Long-Range Electron Transfer Within Mixed-Metal Hemoglobin Hybrids

tron donor-acceptor redox pair at fixed distance. In one approach, several ..... Gingrich, D. J.; Hoffman, Β. M., unpublished results. 19. Kuila, D.;...
1 downloads 0 Views 2MB Size
13 Long-Range Electron Transfer Within Mixed-Metal Hemoglobin Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

Hybrids Michael J. Natan, Wade W. Baxter, Debasish K u i l a , D a v i d J. Gingrich, Gregory S. M a r t i n , and B r i a n M. Hoffman Department of Chemistry, Northwestern University, Evanston, IL 60208-3113

Studies of long-range electron transfer (ET) within mixed-metal hemoglobin (Hb) hybrids [MP, Fe (L)P, where M is Mg or Zn; Ρ is protoporphyrin IX; and L is H 0, imidazole, N -, F-, or CN-] are discussed. Because the structure of Hb is crystallographically known, ET occurs between redox centers held at known distance and ori­ entation. The ET energetics are easily manipulated through variation of M and L. In these systems, cyclic ET is initiated through photoproduction of the strong reductant (MP). ET quenching yields the charge-separated intermediate, [(MP) , Fe (L)P], which returns to the ground state by thermal ET. Direct spectroscopic observation of [(MP) , Fe (L)P] confirms the cyclic ET scheme. Comparison of rate constants for photoinitiated and thermally activated ET within various [MP, Fe (L)P] hybrids indicates that ET is direct and not "gated" by either protein conformational changes or ligand loss. 3+

2

3

3

+

+

2+

2+

3+

E L E C T R O N - T R A N S F E R R E A C T I O N S A R E C E N T R A L to b i o l o g y a n d c h e m i s t r y

(J, 2), b u t o n l y r e c e n t l y have techniques b e e n d e v e l o p e d to s t u d y l o n g range i n t e r p r o t e i n e l e c t r o n transfer ( E T ) (3, 4) w i t h o u t t h e c o m p l i c a t i o n of second-order processes t h r o u g h use of m o d i f i e d proteins that h o l d an e l e c ­ t r o n d o n o r - a c c e p t o r redox p a i r at fixed distance. I n one a p p r o a c h , several groups have d e v e l o p e d t e c h n i q u e s for s t u d y i n g E T w i t h i n p r o t e i n s m o d i f i e d b y covalent attachment of redox-active i n o r g a n i c complexes to surface a m i n o acid residues (5-11). F o r e x a m p l e , [ ( L ) R u ] , w h e n b o u n d to a h i s t i d i n e r e s i d u e o n the outside of proteins s u c h as c y t o c h r o m e c or m y o g l o b i n , c a n 5

2 +

0065-2393/91/0228-0201$06.00/0 © 1991 American Chemical Society

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

202

E T IN INORGANIC, ORGANIC, A N D BIOLOGICAL SYSTEMS

exchange an e l e c t r o n w i t h a m e t a l - c o n t a i n i n g redox c e n t e r located o n the i n s i d e of the p r o t e i n . I n parallel w i t h M c L e n d o n (3), w e focused o n studies of long-range E T w i t h i n p r o t e i n - p r o t e i n complexes, such as the p h y s i o l o g i c a l l y i m p o r t a n t c o m p l e x of c y t o c h r o m e c peroxidase w i t h c y t o c h r o m e c (12-14) or the [ α β ] c o m p l e x of the h e m o g l o b i n t e t r a m e r (15-17). O u r a p p r o a c h involves r e ­ p l a c i n g the h e m e (FeP) of one p r o t e i n p a r t n e r w i t h a c l o s e d - s h e l l p o r p h y r i n M P ( M is Z n or M g ; Ρ is p r o t o p o r p h y r i n IX) a n d s t u d y i n g E T b e t w e e n the M P a n d F e P groups (12-17). R e v e r s i b l e E T w i t h i n such m e t a l - s u b s t i t u t e d E T complexes (Scheme I) is i n i t i a t e d b y laser flash p h o t o p r o d u c t i o n of the

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

1 ?

