Linear Dextrins - ACS Symposium Series (ACS Publications)

Apr 30, 1991 - Biotechnology of Amylodextrin Oligosaccharides. Chapter 18, pp 273–293. DOI: 10.1021/bk-1991-0458.ch018. ACS Symposium Series , Vol...
0 downloads 0 Views 2MB Size
Chapter 18

Linear Dextrins Solid Forms and Aqueous Solution Behavior S. G. Ring and M. A. Whittam

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

Institute of Food Research, Colney Lane, Norwich, Norfolk NR4 7UA, United Kingdom

This article reviews physical and physico - chemical studies on linear malto - dextrins. The various crystalline forms of the dextrins are described and the melting and glass transition behavior discussed. Solution conformations and the viscous behavior of dilute and concentrated aqueous solutions are considered. In addition factors affecting the interaction of small solutes with the dextrins in aqueous solution are discussed and compared with the known behavior of cyclodextrins.

A m y l o d e x t r i n s a r e c o n v e n i e n t l y p r e p a r e d by t h e l i m i t e d h y d r o l y s i s of starch t o produce fragments ranging i n degree o f polymerization f r o m 2 t o a p p r o x i m a t e l y 6 0 . A l t h o u g h b r a n c h e d and c y c l i c f o r m s may be p r o d u c e d , i n t h i s a r t i c l e we w i s h t o c o n s i d e r t h e a q u e o u s s o l u t i o n b e h a v i o r o f l i n e a r d e x t r i n s . T h e s e d e x t r i n s may be p r o d u c e d i n a number o f ways f o r e x a m p l e by t h e l i m i t e d a c i d h y d r o l y s i s o f s o l i d f o r m s o f s t a r c h , more p a r t i c u l a r l y s t a r c h g r a n u l e s . A l t e r n a t i v e l y t h e y may be p r o d u c e d by l i m i t e d o t - a m y l o l y s i s o f s o l u b l e f o r m s o f s t a r c h . More r e c e n t l y w i t h t h e p r o d u c t i o n o f t h e d e b r a n c h i n g enzymes p u l l u l a n a s e and i s o a m y l a s e and w i t h t h e i d e n t i f i c a t i o n o f α - a m y l a s e s w h i c h p r o d u c e o l i g o s a c c h a r i d e s o f f i x e d length from t h e i r h y d r o l y s i s o f s t a r c h (1.2) t h e r e i s i n c r e a s e d o p p o r t u n i t y f o r t h e p r o d u c t i o n o f d e f i n e d d e x t r i n s f r o m s t a r c h . In a d d i t i o n t h e r e i s p o t e n t i a l , t h r o u g h t h e a p p l i c a t i o n o f g e n e t i c a p p r o a c h e s and m o l e c u l a r b i o l o g y t o m a n i p u l a t e enzyme s t r u c t u r e and h e n c e f u n c t i o n t o o b t a i n a w i d e r r a n g e o f p r o d u c t s more e f f e c t i v e l y . T h e s e m o l e c u l e s h a v e a v a r i e t y o f i n d u s t r i a l u s e s b o t h i n t h e f o o d i n d u s t r y and e l s e w h e r e . T h e y may be u s e d a s a g e n t s f o r t h e m a n i p u l a t i o n o f l i q u i d t e x t u r e and a l s o t h e m e c h a n i c a l p r o p e r t i e s o f s o l i d - l i k e m a t e r i a l s . In b o t h of these instances the i n t e r a c t i o n o f the d e x t r i n with water i n f l u e n c e s u s e f u l n e s s . C y c l o d e x t r i n s h a v e v e r y many p o t e n t i a l u s e s as a g e n t s f o r m o l e c u l a r e n c a p s u l a t i o n , t h e e n c a p s u l a t e d s p e c i e s occupying the c y c l o d e x t r i n c a v i t y . Dextrins can a l s o form molecular complexes with guest molecules. In a d d i t i o n i t i s p o s s i b l e t o 0097-6156/91/0458-0273$06.25A) © 1991 American Chemical Society

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

274

BIOTECHNOLOGY OF AMYLODEXTRIN OLIGOSACCHARIDES

encapsulate a c t i v e ingredients i n glassy matrices of the d e x t r i n ; i n t h e s e m a t r i c e s i t i s p o s s i b l e t o p r o t e c t a c t i v e s p e c i e s and s u b s e q u e n t l y o b t a i n r e l e a s e on p l a s t i c i z a t i o n . F o r t h e s e a p p l i c a t i o n s i n t e r a c t i o n of the d e x t r i n with water again influences u s e f u l n e s s . C u r r e n t r e s e a r c h on t h e s e d e x t r i n s i s e x a m i n i n g t h e e f f e c t o f w a t e r on m a t e r i a l and m o l e c u l a r p r o p e r t i e s as a f u n c t i o n o f c o m p o s i t i o n , t e m p e r a t u r e and d e g r e e o f p o l y m e r i z a t i o n . In t h i s way i t i s h o p e d t o e s t a b l i s h p r e d i c t i v e r e l a t i o n s h i p s f o r s t r u c t u r e and f u n c t i o n w h i c h w i l l h e l p t a r g e t t h e a p p l i c a t i o n o f biotechnology to t h e i r production.

