Chapter 18
Linear Dextrins Solid Forms and Aqueous Solution Behavior S. G. Ring and M. A. Whittam
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
Institute of Food Research, Colney Lane, Norwich, Norfolk NR4 7UA, United Kingdom
This article reviews physical and physico - chemical studies on linear malto - dextrins. The various crystalline forms of the dextrins are described and the melting and glass transition behavior discussed. Solution conformations and the viscous behavior of dilute and concentrated aqueous solutions are considered. In addition factors affecting the interaction of small solutes with the dextrins in aqueous solution are discussed and compared with the known behavior of cyclodextrins.
A m y l o d e x t r i n s a r e c o n v e n i e n t l y p r e p a r e d by t h e l i m i t e d h y d r o l y s i s of starch t o produce fragments ranging i n degree o f polymerization f r o m 2 t o a p p r o x i m a t e l y 6 0 . A l t h o u g h b r a n c h e d and c y c l i c f o r m s may be p r o d u c e d , i n t h i s a r t i c l e we w i s h t o c o n s i d e r t h e a q u e o u s s o l u t i o n b e h a v i o r o f l i n e a r d e x t r i n s . T h e s e d e x t r i n s may be p r o d u c e d i n a number o f ways f o r e x a m p l e by t h e l i m i t e d a c i d h y d r o l y s i s o f s o l i d f o r m s o f s t a r c h , more p a r t i c u l a r l y s t a r c h g r a n u l e s . A l t e r n a t i v e l y t h e y may be p r o d u c e d by l i m i t e d o t - a m y l o l y s i s o f s o l u b l e f o r m s o f s t a r c h . More r e c e n t l y w i t h t h e p r o d u c t i o n o f t h e d e b r a n c h i n g enzymes p u l l u l a n a s e and i s o a m y l a s e and w i t h t h e i d e n t i f i c a t i o n o f α - a m y l a s e s w h i c h p r o d u c e o l i g o s a c c h a r i d e s o f f i x e d length from t h e i r h y d r o l y s i s o f s t a r c h (1.2) t h e r e i s i n c r e a s e d o p p o r t u n i t y f o r t h e p r o d u c t i o n o f d e f i n e d d e x t r i n s f r o m s t a r c h . In a d d i t i o n t h e r e i s p o t e n t i a l , t h r o u g h t h e a p p l i c a t i o n o f g e n e t i c a p p r o a c h e s and m o l e c u l a r b i o l o g y t o m a n i p u l a t e enzyme s t r u c t u r e and h e n c e f u n c t i o n t o o b t a i n a w i d e r r a n g e o f p r o d u c t s more e f f e c t i v e l y . T h e s e m o l e c u l e s h a v e a v a r i e t y o f i n d u s t r i a l u s e s b o t h i n t h e f o o d i n d u s t r y and e l s e w h e r e . T h e y may be u s e d a s a g e n t s f o r t h e m a n i p u l a t i o n o f l i q u i d t e x t u r e and a l s o t h e m e c h a n i c a l p r o p e r t i e s o f s o l i d - l i k e m a t e r i a l s . In b o t h of these instances the i n t e r a c t i o n o f the d e x t r i n with water i n f l u e n c e s u s e f u l n e s s . C y c l o d e x t r i n s h a v e v e r y many p o t e n t i a l u s e s as a g e n t s f o r m o l e c u l a r e n c a p s u l a t i o n , t h e e n c a p s u l a t e d s p e c i e s occupying the c y c l o d e x t r i n c a v i t y . Dextrins can a l s o form molecular complexes with guest molecules. In a d d i t i o n i t i s p o s s i b l e t o 0097-6156/91/0458-0273$06.25A) © 1991 American Chemical Society
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
274
BIOTECHNOLOGY OF AMYLODEXTRIN OLIGOSACCHARIDES
encapsulate a c t i v e ingredients i n glassy matrices of the d e x t r i n ; i n t h e s e m a t r i c e s i t i s p o s s i b l e t o p r o t e c t a c t i v e s p e c i e s and s u b s e q u e n t l y o b t a i n r e l e a s e on p l a s t i c i z a t i o n . F o r t h e s e a p p l i c a t i o n s i n t e r a c t i o n of the d e x t r i n with water again influences u s e f u l n e s s . C u r r e n t r e s e a r c h on t h e s e d e x t r i n s i s e x a m i n i n g t h e e f f e c t o f w a t e r on m a t e r i a l and m o l e c u l a r p r o p e r t i e s as a f u n c t i o n o f c o m p o s i t i o n , t e m p e r a t u r e and d e g r e e o f p o l y m e r i z a t i o n . In t h i s way i t i s h o p e d t o e s t a b l i s h p r e d i c t i v e r e l a t i o n s h i p s f o r s t r u c t u r e and f u n c t i o n w h i c h w i l l h e l p t a r g e t t h e a p p l i c a t i o n o f biotechnology to t h e i r production.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