2

A* [ (MP),Fe *(L)P] 3

3

I [(MPr,Fe *(L)P] 2

[MP,Fe (L)P] 2+

c Scheme I. slowly d e c a y i n g ( M P ) t r i p l e t state (A*). T h e ( M P ) is a good reductant a n d can r e d u c e the f e r r i h e m e p a r t n e r ( F e P ) b y long-range E T w i t h a p h o toinitiated E T rate constant fc (eq 1). 3

3

3 +

t

3

(MP) + F e

3 +

P - ^ » (MP)

+

+ Fe

2 +

P

(1)

T h e r e s u l t i n g charge-separated i n t e r m e d i a t e , [ ( M P ) , F e P ] (I), r e ­ turns to the g r o u n d state b y t h e r m a l E T from F e P to the cation radical ( M P ) (eq 2) w i t h rate constant k . +

2 +

2 +

+

h

(MP)

+

+ F e

2

+

P - ^ MP + Fe

3 +

P

(2)

I n o u r studies w e u s e d transient absorption a n d e m i s s i o n t e c h n i q u e s to m o n i t o r A * a n d I, t h e r e b y a l l o w i n g us to measure b o t h k a n d k . T h e k e y benefit to s t u d y i n g long-range E T processes w i t h i n h e m o g l o b i n h y b r i d s (Hb) is that, u n d e r the conditions of o u r e x p e r i m e n t s , the h e m o g l o b i n tetramers i n s o l u t i o n adopt d e o x y - H b (T-state) g e o m e t r y w i t h a crystallographically t

h

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

13.

NATAN ET AL.

Mixed-Metal Hemoglobin

Hybrids

203

k n o w n structure. T h u s , e l e c t r o n transfer occurs b e t w e e n redox centers h e l d at k n o w n distance a n d o r i e n t a t i o n .

Preparation, Structure, and Characterization of Mixed-Metal Hemoglobin Hybrids P r e p a r a t i o n of m i x e d - m e t a l h e m o g l o b i n h y b r i d s is a c h i e v e d b y separation of [2α, 2 β ] h e m o g l o b i n i n t o its constituent a a n d β chains, f o l l o w e d b y d e m e t a l a t i o n of one of the chains, metalation w i t h M P , a n d c h a i n r e c o m ­ b i n a t i o n , to y i e l d the t e t r a m e r i c [2α(ΜΡ), 2 β ( Ρ β Ρ ) ] or [ 2 α ( Ρ β Ρ ) , 2 β ( Μ Ρ ) ] species (18). T h u s , M P —» F e P E T m i g h t i n p r i n c i p l e o c c u r b e t w e e n α - β ! or α ! ~ β subunits. H o w e v e r , the distance b e t w e e n a a n d β h e m e s is m o r e than 10 A greater t h a n that b e t w e e n a a n d β · T h i s extra distance is e x p e c t e d a n d i n d e e d is f o u n d to r e d u c e E T rates b y several orders of m a g n i t u d e . H e n c e , for a l l p r a c t i c a l purposes w e may treat the [ 2 α , 2 β ] t e t r a m e r i n t e r m s of two i n d e p e n d e n t [ α β ] E T complexes. 3 +

3+

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

χ

1

2

l

ΐ 5

l

2

2

If the g e o m e t r y of m i x e d - m e t a l h e m o g l o b i n h y b r i d s is fixed i n the k n o w n structure of T-state (deoxy) H b , m e t a l r e p l a c e m e n t s h o u l d not p e r t u r b that structure. T h e first structural issue that m u s t b e c o n s i d e r e d is l o c a l : D o e s substitution o f Z n or M g cause significant p e r t u r b a t i o n s ? T h e s t r u c t u r e o f M g H b , i n w h i c h a l l four prosthetic groups are M g P , has r e c e n t l y b e e n crystallographically d e t e r m i n e d at 2 . 2 - A r e s o l u t i o n (19). W i t h the a t o m i c m o d e l of deoxy H b as the starting p o i n t i n a least-squares r e f i n e m e n t , o n l y t r i v i a l l y s m a l l structural differences w e r e n o t e d . T h e r e f o r e , r e p l a c e m e n t o f Fe with M g i n h e m o g l o b i n does not significantly alter the s t r u c t u r e . 2 +