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

C r y s t a l l i n e Forms S o l i d a m y l o d e x t r i n s may be i n t h e g l a s s y / r u b b e r y o r c r y s t a l l i n e s t a t e ; c o n s i d e r a b l y more s t u d i e s h a v e been c a r r i e d o u t on t h e l a t t e r , so c r y s t a l s t r u c t u r e s a r e q u i t e w e l l u n d e r s t o o d . W h i l s t a m y l o p e c t i n i s t h o u g h t t o be t h e m a i n c r y s t a l l i n e component i n s t a r c h granules, amylose f r a c t i o n s ranging i n degree o f p o l y m e r i z a t i o n f r o m DP100 t o DP2700 h a v e been c r y s t a l l i z e d f r o m w a t e r i n t h e f o r m o f f i b r i l s ( 3 ) . S h o r t e r c h a i n a m y l o s e s o f DP15 and 3 5 h a v e been shown t o f o r m more p e r f e c t s i n g l e c r y s t a l s (4). O l i g o m e r s o f g l u c o s e h o w e v e r between h e p t a m e r and t r i m e r a r e v e r y d i f f i c u l t t o c r y s t a l l i z e . A l t h o u g h o l i g o m e r s as s h o r t a s m a l t o h e x a o s e h a v e been c o - c r y s t a l l i z e d i n t h e p r e s e n c e o f l o n g e r c h a i n s , t h e minimum c h a i n l e n g t h n e c e s s a r y f o r d o u b l e h e l i x f o r m a t i o n a p p e a r s t o be DP10 ( 5 . 6 ) . C r y s t a l s t r u c t u r e s o f g l u c o s e and m a l t o s e h a v e l o n g been known, b u t i t i s o n l y r e c e n t l y t h a t a c r y s t a l l i n e s t r u c t u r e f o r m a l t o t r i o s e has b e e n r e p o r t e d (2). D e g r e e o f c r y s t a l l i n i t y can v a r y w i d e l y , f r o m r e t r o g r a d e d a m y l o s e w h i c h i s p r e d o m i n a n t l y amorphous, c o n t a i n i n g p e r h a p s 10% c r y s t a l l i n e m a t e r i a l , t o h i g h l y c r y s t a l l i n e s i n g l e c r y s t a l s (4) o r s p h e r u l i t e s (δ) p r e p a r e d f r o m s h o r t e r c h a i n a m y l o s e s . S i m i l a r l y , s i n g l e c r y s t a l s o f V a m y l o s e have been r e p o r t e d (4^9) as w e l l as amorphous a m y l o s e c o m p l e x e s w h i c h do n o t g i v e r i s e t o X - r a y d i f f r a c t i o n p a t t e r n s (Ifi). Since the f i r s t p u b l i c a t i o n of X-ray d i f f r a c t i o n p a t t e r n s o f A , Β and C s t a r c h e s s i x t y y e a r s ago (H), s e v e r a l m o d e l s h a v e been p r o p o s e d f o r t h e i r c r y s t a l s t r u c t u r e s . U n t i l r e c e n t l y , a r i g h t handed, p a r a l l e l stranded arrangement o f double h e l i c e s , with a n t i p a r a l l e l packing of the h e l i c e s themselves was f a v o r e d f o r b o t h A and Β s t r u c t u r e s ( 1 2 . 1 3 ) . In t h e l a s t two y e a r s , h o w e v e r , s t u d i e s c o m b i n i n g X - r a y and e l e c t r o n d i f f r a c t i o n m e t h o d s o n s i n g l e c r y s t a l s o f a m y l o s e DP15, t o g e t h e r w i t h c o m p u t e r e n e r g y c a l c u l a t i o n s h a v e been c a r r i e d o u t ( 1 4 . 1 5 ) . From t h e s e s t u d i e s , a l e f t handed, p a r a l l e l stranded double h e l i x formation seems more l i k e l y , w i t h h e l i c e s p a c k e d p a r a l l e l t o one a n o t h e r i n the c r y s t a l . L e f t handed o r r i g h t handed, i t i s g e n e r a l l y accepted t h a t A and Β s t r u c t u r e s c o n s i s t o f s i m i l a r d o u b l e h e l i c e s ; t h e d i f f e r e n c e l i e s i n the s p a t i a l arrangement of these double h e l i c e s w i t h i n t h e c r y s t a l . In t h e Β s t r u c t u r e , s i x d o u b l e h e l i c e s a r e hexagonally arranged around a c e n t r a l c a v i t y c o n t a i n i n g water m o l e c u l e s . A i s more c o m p a c t , t h e c e n t r a l c a v i t y c o n t a i n i n g a n o t h e r double h e l i x , leading to a c r y s t a l structure including l e s s water t h a n t h a t o f B. L e s s c o n t r o v e r s y s u r r o u n d s t h e s t r u c t u r e o f V a m y l o s e , now

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

18.