C r y s t a l l i n e Forms S o l i d a m y l o d e x t r i n s may be i n t h e g l a s s y / r u b b e r y o r c r y s t a l l i n e s t a t e ; c o n s i d e r a b l y more s t u d i e s h a v e been c a r r i e d o u t on t h e l a t t e r , so c r y s t a l s t r u c t u r e s a r e q u i t e w e l l u n d e r s t o o d . W h i l s t a m y l o p e c t i n i s t h o u g h t t o be t h e m a i n c r y s t a l l i n e component i n s t a r c h granules, amylose f r a c t i o n s ranging i n degree o f p o l y m e r i z a t i o n f r o m DP100 t o DP2700 h a v e been c r y s t a l l i z e d f r o m w a t e r i n t h e f o r m o f f i b r i l s ( 3 ) . S h o r t e r c h a i n a m y l o s e s o f DP15 and 3 5 h a v e been shown t o f o r m more p e r f e c t s i n g l e c r y s t a l s (4). O l i g o m e r s o f g l u c o s e h o w e v e r between h e p t a m e r and t r i m e r a r e v e r y d i f f i c u l t t o c r y s t a l l i z e . A l t h o u g h o l i g o m e r s as s h o r t a s m a l t o h e x a o s e h a v e been c o - c r y s t a l l i z e d i n t h e p r e s e n c e o f l o n g e r c h a i n s , t h e minimum c h a i n l e n g t h n e c e s s a r y f o r d o u b l e h e l i x f o r m a t i o n a p p e a r s t o be DP10 ( 5 . 6 ) . C r y s t a l s t r u c t u r e s o f g l u c o s e and m a l t o s e h a v e l o n g been known, b u t i t i s o n l y r e c e n t l y t h a t a c r y s t a l l i n e s t r u c t u r e f o r m a l t o t r i o s e has b e e n r e p o r t e d (2). D e g r e e o f c r y s t a l l i n i t y can v a r y w i d e l y , f r o m r e t r o g r a d e d a m y l o s e w h i c h i s p r e d o m i n a n t l y amorphous, c o n t a i n i n g p e r h a p s 10% c r y s t a l l i n e m a t e r i a l , t o h i g h l y c r y s t a l l i n e s i n g l e c r y s t a l s (4) o r s p h e r u l i t e s (δ) p r e p a r e d f r o m s h o r t e r c h a i n a m y l o s e s . S i m i l a r l y , s i n g l e c r y s t a l s o f V a m y l o s e have been r e p o r t e d (4^9) as w e l l as amorphous a m y l o s e c o m p l e x e s w h i c h do n o t g i v e r i s e t o X - r a y d i f f r a c t i o n p a t t e r n s (Ifi). Since the f i r s t p u b l i c a t i o n of X-ray d i f f r a c t i o n p a t t e r n s o f A , Β and C s t a r c h e s s i x t y y e a r s ago (H), s e v e r a l m o d e l s h a v e been p r o p o s e d f o r t h e i r c r y s t a l s t r u c t u r e s . U n t i l r e c e n t l y , a r i g h t handed, p a r a l l e l stranded arrangement o f double h e l i c e s , with a n t i p a r a l l e l packing of the h e l i c e s themselves was f a v o r e d f o r b o t h A and Β s t r u c t u r e s ( 1 2 . 1 3 ) . In t h e l a s t two y e a r s , h o w e v e r , s t u d i e s c o m b i n i n g X - r a y and e l e c t r o n d i f f r a c t i o n m e t h o d s o n s i n g l e c r y s t a l s o f a m y l o s e DP15, t o g e t h e r w i t h c o m p u t e r e n e r g y c a l c u l a t i o n s h a v e been c a r r i e d o u t ( 1 4 . 1 5 ) . From t h e s e s t u d i e s , a l e f t handed, p a r a l l e l stranded double h e l i x formation seems more l i k e l y , w i t h h e l i c e s p a c k e d p a r a l l e l t o one a n o t h e r i n the c r y s t a l . L e f t handed o r r i g h t handed, i t i s g e n e r a l l y accepted t h a t A and Β s t r u c t u r e s c o n s i s t o f s i m i l a r d o u b l e h e l i c e s ; t h e d i f f e r e n c e l i e s i n the s p a t i a l arrangement of these double h e l i c e s w i t h i n t h e c r y s t a l . In t h e Β s t r u c t u r e , s i x d o u b l e h e l i c e s a r e hexagonally arranged around a c e n t r a l c a v i t y c o n t a i n i n g water m o l e c u l e s . A i s more c o m p a c t , t h e c e n t r a l c a v i t y c o n t a i n i n g a n o t h e r double h e l i x , leading to a c r y s t a l structure including l e s s water t h a n t h a t o f B. L e s s c o n t r o v e r s y s u r r o u n d s t h e s t r u c t u r e o f V a m y l o s e , now
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
18.
RING & WHTTTAM
Linear Dextrins
275
w i d e l y a c c e p t e d as a s i x f o l d s i n g l e h e l i x , a l t h o u g h w i t h i n t h e c l a s s i f i c a t i o n "V" s e v e r a l c r y s t a l l i n e v a r i a n t s a r e f o u n d . Vh and Va, t h e h y d r a t e d and a n h y d r o u s f o r m s o f c o m p l e x e d a m y l o s e , c a n be i n t e r c o n v e r t e d by m a n i p u l a t i n g m o i s t u r e o r h u m i d i t y c o n d i t i o n s . When 1 - b u t a n o l i s u s e d as t h e c o m p l e x i n g a g e n t , a t h i r d c r y s t a l s t r u c t u r e i s o b s e r v e d ( 1 6 ) , w h i l s t s e v e n f o l d and e i g h t f o l d h e l i c a l c o n f o r m a t i o n s h a v e been r e p o r t e d f o r a m y l o s e c o m p l e x e s w i t h b r a n c h e d c h a i n a l c o h o l s and α-naphthol r e s p e c t i v e l y ( 9 ) . One q u e s t i o n w h i c h r e m a i n s t o be r e s o l v e d i s t h a t o f t h e e x a c t l o c a t i o n o f t h e c o m p l e x i n g a g e n t w i t h i n t h e V s t r u c t u r e . In s o l u t i o n , t h e r e i s a body o f e v i d e n c e t o s u g g e s t t h a t t h e a m y l o s e h e l i x encapsulates the complexing "guest" molecule w i t h i n i t s core, g i v i n g r i s e , f o r example, t o the f a m i l i a r b l u e c o l o r o f the a m y l o s e - i o