2 +

T h e second structural issue is global: Is the q u a t e r n a r y structure of a m i x e d - m e t a l h y b r i d significantly different from that of T-state H b ? A g a i n the answer is no, as i n d i c a t e d b y an X - r a y structure of the [ a ( F e C O ) ^ ( M n ) ] h y b r i d (20). T h u s , the distances a n d g e o m e t r i c relationships of the h e m e groups i n v o l v e d i n E T w i t h i n the [ α β ] E T c o m p l e x are p r e s e r v e d i n the m e t a l - s u b s t i t u t e d species. W i t h this corroborative structural data, it is pos­ sible to discuss structure o f the [ α β ] c o m p l e x w i t h h i g h p r e c i s i o n . ΐ 5

ΐ 5

2

2

A s a n e x a m p l e w e c o n s i d e r e d the [ F e , M ] h y b r i d s , w h e r e M is M g or Z n . I n the [ α β ] E T c o m p l e x ( F i g u r e 1), the β ( Μ Ρ ) a n d a ( F e P ) are r o u g h l y p a r a l l e l , w i t h distances of 25 Â b e t w e e n metals a n d about 17 À e d g e to-edge (21). T h i s s t r u c t u r a l l y d e f i n e d b u t c h e m i c a l l y m a n i p u l a b l e system offers m a n y avenues for study. R e c e n t l y w e focused o n the effects of c h a n g i n g E T energetics. O n e means to do this is to vary the c l o s e d - s h e l l M P . T h e ( M g P ) - M g P r e d u c t i o n p o t e n t i a l is about 100 m V l o w e r t h a n the Z n P - Z n P r e d u c t i o n p o t e n t i a l (15, 16). C o n s e q u e n t l y , the free energy change, - A G , for p h o t o i n i t i a t e d A * —» I process is - 1 . 0 e V for [ ( Z n P ) , F e P ] , a n d - 1 . 1 e V for [ ( M g P ) , F e P ] . F o r the I A E T , - A G is - 0 . 8 e V for [(ZnP) , F e P ] a n d - 0 . 7 e V for [(MgP) , F e P ] (15, 16). 1 ?

2

2

x

+

+

3

3

+

2 +

3 +

3 +

+

2 +

H e m e l i g a n d v a r i a t i o n provides an e v e n m o r e effective means of a l t e r i n g

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

204

E T IN INORGANIC, ORGANIC, A N D BIOLOGICAL SYSTEMS

Figure 1. a-Carbon backbone of an [α β ] ET complex within [2a(Fe(CO)P, 2β(ΜηΡ)]. (Reproduced with permission from ref 20. Copyright 1986 Aca­ demic Press.) Ϊ9

2

the energetics for E T w i t h o u t c h a n g i n g the structure o f the E T c o m p l e x . A t n e u t r a l p H , the F e P i n m e t h e m o g l o b i n has H 0 i n the distal c o o r d i n a t i o n site, w i t h the r e m a i n i n g five sites taken b y the nitrogens of Ρ a n d o f the p r o x i m a l h i s t i d i n e (22). T h e c o o r d i n a t e d H 0 can be r e p l a c e d b y o t h e r ligands L , b o t h n e u t r a l ( L = L ° is imidazole) a n d a n i o n i c ( L = X " is C N ~ , F " , or N ~ ) . A s the F e P - F e P redox p o t e n t i a l depends o n L , the d r i v i n g force for E T changes c o r r e s p o n d i n g l y . X - r a y crystallographic m e a s u r e m e n t s of l i g a n d e d h e m o g l o b i n s show n e g l i g i b l e changes u p o n l i g a n d v a r i a t i o n , a n d thus the h e m e g e o m e t r y is r e t a i n e d (23). 3 +