RING & WHTTTAM

Linear Dextrins

275

w i d e l y a c c e p t e d as a s i x f o l d s i n g l e h e l i x , a l t h o u g h w i t h i n t h e c l a s s i f i c a t i o n "V" s e v e r a l c r y s t a l l i n e v a r i a n t s a r e f o u n d . Vh and Va, t h e h y d r a t e d and a n h y d r o u s f o r m s o f c o m p l e x e d a m y l o s e , c a n be i n t e r c o n v e r t e d by m a n i p u l a t i n g m o i s t u r e o r h u m i d i t y c o n d i t i o n s . When 1 - b u t a n o l i s u s e d as t h e c o m p l e x i n g a g e n t , a t h i r d c r y s t a l s t r u c t u r e i s o b s e r v e d ( 1 6 ) , w h i l s t s e v e n f o l d and e i g h t f o l d h e l i c a l c o n f o r m a t i o n s h a v e been r e p o r t e d f o r a m y l o s e c o m p l e x e s w i t h b r a n c h e d c h a i n a l c o h o l s and α-naphthol r e s p e c t i v e l y ( 9 ) . One q u e s t i o n w h i c h r e m a i n s t o be r e s o l v e d i s t h a t o f t h e e x a c t l o c a t i o n o f t h e c o m p l e x i n g a g e n t w i t h i n t h e V s t r u c t u r e . In s o l u t i o n , t h e r e i s a body o f e v i d e n c e t o s u g g e s t t h a t t h e a m y l o s e h e l i x encapsulates the complexing "guest" molecule w i t h i n i t s core, g i v i n g r i s e , f o r example, t o the f a m i l i a r b l u e c o l o r o f the a m y l o s e - i o d i n e c o m p l e x . E v i d e n c e f r o m X - r a y and e l e c t r o n d i f f r a c t i o n t h a t s e v e n and e i g h t f o l d h e l i c e s a r e f o r m e d when i n c r e a s i n g l y l a r g e c o m p l e x i n g m o l e c u l e s a r e u s e d (2) l e n d s w e i g h t t o t h e i n c l u s i o n t h e o r y . However, an a l t e r n a t i v e e x p l a n a t i o n f o r t h e l a r g e r u n i t c e l l s ( a s c r i b e d t o s e v e n and e i g h t f o l d h e l i c e s ) i s that the complexing molecules are present i n the i n t e r s t i c e s between t h e i n d i v i d u a l h e l i c e s (lé). X - r a y d i f f r a c t i o n a n a l y s i s has g i v e n l i t t l e i n f o r m a t i o n on t h e l o c a t i o n o f t h e c o m p l e x e d m o l e c u l e s . T h i s may be b e c a u s e t h e s e m o l e c u l e s a r e r a n d o m l y p l a c e d and c o n s e q u e n t l y f o r m no r e g u l a r l a t t i c e f o r d i f f r a c t i o n , o r i t may be t h a t d e s p i t e b e i n g c o n f i n e d w i t h i n t h e h e l i c e s g u e s t m o l e c u l e s p o s s e s s t o o much r o t a t i o n a l and t r a n s l a t i o n a l f r e e d o m t o be i d e n t i f i a b l e by X - r a y d i f f r a c t i o n . I f c o m p l e x i n g m o l e c u l e s a r e removed f r o m t h e a m y l o s e c r y s t a l s by d r y i n g , the V s t r u c t u r e remains i n t a c t , i n d i c a t i n g t h a t the c o m p l e x a n t i s n o t a n e c e s s i t y f o r c r y s t a l s t a b i l i t y . However t h e r e i s some e v i d e n c e f r o m X - r a y d i f f r a c t i o n t o g e t h e r w i t h p o t e n t i a l energy c a l c u l a t i o n s t h a t dimethyl sulphoxide molecules are l o c a t e d i n s i d e t h e a m y l o s e h e l i x w i t h one DMSO m o l e c u l e f o r e v e r y t h r e e g l u c o s e r e s i d u e s (1Z). F u r t h e r work i s o b v i o u s l y needed t o d e t e r m i n e u n e q u i v o c a l l y where t h e i n c l u d e d m o l e c u l e s a r e s i t u a t e d w i t h i n the V amylose s t r u c t u r e . Computer m o d e l l i n g i s being used i n c r e a s i n g l y t o g a i n i n s i g h t i n t o the e n e r g i e s o f d i f f e r e n t m o l e c u l a r c o n f o r m a t i o n s . H e l i c a l forms o f a m y l o d e x t r i n s h a v e been m o d e l l e d u s i n g t h e d i m e r m a l t o s e as t h e s t a r t i n g u n i t ( 1 8 ) . Minimum e n e r g y c o n f o r m a t i o n s o f t h e d i s a c c h a r i d e a r e f o u n d by c a l c u l a t i n g t h e e n e r g y as t h e two s u g a r r i n g s a r e r o t a t e d a b o u t t h e g l y c o s i d i c l i n k a g e . P o l y m e r s b u i l t up f r o m t h e s e low e n e r g y m a l t o s e u n i t s a r e f o u n d t o have h e l i c a l s t r u c t u r e s w h i c h c o r r e s p o n d t o conformations observed f o r maltodextrins i n the c r y s t a l l i n e state. T h u s c o m p u t e r s t u d i e s complement X - r a y a n a l y s i s , and may h e l p i n t h e f u t u r e t o r e s o l v e t h e q u e s t i o n o f where c o m p l e x e d m o l e c u l e s a r e l o c a t e d w i t h i n c r y s t a l l i n e V amylose. The p o l y m o r p h i c f o r m o f a m y l o s e o r a m y l o d e x t r i n d e p e n d s on s e v e r a l f a c t o r s . F o r an a m y l o d e x t r i n o f a g i v e n l e n g t h i n a q u e o u s s o l u t i o n , formation of the A c r y s t a l type i s favored over Β at high t e m p e r a t u r e and h i g h c o n c e n t r a t i o n . C h a i n l e n g t h a l s o has an