d i n e c o m p l e x . E v i d e n c e f r o m X - r a y and e l e c t r o n d i f f r a c t i o n t h a t s e v e n and e i g h t f o l d h e l i c e s a r e f o r m e d when i n c r e a s i n g l y l a r g e c o m p l e x i n g m o l e c u l e s a r e u s e d (2) l e n d s w e i g h t t o t h e i n c l u s i o n t h e o r y . However, an a l t e r n a t i v e e x p l a n a t i o n f o r t h e l a r g e r u n i t c e l l s ( a s c r i b e d t o s e v e n and e i g h t f o l d h e l i c e s ) i s that the complexing molecules are present i n the i n t e r s t i c e s between t h e i n d i v i d u a l h e l i c e s (lé). X - r a y d i f f r a c t i o n a n a l y s i s has g i v e n l i t t l e i n f o r m a t i o n on t h e l o c a t i o n o f t h e c o m p l e x e d m o l e c u l e s . T h i s may be b e c a u s e t h e s e m o l e c u l e s a r e r a n d o m l y p l a c e d and c o n s e q u e n t l y f o r m no r e g u l a r l a t t i c e f o r d i f f r a c t i o n , o r i t may be t h a t d e s p i t e b e i n g c o n f i n e d w i t h i n t h e h e l i c e s g u e s t m o l e c u l e s p o s s e s s t o o much r o t a t i o n a l and t r a n s l a t i o n a l f r e e d o m t o be i d e n t i f i a b l e by X - r a y d i f f r a c t i o n . I f c o m p l e x i n g m o l e c u l e s a r e removed f r o m t h e a m y l o s e c r y s t a l s by d r y i n g , the V s t r u c t u r e remains i n t a c t , i n d i c a t i n g t h a t the c o m p l e x a n t i s n o t a n e c e s s i t y f o r c r y s t a l s t a b i l i t y . However t h e r e i s some e v i d e n c e f r o m X - r a y d i f f r a c t i o n t o g e t h e r w i t h p o t e n t i a l energy c a l c u l a t i o n s t h a t dimethyl sulphoxide molecules are l o c a t e d i n s i d e t h e a m y l o s e h e l i x w i t h one DMSO m o l e c u l e f o r e v e r y t h r e e g l u c o s e r e s i d u e s (1Z). F u r t h e r work i s o b v i o u s l y needed t o d e t e r m i n e u n e q u i v o c a l l y where t h e i n c l u d e d m o l e c u l e s a r e s i t u a t e d w i t h i n the V amylose s t r u c t u r e . Computer m o d e l l i n g i s being used i n c r e a s i n g l y t o g a i n i n s i g h t i n t o the e n e r g i e s o f d i f f e r e n t m o l e c u l a r c o n f o r m a t i o n s . H e l i c a l forms o f a m y l o d e x t r i n s h a v e been m o d e l l e d u s i n g t h e d i m e r m a l t o s e as t h e s t a r t i n g u n i t ( 1 8 ) . Minimum e n e r g y c o n f o r m a t i o n s o f t h e d i s a c c h a r i d e a r e f o u n d by c a l c u l a t i n g t h e e n e r g y as t h e two s u g a r r i n g s a r e r o t a t e d a b o u t t h e g l y c o s i d i c l i n k a g e . P o l y m e r s b u i l t up f r o m t h e s e low e n e r g y m a l t o s e u n i t s a r e f o u n d t o have h e l i c a l s t r u c t u r e s w h i c h c o r r e s p o n d t o conformations observed f o r maltodextrins i n the c r y s t a l l i n e state. T h u s c o m p u t e r s t u d i e s complement X - r a y a n a l y s i s , and may h e l p i n t h e f u t u r e t o r e s o l v e t h e q u e s t i o n o f where c o m p l e x e d m o l e c u l e s a r e l o c a t e d w i t h i n c r y s t a l l i n e V amylose. The p o l y m o r p h i c f o r m o f a m y l o s e o r a m y l o d e x t r i n d e p e n d s on s e v e r a l f a c t o r s . F o r an a m y l o d e x t r i n o f a g i v e n l e n g t h i n a q u e o u s s o l u t i o n , formation of the A c r y s t a l type i s favored over Β at high t e m p e r a t u r e and h i g h c o n c e n t r a t i o n . C h a i n l e n g t h a l s o has an
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
276
BIOTECHNOLOGY OF AMYLODEXTRIN OLIGOSACCHARIDES
e f f e c t , s h o r t e r c h a i n s g i v i n g r i s e t o A s t r u c t u r e s and l o n g e r chains ( i n c l u d i n g amylose r e t r o g r a d e d under o r d i n a r y c o n d i t i o n s ) forming Β s t r u c t u r e s . Intermediate c o n d i t i o n s give r i s e to C-type c r y s t a l f o r m a t i o n . B e l o w DP10, s o l u t i o n s o f a m y l o d e x t r i n s d o n o t c r y s t a l l i z e e v e n a t 4°C and 5 0 % w/w, i m p l y i n g a l o w e r l i m i t o f c h a i n l e n g t h n e c e s s a r y f o r d o u b l e h e l i x f o r m a t i o n ( 5 ) . The c r y s t a l l i z a t i o n , m e l t i n g and d i s s o l u t i o n b e h a v i o r o f a m y l o d e x t r i n s may g i v e i n s i g h t i n t o t h e b e h a v i o r o f w h o l e s t a r c h e s , S i n c e i t i s the short chains of amylopectin which g i v e r i s e to the c r y s t a l l i n e r e g i o n s w i t h i n s t a r c h g r a n u l e s and w h i c h a r e b e l i e v e d t o m e l t and r e c r y s t a l l i z e d u r i n g g e l a t i n i z a t i o n and r é t r o g r a d a t i o n r e s p e c t i v e l y . These t r a n s i t i o n s are important i n terms o