2

2

3

3 +

2 +

T h e c o m b i n a t i o n o f m e t a l - l i g a n d v a r i a t i o n i n these h y b r i d s not o n l y allows alteration of the E T energetics b u t also p r o v i d e s a means to study m e c h a n i s t i c questions. It c o u l d b e u s e d to d e t e r m i n e w h e t h e r E T is d i r e c t or i n v o l v e s a h o p p i n g m e c h a n i s m and w h e t h e r E T is " g a t e d " (24-27) b y linkage to p r o t e i n conformational change or h e m e l i g a n d dissociation.

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

13.

NATAN ET AL.

Mixed-Metal Hemoglobin

205

Hybrids

Kinetics by Triplet Decay R e v e r s i b l e E T w i t h i n M g - a n d Z n - s u b s t i t u t e d h e m o g l o b i n h y b r i d s is i n i t i a t e d b y flash p h o t o p r o d u c t i o n of the l o n g - l i v e d t r i p l e t state ( M P ) . F i g u r e 2 shows the progress curves for t r i p l e t decay i n [ M g , F e ] , [ M g , F e ( H 0 ) ] , [ Z n , F e ] , a n d [ Z n , F e ( H 0 ) ] , as m o n i t o r e d b y ( M P ) - M P absorbance dif­ ference spectra. T h e data are s h o w n n o r m a l i z e d to u n i t t r i p l e t p o p u l a t i o n . T h e t r i p l e t decay for b o t h r e d u c e d h y b r i d s , [ M g , F e ] a n d [ Z n , F e ] , is e x p o n e n t i a l o v e r five half-lives. T h e rate constant for this i n t r i n s i c t r i p l e t decay, Jt , is 2 0 ( ± 2 ) s" at 25 °C w h e n M is M g a n d 5 3 ( ± 5 ) s" at 25 °C w h e n M is Z n . I d e n t i c a l rate constants are o b t a i n e d b y f o l l o w i n g triplet-state emission. 3

2 +

2 +

3 +

3 +

2

3

2

2 +

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

d

2 +

1

1

T r i p l e t decay i n [ M g , F e ( H 0 ) ] a n d [ Z n , F e ( H 0 ) ] m o n i t o r e d at λ = 415 n m , the F e P isosbestic p o i n t , o r at 475 n m , w h e r e c o n t r i b u t i o n s from the charge-separated i n t e r m e d i a t e are m i n i m a l , r e m a i n s e x p o n e n t i a l . H o w e v e r , the decay rate i n the o x i d i z e d h y b r i d s , fe , is i n c r e a s e d to 5 5 ( ± 5 ) s" w h e n M is M g a n d to 1 3 8 ( ± 7 ) s" w h e n M is Z n . T w o a d d i t i o n a l q u e n c h i n g processes can c o n t r i b u t e to deactivation of ( M P ) w h e n the i r o n - c o n t a i n i n g c h a i n of the h y b r i d is o x i d i z e d to the F e P state: E T q u e n c h i n g as i n e q 1 (with rate constant k ) a n d F o r s t e r e n e r g y transfer (with rate constant k ). E T q u e n c h i n g is not possible i n the F e P h y b r i d , a n d F o r s t e r e n e r g y transfer also is u n i m p o r t a n t because spectral overlap is m i n i m a l (17). T h e 3 +

3 +

2

2

3 + / 2 +

p

1

1

3

3 +

t

0

2 +

Tine

(ns)

Figure 2. Normalized triplet-decay curves for [M(P), Fe(P)] hybrids. For a given M (M is Zn or Mg), the arrow is directed from the curve for the Fe P state toward that for the Fe P state. 2+