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

276

BIOTECHNOLOGY OF AMYLODEXTRIN OLIGOSACCHARIDES

e f f e c t , s h o r t e r c h a i n s g i v i n g r i s e t o A s t r u c t u r e s and l o n g e r chains ( i n c l u d i n g amylose r e t r o g r a d e d under o r d i n a r y c o n d i t i o n s ) forming Β s t r u c t u r e s . Intermediate c o n d i t i o n s give r i s e to C-type c r y s t a l f o r m a t i o n . B e l o w DP10, s o l u t i o n s o f a m y l o d e x t r i n s d o n o t c r y s t a l l i z e e v e n a t 4°C and 5 0 % w/w, i m p l y i n g a l o w e r l i m i t o f c h a i n l e n g t h n e c e s s a r y f o r d o u b l e h e l i x f o r m a t i o n ( 5 ) . The c r y s t a l l i z a t i o n , m e l t i n g and d i s s o l u t i o n b e h a v i o r o f a m y l o d e x t r i n s may g i v e i n s i g h t i n t o t h e b e h a v i o r o f w h o l e s t a r c h e s , S i n c e i t i s the short chains of amylopectin which g i v e r i s e to the c r y s t a l l i n e r e g i o n s w i t h i n s t a r c h g r a n u l e s and w h i c h a r e b e l i e v e d t o m e l t and r e c r y s t a l l i z e d u r i n g g e l a t i n i z a t i o n and r é t r o g r a d a t i o n r e s p e c t i v e l y . These t r a n s i t i o n s are important i n terms o f f u n c t i o n a l p r o p e r t i e s o f d e x t r i n s and s t a r c h e s . A d d i t i o n o f an a l c o h o l , f o r e x a m p l e e t h a n o l o r i s o - p r o p a n o l , t o an a m y l o d e x t r i n s o l u t i o n e n c o u r a g e s t h e f o r m a t i o n o f A- r a t h e r t h a n B- t y p e c r y s t a l s . Above a c e r t a i n a l c o h o l c o n c e n t r a t i o n , V-type c r y s t a l s then begin to form p r e f e r e n t i a l l y . W h i l s t i t i s d i f f i c u l t t o p r e p a r e h i g h l y c r y s t a l l i n e s a m p l e s o f A and Β s t r u c t u r e using long c h a i n amylose, V amylose c r y s t a l s w i l l form r e l a t i v e l y e a s i l y under the r i g h t c o n d i t i o n s . S u i t a b l e complexing a g e n t s i n c l u d e f a t t y a c i d s , l i n e a r and b r a n c h e d a l c o h o l s , m o n o g l y c e r i d e s and v a r i o u s o t h e r o r g a n i c compounds. C a r e i s r e q u i r e d when c r y s t a l l i z i n g h i g h m o l e c u l a r w e i g h t a m y l o s e c o m p l e x e s ; f o r e x a m p l e a r a p i d c o o l i n g r a t e can l e a d t o f o r m a t i o n o f amorphous as w e l l as c r y s t a l l i n e m a t e r i a l ( 1 0 ) . S u c c e s s f u l technique r e s u l t s in p l a t e l e t - l i k e c r y s t a l s c o n s i s t i n g of stacked l a m e l l a e , t h e m s e l v e s f o r m e d f r o m a m y l o s e m o l e c u l e s f o l d e d b a c k and f o r t h b e t w e e n t h e b o t t o m and t o p s u r f a c e s o f t h e l a m e l l a ( 9 . 1 0 ) . For s y n t h e t i c polymer c r y s t a l l i z a t i o n i t i s found t h a t l a m e l l a r t h i c k n e s s , and h e n c e c r y s t a l s t a b i l i t y , d e p e n d s s t r o n g l y on p r e p a r a t i o n c o n d i t i o n s s u c h as t e m p e r a t u r e o f c r y s t a l l i z a t i o n and c o o l i n g r a t e . F u t u r e s t u d i e s may i n d i c a t e s i m i l a r r e l a t i o n s h i p s f o r these biopolymer c r y s t a l s . I f i t i s accepted t h a t the complexed molecules i n V amylose are i n c l u d e d w i t h i n the h e l i x , then the complexation p r o c e s s can be t h o u g h t o f as m o l e c u l a r e n c a p s u l a t i o n . S t a b i l i t y o f t h e s e c o m p l e x e s has been s t u d i e d by o b s e r v a t i o n o f t h e m e l t i n g / d i s s o l u t i o n b e h a v i o r o f amorphous and c r y s t a l l i n e c o m p l e x e s . D i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y (DSC) shows an e n d o t h e r m i c t r a n s i t i o n o n h e a t i n g amylose complexes; the value at which i t occurs depends on the n a t u r e o f t h e c o m p l e x . T h i s t r a n s i t i o n c o r r e s p o n d s t o m e l t i n g and d i s s o c i a t i o n o f t h e a m y l o s e - g u e s t c o m p l e x . Amorphous c o m p l e x e s h a v e been shown t o m e l t a t l o w e r t e m p e r a t u r e s t h a n t h e i r c r y s t a l l i n e counterparts, demonstrating the s t a b i l i z i n g i n f l u e n c e of the crystal l a t t i c e (Table I ) . The n a t u r e o f t h e g u e s t m o l e c u l e a l s o a f f e c t s c o m p l e x s t a b i l i t y ; f o r example complexes formed u s i n g guest molecules o f i n c r e a s i n g hydrocarbon chain length d i s s o c i a t e at i n c r e a s i n g l y h i g h e r temperatures. Thus the l o n g e r hydrocarbon c h a i n s c o n f e r g r e a t e r s t a b i l i t y on t h e a m y l o s e c o m p l e x s t r u c t u r e .

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

18.

RING & WHTTTAM

277

Linear Dextrins

T a b l e I . M e l t i n g t e m p e r a t u r e s f o r c r y s t a l l i n e and amorphous complexes o f amylose with l i n e a r a l c o h o l s Alcohol Chain Length

M e l t i n g Temperature

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

C r y s t a l 1 i ne C4 C5 C6 C7 C8 CIO

(K) Amorphous

341 354 364 368 372 377

321 334 344 348 352 358

A t t e m p t s h a v e been made t o d e s c r i b e t h e d i s s o l u t i o n o f s t a r c h c r y s t a l l i t e s on g e l a t i n i z a t i o n u s i n g t h e F l o r y e q u a t i o n f o r p o l y m e r / d i l u e n t systems (H): 1

_ 1

=

R

V Γ

XV,

(1)