f f u n c t i o n a l p r o p e r t i e s o f d e x t r i n s and s t a r c h e s . A d d i t i o n o f an a l c o h o l , f o r e x a m p l e e t h a n o l o r i s o - p r o p a n o l , t o an a m y l o d e x t r i n s o l u t i o n e n c o u r a g e s t h e f o r m a t i o n o f A- r a t h e r t h a n B- t y p e c r y s t a l s . Above a c e r t a i n a l c o h o l c o n c e n t r a t i o n , V-type c r y s t a l s then begin to form p r e f e r e n t i a l l y . W h i l s t i t i s d i f f i c u l t t o p r e p a r e h i g h l y c r y s t a l l i n e s a m p l e s o f A and Β s t r u c t u r e using long c h a i n amylose, V amylose c r y s t a l s w i l l form r e l a t i v e l y e a s i l y under the r i g h t c o n d i t i o n s . S u i t a b l e complexing a g e n t s i n c l u d e f a t t y a c i d s , l i n e a r and b r a n c h e d a l c o h o l s , m o n o g l y c e r i d e s and v a r i o u s o t h e r o r g a n i c compounds. C a r e i s r e q u i r e d when c r y s t a l l i z i n g h i g h m o l e c u l a r w e i g h t a m y l o s e c o m p l e x e s ; f o r e x a m p l e a r a p i d c o o l i n g r a t e can l e a d t o f o r m a t i o n o f amorphous as w e l l as c r y s t a l l i n e m a t e r i a l ( 1 0 ) . S u c c e s s f u l technique r e s u l t s in p l a t e l e t - l i k e c r y s t a l s c o n s i s t i n g of stacked l a m e l l a e , t h e m s e l v e s f o r m e d f r o m a m y l o s e m o l e c u l e s f o l d e d b a c k and f o r t h b e t w e e n t h e b o t t o m and t o p s u r f a c e s o f t h e l a m e l l a ( 9 . 1 0 ) . For s y n t h e t i c polymer c r y s t a l l i z a t i o n i t i s found t h a t l a m e l l a r t h i c k n e s s , and h e n c e c r y s t a l s t a b i l i t y , d e p e n d s s t r o n g l y on p r e p a r a t i o n c o n d i t i o n s s u c h as t e m p e r a t u r e o f c r y s t a l l i z a t i o n and c o o l i n g r a t e . F u t u r e s t u d i e s may i n d i c a t e s i m i l a r r e l a t i o n s h i p s f o r these biopolymer c r y s t a l s . I f i t i s accepted t h a t the complexed molecules i n V amylose are i n c l u d e d w i t h i n the h e l i x , then the complexation p r o c e s s can be t h o u g h t o f as m o l e c u l a r e n c a p s u l a t i o n . S t a b i l i t y o f t h e s e c o m p l e x e s has been s t u d i e d by o b s e r v a t i o n o f t h e m e l t i n g / d i s s o l u t i o n b e h a v i o r o f amorphous and c r y s t a l l i n e c o m p l e x e s . D i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y (DSC) shows an e n d o t h e r m i c t r a n s i t i o n o n h e a t i n g amylose complexes; the value at which i t occurs depends on the n a t u r e o f t h e c o m p l e x . T h i s t r a n s i t i o n c o r r e s p o n d s t o m e l t i n g and d i s s o c i a t i o n o f t h e a m y l o s e - g u e s t c o m p l e x . Amorphous c o m p l e x e s h a v e been shown t o m e l t a t l o w e r t e m p e r a t u r e s t h a n t h e i r c r y s t a l l i n e counterparts, demonstrating the s t a b i l i z i n g i n f l u e n c e of the crystal l a t t i c e (Table I ) . The n a t u r e o f t h e g u e s t m o l e c u l e a l s o a f f e c t s c o m p l e x s t a b i l i t y ; f o r example complexes formed u s i n g guest molecules o f i n c r e a s i n g hydrocarbon chain length d i s s o c i a t e at i n c r e a s i n g l y h i g h e r temperatures. Thus the l o n g e r hydrocarbon c h a i n s c o n f e r g r e a t e r s t a b i l i t y on t h e a m y l o s e c o m p l e x s t r u c t u r e .
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
18.
RING & WHTTTAM
277
Linear Dextrins
T a b l e I . M e l t i n g t e m p e r a t u r e s f o r c r y s t a l l i n e and amorphous complexes o f amylose with l i n e a r a l c o h o l s Alcohol Chain Length
M e l t i n g Temperature
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
C r y s t a l 1 i ne C4 C5 C6 C7 C8 CIO
(K) Amorphous
341 354 364 368 372 377
321 334 344 348 352 358
A t t e m p t s h a v e been made t o d e s c r i b e t h e d i s s o l u t i o n o f s t a r c h c r y s t a l l i t e s on g e l a t i n i z a t i o n u s i n g t h e F l o r y e q u a t i o n f o r p o l y m e r / d i l u e n t systems (H): 1
_ 1
=
R
V Γ
XV,
(1)