3+

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

206

E T IN INORGANIC, ORGANIC, A N D BIOLOGICAL SYSTEMS

net rate of t r i p l e t disappearance i n o x i d i z e d h y b r i d s is thus the s u m of three terms: fc = fc + k + k . T h e difference i n t r i p l e t - d e c a y rate constants for the o x i d i z e d a n d r e d u c e d h y b r i d s gives the q u e n c h i n g rate constant, k k - k = k + fc , w h i c h is thus an u p p e r b o u n d to k . S u b t r a c t i o n y i e l d s k = 8 5 ( ± 1 0 ) s for [ZnP, F e ( H 0 ) P ] a n d k = 3 5 ( ± 5 ) s" for [MgP, F e ( H 0 ) P ] . p

q

=

t

d

p

d

t

0

t

0

1

q

3 +

3 +

1

q

2

2

B y d e f i n i t i o n , the i n t r i n s i c t r i p l e t - d e c a y rate constant, k , is i n d e p e n d e n t of h e m e l i g a t i o n . T h e r e f o r e , differences i n k i n e t i c progress curves for [ ( M P ) , F e ( L ) P ] reflect i n e q u i v a l e n t values of k for the various ligands. T h e data for M = Z n clearly fall into two classes: H y b r i d s w i t h f e r r i h e m e c o o r d i n a t e d to the n e u t r a l ligands H 0 a n d i m i d a z o l e give k ~ 80 s" , b u t those w i t h b o u n d anionic ligands give dramatically r e d u c e d values [ 3 ( ± 2 ) s" < k < 1 2 ( ± 3 ) s" ]. T h e data for [ M g P , F e ( L ) P ] h y b r i d s show a s i m i l a r g r o u p i n g . d

3

3 +

q

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

1

q

2

1

1

q

3 +

I n o u r i n i t i a l studies, w h i c h w e r e solely l i m i t e d to m e a s u r e m e n t s of t r i p l e t q u e n c h i n g , w e c o n s i d e r e d w h e t h e r energy transfer c o u l d be c o n t r i b ­ u t i n g to fc . F o r s t e r energy transfer w o u l d be p r o p o r t i o n a l to spectral overlap b e t w e e n the ( M P ) e m i s s i o n s p e c t r u m a n d the F e ( L ) P absorption spec­ t r u m . T h u s , a lack of correlation b e t w e e n the ligated h e m e o p t i c a l spectra a n d the o b s e r v e d k i n d i c a t e d that for L = L° = H 0 (and i m i d a z o l e ) , most, i f not a l l , t r i p l e t q u e n c h i n g is associated w i t h E T (17). H o w e v e r , w i t h the s m a l l e r rate constants for t r i p l e t q u e n c h i n g b y the a n i o n - l i g a t e d h e m e s , it was b y no means clear w h e t h e r E T was the p r e d o m i n a n t q u e n c h i n g m e c h ­ a n i s m . T h a t is, a small value for k w o u l d have m i n i m a l c o n s e q u e n c e for L = L ° , b u t c o u l d account for m u c h or a l l of k i n the case w h e r e L = X ~ . T h u s , d i r e c t observation of the charge-separated i n t e r m e d i a t e I , i n a d d i t i o n to y i e l d i n g fc , the rate constant for the t h e r m a l process, is r e q u i r e d to c o n f i r m the v e r y existence of long-range E T i n cases w h e r e k is small. q