where Tm i s t h e o b s e r v e d m e l t i n g t e m p e r a t u r e , Tm° i s t h e m e l t i n g t e m p e r a t u r e o f t h e u n d i l u t e d p o l y m e r , AHu i s t h e e n t h a l p y o f f u s i o n o f t h e r e p e a t i n g u n i t ( g l u c o s e ) , vyV- i s t h e r a t i o o f t h e m o l a r volume o f the r e p e a t i n g u n i t ( g l u c o s e ; t o t h a t o f the d i l u e n t ( w a t e r ) , ν i s t h e v o l u m e f r a c t i o n o f t h e d i l u e n t and χ i s t h e Flory-Huggins polymer- s o l v e n t i n t e r a c t i o n parameter. W h i l s t meeting with l i m i t e d success, the a p p l i c a t i o n o f the F l o r y equation t o w h o l e s t a r c h must be v i e w e d w i t h c a u t i o n s i n c e i t i s v a l i d o n l y f o r e q u i l i b r i u m m e l t i n g o f p u r e c r y s t a l l i n e p h a s e s . The p r e s e n c e o f g l a s s y o r amorphous m a t e r i a l w i t h i n t h e g r a n u l e w o u l d t e n d t o a f f e c t c r y s t a l l i t e melting temperature, thus j e o p a r d i z i n g the a p p l i c a b i l i t y of the F l o r y equation. Spherulites of amylodextrins i n A o r Β f o r m may be c o n s i d e r e d m o d e l s o f a m y l o p e c t i n c r y s t a l l i t e s , and i n t h i s c a s e a p p l i c a t i o n o f t h e F l o r y e q u a t i o n i s more j u s t i f i e d . S t u d i e s a r e c u r r e n t l y i n p r o g r e s s on t h e m e l t i n g b e h a v i o r o f A- and B - t y p e c r y s t a l s and t h e e f f e c t o f w a t e r as a diluent. B i o t e c h n o l o g y w i l l soon p e r m i t t h e b r e e d i n g o f p l a n t s w i t h s t a r c h e s o f p r e - d e t e r m i n e d m o l e c u l a r c o m p o s i t i o n . In a d d i t i o n t o v a r i a t i o n s i n a m y l o s e / a m y l o p e c t i n r a t i o , i t w i l l be p o s s i b l e t o v a r y t h e l e n g t h o f t h e a m y l o p e c t i n c h a i n s . I t has a l r e a d y been shown t h a t v a r i a t i o n i n a m y l o p e c t i n c h a i n l e n g t h has a s i g n i f i c a n t e f f e c t on s t a r c h r é t r o g r a d a t i o n b e h a v i o r ( 2 0 ) . In o r d e r f o r technology to e x p l o i t these v a r i a t i o n s f u l l y , i t i s important to understand the underlying molecular processes. This w i l l permit a r a t i o n a l a p p r o a c h t o t h e use o f g e n e t i c a l l y m a n i p u l a t e d s t a r c h e s and w i l l l e a d t o i m p r o v e d u n d e r s t a n d i n g o f c r y s t a l l i z a t i o n b e h a v i o r

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

278

BIOTECHNOLOGY OF AMYLODEXTRIN OLIGOSACCHARIDES

o f amylodextrins i n g e n e r a l . An example might be f r a c t i o n a t i o n o f amylodextrins u s i n g knowledge o f t h e i r r e s p e c t i v e c r y s t a l l i z a t i o n temperatures i n a given s o l u t i o n .

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

Amorphous Forms W h i l e d e x t r i n s c a n o f t e n be e n c o u n t e r e d as c r y s t a l l i n e s o l i d s i n many c a s e s t h e y can be p r e p a r e d as p a r t i a l l y c r y s t a l l i n e o r w h o l l y amorphous m a t e r i a l s . F o r t h e s e m a t e r i a l s , t h e g l a s s t r a n s i t i o n b e h a v i o r o f t h e amorphous r e g i o n s i s r e l e v a n t . A g l a s s has many o f the c h a r a c t e r i s t i c s of a l i q u i d except that of m o b i l i t y , i t s importance t o t e c h n o l o g i c a l a p p l i c a t i o n stems from the d r a m a t i c c h a n g e s i n m a t e r i a l p r o p e r t i e s e.g. m e c h a n i c a l and d i f f u s i v e b e h a v i o r , w h i c h o c c u r i n t h e r e g i o n o f t h e g l a s s t r a n s i t i o n . The t e c h n o l o g i c a l importance o f the g l a s s t r a n s i t i o n f o r polymeric m a t e r i a l s , i n o r g a n i c g l a s s e s and more r e c e n t l y b i o m a t e r i a l s has been r e v i e w e d ( 2 1 - 2 4 ) . A n e x a m p l e on how i t m i g h t a f f e c t t h e u s a g e o f d e x t r i n s w i l l i l l u s t r a t e some o f t h e p r i n c i p l e s . G l a s s y m a t r i c e s may be u s e d f o r e n c a p s u l a t i o n and p r o t e c t i o n o f a c t i v e i n g r e d i e n t s . The m e c h a n i s m o f p r o t e c t i o n i s somewhat d i f f e r e n t t o t h a t o b t a i n e d f r o m t h e f o r m a t i o n o f m o l e c u l a r i n c l u s i o n c o m p l e x e s and d o e s n o t r e l y upon t h e m o l e c u l a r r e c o g n i t i o n o f a c t i v e i n g r e d i e n t and h o s t . In t h e g l a s s , t h e r a t e o f d i f f u s i o n o f compounds i s s e v e r e l y h i n d e r e d . Hence, t h e g l a s s y m a t r i x can p r o t e c t t h r o u g h l i m i t i n g the d i f f u s i o n a l encounter of r e a c t i n g s p e c i e s . With p l a s t i c i z a t i o n of the matrix d i f f u s i o n w i l l a c c e l e r a t e ; through manipulation o f plasticization controlled release is possible. Although a g l a s s i s metastable with respect to the c r y s t a l l i n e f o r m , i t c a n r e m a i n i n a g l a s s y f o r m f o r many y e a r s ; a b o v e t h e g l a s s t r a n s i t i o n c r y s t a l l i z a t i o n i s much more r a p i d . G l a s s e s a r e t h e r e f o r e p r e p a r e d by c o o l i n g a t r a t e s s u f f i c i e n t l y f a s t t o a v o i d c r y s t a l l i z a t i o n . The r e q u i r e d c o o l i n g r a t e d e p e n d s o n t h e m a t e r i a l . F o r e x a m p l e , t o v i t r i f y w a t e r , c o o l i n g r a t e s i n e x c e s s o f 10 Ks" are necessary (25.26). Polymeric m a t e r i a l s c r y s t a l l i z e l e s s r e a d i l y and c o o l i n g r a t e s o f < l K s a r e o f t e n s u f f i c i e n t f o r v i t r i f i c a t i o n . A s a l i q u i d i s s u p e r c o o l e d , m o l e c u l a r m o t i o n and t h e l o c a l r e a r r a n g e m e n t o f m o l e c u l e s becomes p r o g r e s s i v e l y s l o w e r and the v i s c o s i t y increases. For D-glucose the v i s c o s i t y increases by 13 o r d e r s o f m a g n i t u d e on c o o l i n g f r o m a m e l t a t 413K t o t h e g l a s s a t 290K ( 2 7 . 2 8 ) . W i t h c o o l i n g , t h e p r o b a b i l i t y o f a m o l e c u l e o v e r c o m i n g an a c t i v a t i o n e n e r g y t o e s c a p e f r o m i t s n e i g h b o r s d e c r e a s e s . At the g l a s s t r a n s i t i o n t h e r e i s a sudden " f r e e z i n g ' O f m o t i o n w i t h a c o n s e q u e n t s h a r p f a l l i n h e a t c a p a c i t y . The g l a s s t r a n s i t i o n t e m p e r a t u r e , Tg, i s a f f e c t e d by c o o l i n g r a t e , t h e " f r e e z i n g i n " o f l i q u i d s t r u c t u r e w i l l occur at p r o g r e s s i v e l y lower t e m p e r a t u r e s as t h e c o o l i n g r a t e d e c r e a s e d , a l w a y s a s s u m i n g t h a t c r y s t a l l i z a t i o n d o e s n o t i n t e r v e n e . The o b s e r v e d Tg i s t h u s p r o f o u n d l y a f f e c t e d b y k i n e t i c f a c t o r s ( 2 1 ) . However, i t i s a r g u e d i n v a r i o u s t h e o r e t i c a l a p p r o a c h e s (£9) t h a t u n d e r l y i n g t h e e x p e r i m e n t a l l y observed t r a n s i t i o n i s a t r u e phase t r a n s i t i o n . The Tg o f amorphous m a t e r i a l s can be d e t e r m i n e d by m e a s u r i n g h e a t c a p a c i t y as a f u n c t i o n o f t e m p e r a t u r e and o b s e r v i n g t h e s h a r p i n c r e a s e i n heat c a p a c i t y , i n d i c a t i v e o f a g l a s s t r a n s i t i o n , which o c c u r s at Tg. At the p r e s e n t time t h i s i s c o n v e n i e n t l y performed 5