where Tm i s t h e o b s e r v e d m e l t i n g t e m p e r a t u r e , Tm° i s t h e m e l t i n g t e m p e r a t u r e o f t h e u n d i l u t e d p o l y m e r , AHu i s t h e e n t h a l p y o f f u s i o n o f t h e r e p e a t i n g u n i t ( g l u c o s e ) , vyV- i s t h e r a t i o o f t h e m o l a r volume o f the r e p e a t i n g u n i t ( g l u c o s e ; t o t h a t o f the d i l u e n t ( w a t e r ) , ν i s t h e v o l u m e f r a c t i o n o f t h e d i l u e n t and χ i s t h e Flory-Huggins polymer- s o l v e n t i n t e r a c t i o n parameter. W h i l s t meeting with l i m i t e d success, the a p p l i c a t i o n o f the F l o r y equation t o w h o l e s t a r c h must be v i e w e d w i t h c a u t i o n s i n c e i t i s v a l i d o n l y f o r e q u i l i b r i u m m e l t i n g o f p u r e c r y s t a l l i n e p h a s e s . The p r e s e n c e o f g l a s s y o r amorphous m a t e r i a l w i t h i n t h e g r a n u l e w o u l d t e n d t o a f f e c t c r y s t a l l i t e melting temperature, thus j e o p a r d i z i n g the a p p l i c a b i l i t y of the F l o r y equation. Spherulites of amylodextrins i n A o r Β f o r m may be c o n s i d e r e d m o d e l s o f a m y l o p e c t i n c r y s t a l l i t e s , and i n t h i s c a s e a p p l i c a t i o n o f t h e F l o r y e q u a t i o n i s more j u s t i f i e d . S t u d i e s a r e c u r r e n t l y i n p r o g r e s s on t h e m e l t i n g b e h a v i o r o f A- and B - t y p e c r y s t a l s and t h e e f f e c t o f w a t e r as a diluent. B i o t e c h n o l o g y w i l l soon p e r m i t t h e b r e e d i n g o f p l a n t s w i t h s t a r c h e s o f p r e - d e t e r m i n e d m o l e c u l a r c o m p o s i t i o n . In a d d i t i o n t o v a r i a t i o n s i n a m y l o s e / a m y l o p e c t i n r a t i o , i t w i l l be p o s s i b l e t o v a r y t h e l e n g t h o f t h e a m y l o p e c t i n c h a i n s . I t has a l r e a d y been shown t h a t v a r i a t i o n i n a m y l o p e c t i n c h a i n l e n g t h has a s i g n i f i c a n t e f f e c t on s t a r c h r é t r o g r a d a t i o n b e h a v i o r ( 2 0 ) . In o r d e r f o r technology to e x p l o i t these v a r i a t i o n s f u l l y , i t i s important to understand the underlying molecular processes. This w i l l permit a r a t i o n a l a p p r o a c h t o t h e use o f g e n e t i c a l l y m a n i p u l a t e d s t a r c h e s and w i l l l e a d t o i m p r o v e d u n d e r s t a n d i n g o f c r y s t a l l i z a t i o n b e h a v i o r
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
278
BIOTECHNOLOGY OF AMYLODEXTRIN OLIGOSACCHARIDES
o f amylodextrins i n g e n e r a l . An example might be f r a c t i o n a t i o n o f amylodextrins u s i n g knowledge o f t h e i r r e s p e c t i v e c r y s t a l l i z a t i o n temperatures i n a given s o l u t i o n .
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
Amorphous Forms W h i l e d e x t r i n s c a n o f t e n be e n c o u n t e r e d as c r y s t a l l i n e s o l i d s i n many c a s e s t h e y can be p r e p a r e d as p a r t i a l l y c r y s t a l l i n e o r w h o l l y amorphous m a t e r i a l s . F o r t h e s e m a t e r i a l s , t h e g l a s s t r a n s i t i o n b e h a v i o r o f t h e amorphous r e g i o n s i s r e l e v a n t . A g l a s s has many o f the c h a r a c t e r i s t i c s of a l i q u i d except that of m o b i l i t y , i t s importance t o t e c h n o l o g i c a l a p p l i c a t i o n stems from the d r a m a t i c c h a n g e s i n m a t e r i a l p r o p e r t i e s e.g. m e c h a n i c a l and d i f f u s i v e b e h a v i o r , w h i c h o c c u r i n t h e r e g i o n o f t h e g l a s s t r a n s i t i o n . The t e c h n o l o g i c a l importance o f the g l a s s t r a n s i t i o n f o r polymeric m a t e r i a l s , i n o r g a n i c g l a s s e s and more r e c e n t l y b i o m a t e r i a l s has been r e v i e w e d ( 2 1 - 2 4 ) . A n e x a m p l e on how i t m i g h t a f f e c t t h e u s a g e o f d e x t r i n s w i l l i l l u s t r a t e some o f t h e p r i n c i p l e s . G l a s s y m a t r i c e s may be u s e d f o r e n c a p s u l a t i o n and p r o t e c t i o n o f a c t i v e i n g r e d i e n t s . The m e c h a n i s m o f p r o t e c t i o n i s somewhat d i f f e r e n t t o t h a t o b t a i n e d f r o m t h e f o r m a t i o n o f m o l e c u l a r i n c l u s i o n c o m p l e x e s and d o e s n o t r e l y upon t h e m o l e c u l a r r e c o g n i t i o n o f a c t i v e i n g r e d i e n t and h o s t . In t h e g l a s s , t h e r a t e o f d i f f u s i o n o f compounds i s s e v e r e l y h i n d e r e d . Hence, t h e g l a s s y m a t r i x can p r o t e c t t h r o u g h l i m i t i n g the d i f f u s i o n a l encounter of r e a c t i n g s p e c i e s . With p l a s t i c i z a t i o n of the matrix d i f f u s i o n w i l l a c c e l e r a t e ; through manipulation o f plasticization controlled release is possible. Although a g l a s s i s metastable with respect to the c r y s t a l l i n e f o r m , i t c a n r e m a i n i n a g l a s s y f o r m f o r many y e a r s ; a b o v e t h e g l a s s t r a n s i t i o n c r y s t a l l i z a t i o n i s much more r a p i d . G l a s s e s a r e t h e r e f o r e p r e p a r e d by c o o l i n g a t r a t e s s u f f i c i e n t l y f a s t t o a v o i d c r y s t a l l i z a t i o n . The r e q u i r e d c o o l i n g r a t e d e p e n d s o n t h e m a t e r i a l . F o r e x a m p l e , t o v i t r i f y w a t e r , c o o l i n g r a t e s i n e x c e s s o f 10 Ks" are necessary (25.26). Polymeric m a t e r i a l s c r y s t a l l i z e l e s s r e a d i l y and c o o l i n g r a t e s o f < l K s a r e o f t e n s u f f i c i e n t f o r v i t r i f i c a t i o n . A s a l i q u i d i s s u p e r c o o l e d , m o l e c u l a r m o t i o n and t h e l o c a l r e a r r a n g e m e n t o f m o l e c u l e s becomes p r o g r e s s i v e l y s l o w e r and the v i s c o s i t y increases. For D-glucose the v i s c o s i t y increases by 13 o r d e r s o f m a g n i t u d e on c o o l i n g f r o m a m e l t a t 413K t o t h e g l a s s a t 290K ( 2 7 . 