance ranges was provided for the recorder. Figure 28 illustrates some results of this equipment showing electric field charge build up and warning several minutes prior to close lightning. Lightning Position and Tracking. An extremely sophisticated Lightning Position and Tracking System (LPATS) has been designed to locate and track thunderstorms out to 300 or 400 miles with an accuracy of better than 3 degrees. Lightning location techniques by triangulation beyond 15 0 km have been in existance around the globe since World War II which provide good accuracy, but for close lightning the tortuous channel as well as ionospheric reflections lead to large errors. LPATS relies on being able to detect the cloud to ground discharge by its unique broadband magnetic field waveform. Once detected, this waveform is sampled for the part of the return stroke that is within 100 feet of the ground. It is well known that this part of the discharge is almost always vertical and carries the greatest energy, implying that we have a vertical amni-directional radiating antenna and a powerful transmitter The system monitors ground stroke location, storm center and speed and direction of movement, as well as storm intensity and its variations. It can resolve multiple storms and is capable of displaying the information in map form on a TV screen. Additional advantages of the system are its capability of monitoring "hot" lightning which is known to start forest fires, and its ability to investigate its own performance and malfunctionso 0
ABSTRACT A general understanding of the basic lightning process can lead to a much better understanding of lightning protection techniques and the resulting level of protection. The design of satisfactory lightning protection systems can only be achieved with a thorough knowledge of the mechanism and characteristics of a lightning strike, and the related problems that a steep voltage wavefront has on inadequate bonding and grounding.
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
126
TOXIC CHEMICAL AND EXPLOSIVES FACILITIES
Lightning induced line surges can also cause major damage to electrical or electronic systems such as computers, and it may also change data or programs without any permanent damage. The resulting effects can be disastrous where chemical mixing is governed by electronic techniques. A considerable portion of the damage caused by such transients and surges can be eliminated with careful planning of protection equipment, but the advent of solid-state components has placed considerable emphasis on the term "careful planning". This paper discusses a l l these points and also attempts to educate the reader in lightning protection and statistics as well as lightning warning systems. References 1.
Llewellyn, S. K., Broadband magnetic waveforms radiated from lightning, M.S. Thesis, Florida Institute of Technology, Melbourne, F l o r i d a , 1977.
2.
Anderson, J. G. and K . O. Tangen, Insulation of switchingsurge voltages, in E H V Transmission Line Reference Book, Edison E l e c t r i c Inst., New York, 1968.
3.
Golde, R. H., Lightning protection, Edward Arnold Ltd, London, 1973.
4.
Office of Naval Research, Code 450, Review of lightning protection technology for tall structures, Conference proceedings, 1975.
5.
Bent, R. B.and S. K . Llewellyn, A n investigation of the lightning elimination and strike reduction properties of dissipation a r r a y s , Report No. FAA-RD-77-19, 1976.
6.
Smith, R. S., Lightning protection for facilities housing electronic equipment, F A A - R D - 7 7 - 8 4 , May, 1977.
7.
H i l l , R. D., Thunderbolts, Endeavour, 31, No. 112, 1972.
8.
Cianos, N . and E. T. Pierce, Methods for lightning warning and avoidance, SRI Tech. Report 1, 1974.
9.
Pierce, E . T . and P r i c e , G . H., Natural electrical effects on the operation of tethered balloon systems. Stanford Research Institute Project 3058, M a r c h , 1974.
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
3-9,
4.
BENT
Lightning
and the Hazards
It
Produces
127
10. Horvath, T., Gleichwertige Fläche und relative Einschlagsgefahr als charakteristische Ausdrücke des Schutzeffektes von Blitzableitern. Int. Blitzschutzkonferenz, Munich, 1971.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 23, 2018 | https://pubs.acs.org Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004
11. Odenberg, R., Protecting facilities from induced lightning and power line switching transients, F A A - R D - 7 7 - 8 4 , May, 1977. 12. F i s h e r , F . A., Instruction Bulletin 53E 9007, Fischer and Porter Co., Warminster, Penn., 1970. 13. Druyvesteyn, M. J. and F. M. Penning, E l e c t r i c a l discharges in gases , Rev. Mod Physics, 12, p. 87, 1940. a
14. Hart, W. C., and D . F . Higgins, A guide to the use of spark gaps for electromagnetic pulse (EMP) protection, Report No. JES-198-1M-11/75, Joslyn Electronic Systems, Goleta, Ca., 1972. RECEIVED November 22,
1978.
Scott; Toxic Chemical and Explosives Facilities ACS Symposium Series; American Chemical Society: Washington, DC, 1979.