- 1

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

1

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

18.

RING & WHTTTAM

Linear Dextrins

279

u s i n g d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y t o d e t e r m i n e T g a n d ACp ( f i g u r e 1 ) . In a d d i t i o n by v a r y i n g both h e a t i n g and c o o l i n g r a t e s and o b s e r v i n g t h e c h a n g e i n T g i t i s p o s s i b l e t o o b t a i n an " a c t i v a t i o n enthalpy" f o r t h e r e l a x a t i o n process a t Tg (30.31). T h i s e n t h a l p y c a n be u s e f u l l y compared w i t h t h a t f r o m v i s c o s i t y data (3Û). The g l a s s t r a n s i t i o n b e h a v i o r o f c a r b o h y d r a t e s i n g e n e r a l i s r e c e i v i n g r e c e n t a t t e n t i o n . T h e T g ' s o f amorphous mal t o o l i g o m e r s f r o m m a l t o s e t o m a l t o h e x a o s e was r e c e n t l y d e t e r m i n e d ( 3 2 ) a n d r a n g e d f r o m 364K f o r m a l t o s e t o 448K f o r m a l t o h e x a o s e . D a t a f o r h i g h e r o l i g o m e r s was n o t o b t a i n a b l e d u e t o t h e r m a l d e g r a d a t i o n , t h e h i g h m o l e c u l a r w e i g h t l i m i t o f T g o b t a i n e d b y e x t r a p o l a t i o n was 500±10K. A t low d i l u e n t c o n c e n t r a t i o n s t h e a d d i t i o n o f water s t r o n g l y d e p r e s s e d T g , f o r example t h e T g f o r m a l t o h e x a o s e f e l l 100K on a d d i t i o n o f 1 0 % w/w w a t e r . T h e c o m p o s i t i o n a l v a r i a t i o n o f Tg w i t h w a t e r c o n t e n t was i n v e s t i g a t e d a t w a t e r c o n t e n t s s o g u e s t m o l e c u l e s may o r i e n t t h e m s e l v e s i n s i d e t h e c y c l o d e x t r i n c a v i t y w i t h t h e i r own d i p o l e moment o r i e n t e d a n t i p a r a l l e l t o that o f the cyclodextrin molecule, with a r e s u l t i n g a t t r a c t i v e d i p o l e - d i p o l e f o r c e . In c a s e s where t h e g u e s t m o l e c u l e has no p e r m a n e n t d i p o l e moment, i t s p o l a r i z a b i l i t y w i l l d e t e r m i n e t h e s i z e o f d i p o l e moment i n d u c e d by t h e p e r m a n e n t d i p o l e o f t h e c y c l o d e x t r i n m o l e c u l e and t h u s i n f l u e n c e t h e s t r e n g t h o f i n t e r a c t i o n between t h e two. Van d e r Waal s ' f o r c e s , i n c l u d i n g b o t h d i p o l e - d i p o l e i n t e r a c t i o n a n d London d i s p e r s i o n f o r c e s , a r e t h u s l i k e l y t o play a part i n the i n c l u s i o n process. Evidence f o r t h i s comes f r o m t h e f a r g r e a t e r a f f i n i t y o f α c y c l o d e x t r i n f o r t h e 4 - n i t r o p h e n o l a t e anion than f o r 4-nitrophenol (68) L i n e a r m a l t o d e x t r i n h e l i c e s p r e s u m a b l y a l s o p o s s e s s a d i p o l e moment, a l t h o u g h t h e e f f e c t m i g h t be e x p e c t e d t o be s m a l l e r t h a n t h a t o f t h e c y c l o d e x t r i n d u e t o t h e more e x t e n d e d f o r m o f t h e l i n e a r maltodextrin. A c l o s e s p a t i a l f i t between c y c l o d e x t r i n a n d g u e s t m o l e c u l e i s g e n e r a l l y r e c o g n i z e d as important f o r good c o m p l e x a t i o n , which s u p p o r t s t h e e v i d e n c e t h a t v a n d e r Waal s' i n t e r a c t i o n s , w h i c h a r e s h o r t r a n g e , may s t a b i l i z e t h e c o m p l e x . B e c a u s e o f t h i s r e q u i r e m e n t f o r a c l o s e f i t between g u e s t and h o s t , p e r h a p s , c y c l o d e x t r i n s o f d i f f e r e n t s i z e s complex p r e f e r e n t i a l l y w i t h d i f f e r e n t guest m o l e c u l e s a n d may be u s e d f o r t h e s e p a r a t i o n o f s p e c i f i c m o l e c u l e s f r o m a m i x t u r e . L i n e a r m a l t o d e x t r i n s , on t h e o t h e r hand, show l e s s s p e c i f i c " r e c o g n i t i o n " o f m o l e c u l e s , and a r e b e l i e v e d t o f o r m h e l i c a l c o m p l e x e s w i t h 6,7 o r 8 g l u c o s e u n i t s p e r t u r n , d e p e n d i n g on t h e s i z e o f t h e g u e s t m o l e c u l e . No s i n g l e mode o f i n t e r a c t i o n , t h e r e f o r e , seems t o be r e s p o n s i b l e f o r c o m p l e x a t i o n , b u t a v a r i e t y of interactions are operational, their relative contributions v a r y i n g w i t h t h e n a t u r e o f t h e g u e s t m o l e c u l e . T h i s e x p l a i n s why such a wide range o f molecules can form i n c l u s i o n complexes w i t h e i t h e r c y c l i c o r l i n e a r g l u c a n s , and may a l s o h e l p t o s h e d l i g h t on why, f o r e x a m p l e t h e c o m p l e x i n g a b i l i t i e s o f c y c l o d e x t r i n s a r e 2-3 orders o f magnitude higher than those o f t h e corresponding non-cyclic analogs (69). Acknowledqments The a u t h o r s w i s h t o t h a n k t h e M i n i s t r y o f A g r i c u l t u r e , F i s h e r i e s and F o o d f o r f i n a n c i a l s u p p o r t . Literature Cited 1.