2 8 ) . W i t h c o o l i n g , t h e p r o b a b i l i t y o f a m o l e c u l e o v e r c o m i n g an a c t i v a t i o n e n e r g y t o e s c a p e f r o m i t s n e i g h b o r s d e c r e a s e s . At the g l a s s t r a n s i t i o n t h e r e i s a sudden " f r e e z i n g ' O f m o t i o n w i t h a c o n s e q u e n t s h a r p f a l l i n h e a t c a p a c i t y . The g l a s s t r a n s i t i o n t e m p e r a t u r e , Tg, i s a f f e c t e d by c o o l i n g r a t e , t h e " f r e e z i n g i n " o f l i q u i d s t r u c t u r e w i l l occur at p r o g r e s s i v e l y lower t e m p e r a t u r e s as t h e c o o l i n g r a t e d e c r e a s e d , a l w a y s a s s u m i n g t h a t c r y s t a l l i z a t i o n d o e s n o t i n t e r v e n e . The o b s e r v e d Tg i s t h u s p r o f o u n d l y a f f e c t e d b y k i n e t i c f a c t o r s ( 2 1 ) . However, i t i s a r g u e d i n v a r i o u s t h e o r e t i c a l a p p r o a c h e s (£9) t h a t u n d e r l y i n g t h e e x p e r i m e n t a l l y observed t r a n s i t i o n i s a t r u e phase t r a n s i t i o n . The Tg o f amorphous m a t e r i a l s can be d e t e r m i n e d by m e a s u r i n g h e a t c a p a c i t y as a f u n c t i o n o f t e m p e r a t u r e and o b s e r v i n g t h e s h a r p i n c r e a s e i n heat c a p a c i t y , i n d i c a t i v e o f a g l a s s t r a n s i t i o n , which o c c u r s at Tg. At the p r e s e n t time t h i s i s c o n v e n i e n t l y performed 5
- 1
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
1
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
18.
RING & WHTTTAM
Linear Dextrins
279
u s i n g d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y t o d e t e r m i n e T g a n d ACp ( f i g u r e 1 ) . In a d d i t i o n by v a r y i n g both h e a t i n g and c o o l i n g r a t e s and o b s e r v i n g t h e c h a n g e i n T g i t i s p o s s i b l e t o o b t a i n an " a c t i v a t i o n enthalpy" f o r t h e r e l a x a t i o n process a t Tg (30.31). T h i s e n t h a l p y c a n be u s e f u l l y compared w i t h t h a t f r o m v i s c o s i t y data (3Û). The g l a s s t r a n s i t i o n b e h a v i o r o f c a r b o h y d r a t e s i n g e n e r a l i s r e c e i v i n g r e c e n t a t t e n t i o n . T h e T g ' s o f amorphous mal t o o l i g o m e r s f r o m m a l t o s e t o m a l t o h e x a o s e was r e c e n t l y d e t e r m i n e d ( 3 2 ) a n d r a n g e d f r o m 364K f o r m a l t o s e t o 448K f o r m a l t o h e x a o s e . D a t a f o r h i g h e r o l i g o m e r s was n o t o b t a i n a b l e d u e t o t h e r m a l d e g r a d a t i o n , t h e h i g h m o l e c u l a r w e i g h t l i m i t o f T g o b t a i n e d b y e x t r a p o l a t i o n was 500±10K. A t low d i l u e n t c o n c e n t r a t i o n s t h e a d d i t i o n o f water s t r o n g l y d e p r e s s e d T g , f o r example t h e T g f o r m a l t o h e x a o s e f e l l 100K on a d d i t i o n o f 1 0 % w/w w a t e r . T h e c o m p o s i t i o n a l v a r i a t i o n o f Tg w i t h w a t e r c o n t e n t was i n v e s t i g a t e d a t w a t e r c o n t e n t s s o g u e s t m o l e c u l e s may o r i e n t t h e m s e l v e s i n s i d e t h e c y c l o d e x t r i n c a v i t y w i t h t h e i r own d i p o l e moment o r i e n t e d a n t i p a r a l l e l t o that o f the cyclodextrin molecule, with a r e s u l t i n g a t t r a c t i v e d i p o l e - d i p o l e f o r c e . In c a s e s where t h e g u e s t m o l e c u l e has no p e r m a n e n t d i p o l e moment, i t s p o l a r i z a b i l i t y w i l l d e t e r m i n e t h e s i z e o f d i p o l e moment i n d u c e d by t h e p e r m a n e n t d i p o l e o f t h e c y c l o d e x t r i n m o l e c u l e and t h u s i n f l u e n c e t h e s t r e n g t h o f i n t e r a c t i o n between t h e two. Van d e r Waal s ' f o r c e s , i n c l u d i n g b o t h d i p o l e - d i p o l e i n t e r a c t i o n a n d London d i s p e r s i o n f o r c e s , a r e t h u s l i k e l y t o play a part i n the i n c l u s i o n process. Evidence f o r t h i s comes f r o m t h e f a r g r e a t e r a f f i n i t y o f α c y c l o d e x t r i n f o r t h e 4 - n i t r o p h e n o l a t e anion than f o r 4-nitrophenol (68) L i n e a r m a l t o d e x t r i n h e l i c e s p r e s u m a b l y a l s o p o s s e s s a d i p o l e moment, a l t h o u g h t h e e f f e c t m i g h t be e x p e c t e d t o be s m a l l e r t h a n t h a t o f t h e c y c l o d e x t r i n d u e t o t h e more e x t e n d e d f o r m o f t h e l i n e a r maltodextrin. A c l o s e s p a t i a l f i t between c y c l o d e x t r i n a n d g u e s t m o l e c u l e i s g e n e r a l l y r e c o g n i z e d as important f o r good c o m p l e x a t i o n , which s u p p o r t s t h e e v i d e n c e t h a t v a n d e r Waal s' i n t e r a c t i o n s , w h i c h a r e s h o r t r a n g e , may s t a b i l i z e t h e c o m p l e x . B e c a u s e o f t h i s r e q u i r e m e n t f o r a c l o s e f i t between g u e s t and h o s t , p e r h a p s , c y c l o d e x t r i n s o f d i f f e r e n t s i z e s complex p r e f e r e n t i a l l y w i t h d i f f e r e n t guest m o l e c u l e s a n d may be u s e d f o r t h e s e p a r a t i o n o f s p e c i f i c m o l e c u l e s f r o m a m i x t u r e . L i n e a r m a l t o d e x t r i n s , on t h e o t h e r hand, show l e s s s p e c i f i c " r e c o g n i t i o n " o f m o l e c u l e s , and a r e b e l i e v e d t o f o r m h e l i c a l c o m p l e x e s w i t h 6,7 o r 8 g l u c o s e u n i t s p e r t u r n , d e p e n d i n g on t h e s i z e o f t h e g u e s t m o l e c u l e . No s i n g l e mode o f i n t e r a c t i o n , t h e r e f o r e , seems t o be r e s p o n s i b l e f o r c o m p l e x a t i o n , b u t a v a r i e t y of interactions are operational, their relative contributions v a r y i n g w i t h t h e n a t u r e o f t h e g u e s t m o l e c u l e . T h i s e x p l a i n s why such a wide range o f molecules can form i n c l u s i o n complexes w i t h e i t h e r c y c l i c o r l i n e a r g l u c a n s , and may a l s o h e l p t o s h e d l i g h t on why, f o r e x a m p l e t h e c o m p l e x i n g a b i l i t i e s o f c y c l o d e x t r i n s a r e 2-3 orders o f magnitude higher than those o f t h e corresponding non-cyclic analogs (69). Acknowledqments The a u t h o r s w i s h t o t h a n k t h e M i n i s t r y o f A g r i c u l t u r e , F i s h e r i e s and F o o d f o r f i n a n c i a l s u p p o r t . Literature Cited 1.
Umeki, K.;
Yamamoto, T.
J.
Biochem. 1975,
78,
889-96.
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
290
BIOTECHNOLOGY
OF
AMYLODEXTRIN
OLIGOSACCHARIDES
2.
Hayashi, T.; Akiba, T.; Horikoshi, Biotechnol. 1988, 52, 443-448.
3.
Pfannemuller, B.; Bauer-Carnap, A. Colloid 1977, 255, 844-9.
4.
Buleon, Α.; Duprat, F.; Booy, F. P.; Chanzy, H. Carbohydr. Polym. 1984, 4, 161-73.
5.
Gidley, M. J.; 291-300.
6.
Pfannemuller,
7.
Pangborn, W.; Langs, D.; Perez, S. Int. 1985, 7, 363-9.
8.
Ring, S. G.; Miles, M. J.; Morris, Y. J.; Turner, R.; Colonna, P. Int. J. Biol. Macromol. 1987, 9, 158-60.
9.
Yamashita, Y.; Ryugo, J.; 1973, 22(1), 19-26.
Bulpin,
B. Int.
Κ. Appl.
Microbiol.
Polymer
Sci.
P. V. Carbohydr. Res. 1987, 161,
J. Biol.
Macromol. 1987, 9, 105-8. J. Biol.
Macromol.
Monabe,K. J. Electron
Microsc.
10. Whittam, M.; Orford, P. D.; Ring, S. G.; Clark, S. Α.; Parker, M. L.; Cairns, P.; Miles, M. J. Int. J. Biol. Macromol. 1989, 11, 400-6. 11. Katz, J. R.; van Italie, 150, 90-100.
T. Β.
Ζ. Physik.
Chem. A 1930,
12. Wu, H. C. H.; Sarko, A. Carbohydr. Res. 1978, 61,
7-25.
13. Wu, H. C. H.; Sarko, A. Carbohydr. Res. 1978, 61, 27-40. 14. Imberty, Α.; Chanzy, H.; Perez, S.; J. Mol. Biol. 1988, 201, 365-78. 15. Imberty, Α.,
Perez, S. Biopolymers
Buleon, Α.,
1988, 18, 1205-21.
16. Booy, F. P.; Chanzy, H.; Sarko, A. Biopolymers 2261-66. 17. Winter, W. T.; 18. Perez, S.;
Sarko, A. Biopolymers
Vergelati,
1979, 18,
1974, 13, 1461-82.
C. Polymer Bull.
19. Donovan, J. W. Biopolymers
Tran, V.
1987, 17, 141-8.
1979, 18, 263-75.
20. Kalichevsky, M. T.; Orford, P. D.; Ring, S. G. Carbohvdr. Res. 1989, 193, 196-201. 21. Jackie,
J.
22. Angell,
C.A.
Rep. Prog. Phys. 1986, 49, J. Phys. Chem. Solids
171.
1988, 49(8),
863.
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
291
18. RING & WHITTAM Linear Dextrins 23. Fredrickson, G.H.
Ann. Rev. Phys. Chem. 1988, 39, 149.
24. Slade, L.; Levine, H. In Frontiers in Carbohydrate Research 1: Food Applications; Millane, R.P.; BeMiller, J.N.; Chandrasekaran, R., Eds; Elsevier Applied Science, 1989; p215.
25. Johari, G. P.; Hallbrucker, 330, 552.
Α.; Mayer, E. Nature 1987,
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
26. Hofer, K.; Hallbruker, Α.; Mayer, E.; Johari, G. P. J. Phys. Chem. 1989, 93, 4674. 27. Parks, G. S.; Barton, L. E.; Spaght, M. E.; Richardson, J. W. Physics 1934, 8, 193. 28. Parks, G. S.; Huffman, H. M.; Cattoir, F. R. J. Phys. Chem. 1928, 32, 1366.