Umeki, K.;

Yamamoto, T.

J.

Biochem. 1975,

78,

889-96.

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

290

BIOTECHNOLOGY

OF

AMYLODEXTRIN

OLIGOSACCHARIDES

2.

Hayashi, T.; Akiba, T.; Horikoshi, Biotechnol. 1988, 52, 443-448.

3.

Pfannemuller, B.; Bauer-Carnap, A. Colloid 1977, 255, 844-9.

4.

Buleon, Α.; Duprat, F.; Booy, F. P.; Chanzy, H. Carbohydr. Polym. 1984, 4, 161-73.

5.

Gidley, M. J.; 291-300.

6.

Pfannemuller,

7.

Pangborn, W.; Langs, D.; Perez, S. Int. 1985, 7, 363-9.

8.

Ring, S. G.; Miles, M. J.; Morris, Y. J.; Turner, R.; Colonna, P. Int. J. Biol. Macromol. 1987, 9, 158-60.

9.

Yamashita, Y.; Ryugo, J.; 1973, 22(1), 19-26.

Bulpin,

B. Int.

Κ. Appl.

Microbiol.

Polymer

Sci.

P. V. Carbohydr. Res. 1987, 161,

J. Biol.

Macromol. 1987, 9, 105-8. J. Biol.

Macromol.

Monabe,K. J. Electron

Microsc.

10. Whittam, M.; Orford, P. D.; Ring, S. G.; Clark, S. Α.; Parker, M. L.; Cairns, P.; Miles, M. J. Int. J. Biol. Macromol. 1989, 11, 400-6. 11. Katz, J. R.; van Italie, 150, 90-100.

T. Β.

Ζ. Physik.

Chem. A 1930,

12. Wu, H. C. H.; Sarko, A. Carbohydr. Res. 1978, 61,

7-25.

13. Wu, H. C. H.; Sarko, A. Carbohydr. Res. 1978, 61, 27-40. 14. Imberty, Α.; Chanzy, H.; Perez, S.; J. Mol. Biol. 1988, 201, 365-78. 15. Imberty, Α.,

Perez, S. Biopolymers

Buleon, Α.,

1988, 18, 1205-21.

16. Booy, F. P.; Chanzy, H.; Sarko, A. Biopolymers 2261-66. 17. Winter, W. T.; 18. Perez, S.;

Sarko, A. Biopolymers

Vergelati,

1979, 18,

1974, 13, 1461-82.

C. Polymer Bull.

19. Donovan, J. W. Biopolymers

Tran, V.

1987, 17, 141-8.

1979, 18, 263-75.

20. Kalichevsky, M. T.; Orford, P. D.; Ring, S. G. Carbohvdr. Res. 1989, 193, 196-201. 21. Jackie,

J.

22. Angell,

C.A.

Rep. Prog. Phys. 1986, 49, J. Phys. Chem. Solids

171.

1988, 49(8),

863.

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

291

18. RING & WHITTAM Linear Dextrins 23. Fredrickson, G.H.

Ann. Rev. Phys. Chem. 1988, 39, 149.

24. Slade, L.; Levine, H. In Frontiers in Carbohydrate Research 1: Food Applications; Millane, R.P.; BeMiller, J.N.; Chandrasekaran, R., Eds; Elsevier Applied Science, 1989; p215.

25. Johari, G. P.; Hallbrucker, 330, 552.

Α.; Mayer, E. Nature 1987,

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

26. Hofer, K.; Hallbruker, Α.; Mayer, E.; Johari, G. P. J. Phys. Chem. 1989, 93, 4674. 27. Parks, G. S.; Barton, L. E.; Spaght, M. E.; Richardson, J. W. Physics 1934, 8, 193. 28. Parks, G. S.; Huffman, H. M.; Cattoir, F. R. J. Phys. Chem. 1928, 32, 1366.

29. Couchman, P. R. Macromolecules 1978, 11, 1156 & Couchman, P. R. Macromolecules 1987, 20, 1712. 30. Angell, C. Α.; Stell, 1982, 86, 1540.

R. C.; Sichina,

W. J. Phys. Chem.

31. Moynihan, C. T.; Easteal, A. J.; Wilder, J.; Tucker, J. Phys. Chem. 1974, 78, 2673.

J.

32. Orford, P. D.; Parker, R.; Ring, S. G.; Smith, A. C. Int. J. Biol. Macromol. 1989, 11, 91. 33. Orford, P. D.; Parker, R.; Ring, S. G. Carbohydr. Res. 1989, 85, 23. 34. Mackenzie, A. P. Phil. Trans. R. Soc. Lond. B. 1977, 278, 167. 35. Levine, H.; Slade, L. In Water and Food Quality; Hardman, T. M., Ed.; Elsevier Applied Science: New York,

1989. 36. Levine, H.; Slade, L. Carbohydr. Polym. 1986, 6, 213. 37. Banks, W.; Greenwood, C. T. Starch and its Components, Edinburgh University Press, 1975.

38. Ring, S. G.; I'Anson, K.; Morris, 1985, 18, 182

V. J. Macromolecules

39. Banks, W.; Greenwood, C. T.; Sloss, J. Carbohydr. Res. 1969, 11, 399. 40. Burchard, W. Makromol. Chem. 1963, 59, 16. 41. Kitamura, S.; Kuge, T. Food Hydrocolloids

1989, 3, 313.

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

292

BIOTECHNOLOGY OF AMYLODEXTRIN OLIGOSACCHARIDES

42. Takeda, Y.; Hizukuri, 1986, 148, 299.

S.;

43. Ha, S. N.; Madsen, L. J.; 27, 1927.

Juliano,

B. O. Carbohydr.

Brady, J. W. Biopolymers

Res.

1988,

44. Ihnat, M.; Goring, D. A. I. Can. J. Chem. 1967, 45, 2353. 45.

Ihnat, M.; Goring, D. A. I. Can. J. Chem. 1967, 45, 2363.

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

46. Miyajima, K.; Sauada, M.; Nakagaki, M. Bull. Chem. Soc. Jpn. 1983, 56, 1620. 47. Tanford, C. Physical Wiley, 1961, p335.

Chemistry of Macromolecules; John

48. Soesanto, T.; Williams, 3338.

M. C.

J. Phys. Chem. 1981, 85,

49. Mikus, F. F.; Hixon, R. M.; Rundle, R. E. J. Am. Chem. Soc. 1946, 68, 1115-23. 50. Kowblansky, M. Macromolecules 1987, 18, 1776-9. 51. Biliaderis, 48.

C.G.; Galloway,

52. Simpson, T.D.; Dintzis, 11, 2591-2600.

G. Carbohydr. Res. 1989, 189, 31-

F.R.; Taylor,

N.W.

Biopolymers

53. Jane, J. L.; Robyt, J. F.; Huang, D. H. Carbohydr. 1985, 140, 21-35. 54. Komiyama, M.; Hidefuni, 1986, 7, 739-42.

1972,

Res.

H. Macromol. Chem. Rapid Commun.

55. Whittam, Μ. Α.; Ring, S. G.; Orford, P. D. In Gums and Stabilisers for the Food Industry Vol.3; Phillips, G. O.; Wedlock, D. J.; Williams, P. A. Eds; Elsevier: 1986, p555. 56. Rundle, R. E.; Baldwin, R. R. J. Am. Chem. Soc. 1943, 65, 554-8. 57. Senior,

M. B.; Hamori, E. Biopolymers

58. Bulpin, P. V.; Welsh, E. J.; 1982, 34, 335-9. 59. Bailey, J. M.; Whelan, W. J. 969-73.

Morris,

J. Biol.

1973, 12, 65-78. E. R. Staerke

Chem. 1961, 236,

60. Banks, W.; Greenwood, C. T.; Khan, Κ. M. Carbohydr. 1971, 17, 25-33.

Res.

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

18. RING & WHITTAM

Linear Dextrins

61. Bulpin, P. V . ; Cutler, A. N.; Lips, A. Macromolecules 1987, 20, 44-9. 62. Yamamoto, M.; Sano, T . ; Harada, S.; Yasunaga, T. Bull. Chem. Soc. Jpn 1983, 56, 2643-46. 63. Karkalas, J.; Raphaelides, S. Carbohydr. Res. 1986, 157, 215-34.

Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: April 30, 1991 | doi: 10.1021/bk-1991-0458.ch018

64. Szejtli, J . Cyclodextrin Technology; Kluwer Academic Publishers, 1988. 65. Clarke, R. J.; Coates, J . H . ; Lincoln, S. F. In Advances in Carbohydrate Chemistry and Biochmistry Vol.46; Tipson, R. S.; Horton, D. Eds; Academic Press Inc.: 1988 66. Saenger, W.; Noltemeyer, M.; Manor, P. C . ; Hingerty, B.E.; Klar, B. Bioorg. Chem. 1976, 5, 187-95. 67. Kitagawa, M.; Hoshi, H . ; Sakurai, M.; Inoue, Y . ; Chujo, R. Bull. Chem. Soc. Jpn 1988, 61, 4225-9. 68. Bergeron, R. J.; Channing, Μ. Α.; Gibeily, G. J.; Pillor, D. M. J . Am. Chem. Soc. 1977, 99, 5146-51. 69. Komiyama, M.; Hirai, H . ; Kobayashi, K. Makromol. Chem. Rapid Commun. 1986, 7, 739-42.

RECEIVED November 9, 1990

In Biotechnology of Amylodextrin Oligosaccharides; Friedman, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.