29. Couchman, P. R. Macromolecules 1978, 11, 1156 & Couchman, P. R. Macromolecules 1987, 20, 1712. 30. Angell, C. Α.; Stell, 1982, 86, 1540.
R. C.; Sichina,
W. J. Phys. Chem.
31. Moynihan, C. T.; Easteal, A. J.; Wilder, J.; Tucker, J. Phys. Chem. 1974, 78, 2673.
J.
32. Orford, P. D.; Parker, R.; Ring, S. G.; Smith, A. C. Int. J. Biol. Macromol. 1989, 11, 91. 33. Orford, P. D.; Parker, R.; Ring, S. G. Carbohydr. Res. 1989, 85, 23. 34. Mackenzie, A. P. Phil. Trans. R. Soc. Lond. B. 1977, 278, 167. 35. Levine, H.; Slade, L. In Water and Food Quality; Hardman, T. M., Ed.; Elsevier Applied Science: New York,
1989. 36. Levine, H.; Slade, L. Carbohydr. Polym. 1986, 6, 213. 37. Banks, W.; Greenwood, C. T. Starch and its Components, Edinburgh University Press, 1975.
38. Ring, S. G.; I'Anson, K.; Morris, 1985, 18, 182
V. J. Macromolecules
39. Banks, W.; Greenwood, C. T.; Sloss, J. Carbohydr. Res. 1969, 11, 399. 40. Burchard, W. Makromol. Chem. 1963, 59, 16. 41. Kitamura, S.; Kuge, T. Food Hydrocolloids
1989, 3, 313.
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
292
BIOTECHNOLOGY OF AMYLODEXTRIN OLIGOSACCHARIDES
42. Takeda, Y.; Hizukuri, 1986, 148, 299.
S.;
43. Ha, S. N.; Madsen, L. J.; 27, 1927.
Juliano,
B. O. Carbohydr.
Brady, J. W. Biopolymers
Res.
1988,
44. Ihnat, M.; Goring, D. A. I. Can. J. Chem. 1967, 45, 2353. 45.
Ihnat, M.; Goring, D. A. I. Can. J. Chem. 1967, 45, 2363.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
46. Miyajima, K.; Sauada, M.; Nakagaki, M. Bull. Chem. Soc. Jpn. 1983, 56, 1620. 47. Tanford, C. Physical Wiley, 1961, p335.
Chemistry of Macromolecules; John
48. Soesanto, T.; Williams, 3338.
M. C.
J. Phys. Chem. 1981, 85,
49. Mikus, F. F.; Hixon, R. M.; Rundle, R. E. J. Am. Chem. Soc. 1946, 68, 1115-23. 50. Kowblansky, M. Macromolecules 1987, 18, 1776-9. 51. Biliaderis, 48.
C.G.; Galloway,
52. Simpson, T.D.; Dintzis, 11, 2591-2600.
G. Carbohydr. Res. 1989, 189, 31-
F.R.; Taylor,
N.W.
Biopolymers
53. Jane, J. L.; Robyt, J. F.; Huang, D. H. Carbohydr. 1985, 140, 21-35. 54. Komiyama, M.; Hidefuni, 1986, 7, 739-42.
1972,
Res.
H. Macromol. Chem. Rapid Commun.
55. Whittam, Μ. Α.; Ring, S. G.; Orford, P. D. In Gums and Stabilisers for the Food Industry Vol.3; Phillips, G. O.; Wedlock, D. J.; Williams, P. A. Eds; Elsevier: 1986, p555. 56. Rundle, R. E.; Baldwin, R. R. J. Am. Chem. Soc. 1943, 65, 554-8. 57. Senior,
M. B.; Hamori, E. Biopolymers
58. Bulpin, P. V.; Welsh, E. J.; 1982, 34, 335-9. 59. Bailey, J. M.; Whelan, W. J. 969-73.
Morris,
J. Biol.
1973, 12, 65-78. E. R. Staerke
Chem. 1961, 236,
60. Banks, W.; Greenwood, C. T.; Khan, Κ. M. Carbohydr. 1971, 17, 25-33.
Res.
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
18. RING & WHITTAM
Linear Dextrins
61. Bulpin, P. V . ; Cutler, A. N.; Lips, A. Macromolecules 1987, 20, 44-9. 62. Yamamoto, M.; Sano, T . ; Harada, S.; Yasunaga, T. Bull. Chem. Soc. Jpn 1983, 56, 2643-46. 63. Karkalas, J.; Raphaelides, S. Carbohydr. Res. 1986, 157, 215-34.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018
64. Szejtli, J . Cyclodextrin Technology; Kluwer Academic Publishers, 1988. 65. Clarke, R. J.; Coates, J . H . ; Lincoln, S. F. In Advances in Carbohydrate Chemistry and Biochmistry Vol.46; Tipson, R. S.; Horton, D. Eds; Academic Press Inc.: 1988 66. Saenger, W.; Noltemeyer, M.; Manor, P. C . ; Hingerty, B.E.; Klar, B. Bioorg. Chem. 1976, 5, 187-95. 67. Kitagawa, M.; Hoshi, H . ; Sakurai, M.; Inoue, Y . ; Chujo, R. Bull. Chem. Soc. Jpn 1988, 61, 4225-9. 68. Bergeron, R. J.; Channing, Μ. Α.; Gibeily, G. J.; Pillor, D. M. J . Am. Chem. Soc. 1977, 99, 5146-51. 69. Komiyama, M.; Hirai, H . ; Kobayashi, K. Makromol. Chem. Rapid Commun. 1986, 7, 739-42.
RECEIVED November 9, 1990
In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.