3

3 +

q

2

0

q

b

q

Direct Observation of Charge-Separated ET Intermediates T h e t i m e course of the charge-separated i n t e r m e d i a t e I can be m e a s u r e d i n a flash photolysis e x p e r i m e n t that monitors the I - A transient absorbance difference at a g r o u n d s t a t e - t r i p l e t state isosbestic p o i n t (e.g., λ = 432 n m w h e n M is M g a n d 435 n m w h e n M is Zn). W e have o b s e r v e d this i n t e r ­ mediate for the [ M P , F e P ] h y b r i d s w h e n M is M g or Z n ; representative k i n e t i c progress curves are s h o w n i n F i g u r e 3 (15). I n a k i n e t i c s c h e m e that i n c l u d e s eqs 1 a n d 2 as the o n l y E T processes, w h e n fe > fc , as is the case h e r e , I appears exponentially w i t h rate constant k a n d disappears c o m p l e t e l y 3 +

b

p

h

i n an e x p o n e n t i a l fall w i t h rate constant fc . H o w e v e r , the o c c u r r e n c e of a persistent absorbance change ( Δ Α „ ) for the [ M , F e ] h y b r i d s r e q u i r e s an e x t e n d e d k i n e t i c m o d e l (Scheme I). I n this m o d e l , ( M P ) is r e d u c e d not o n l y b y F e P w i t h rate constant k (regen­ e r a t i n g the [ M P , F e P ] state), b u t also b y an a s - y e t - u n i d e n t i f i e d a m i n o a c i d p

+

2 +

h

3 +

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

13.

NATAN ET AL.

Mixed-Metal Hemoglobin 1

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

τ

i

-10

.

0

1

ι

i

.

i

10

Γ

I

.

20

TirrtQ

207

Hybrids

ι

L

30

40

50

(ms)

Figure 3. Normalized kinetic progress curves at 5 °C for ET intermediate (I) plus photoproduct (C) (see Scheme I) formed upon flash photolysis of the mixed-metal Hb hybrids: [$(MgP), a(Fe P)] (\ = 432 nm); [β(ΖηΡ), a(Fe P)] (λ = 435 nm). Solid lines are nonlinear least-squares fits to the equations in ref. 15. For[Mg, Fe], k = 155(±15) s" , k = 47(±5) s' , andk = 20(±5) s^for [Zn, Fe], k = 350(±35) s , k = 122(±10) s , and k = 40(±8) s- . Buffer: 0.01 M KP pH 7.0. 3+

3+

2

b

1

b

1

p

m

1

p

1

m

h

r e s i d u e X a n d / o r solution i m p u r i t i e s w i t h rate constant fc , l e a d i n g to [ M P , F e P ] (eq 3): m

2 +

[(MP ), Fe +

2 +

P] + X - ^ +

[MP, Fe

2 +

P] + X

(3)

+

S o l u t i o n of the k i n e t i c equations i m p l i c i t i n S c h e m e I indicates that the m a g n i t u d e of àA is p r o p o r t i o n a l to fe , a n d that I appears e x p o n e n t i a l l y w i t h rate constant k = k + k . F i g u r e 3 shows that the k i n e t i c progress curves for I for the Z n - a n d M g - s u b s t i t u t e d h y b r i d s are w e l l - d e s c r i b e d b y n o n l i n e a r least-squares fits to these k i n e t i c equations (15). T h e data i n F i g u r e 3 show that the t i m e course of the i n t e r m e d i a t e [ ( M P ) , F e P ] (I) strongly depends o n M . A t 5 °C w h e n M is M g , k = 155(±15) s , fc = 4 7 ( ± 5 ) s , a n d k = 2 0 ( ± 5 ) s" ; w h e n M is Z n , k = 3 5 0 ( ± 3 5 ) s , k = 1 1 2 ( ± 1 0 ) s" , a n d k = 4 0 ( ± 8 ) s" . D i r e c t observation of I , the charge-separated i n t e r m e d i a t e , has v e r i f i e d the occurrence of long-range E T w i t h i n [ ( M P ) , F e ( L ) P ] for b o t h M a n d all L . F i g u r e 4 shows a c o m p a r i s o n of the k i n e t i c progress curves o b t a i n e d for [β(ΖηΡ), a ( F e ( H 0 ) P ] a n d [β(ΖηΡ), a ( F e ( C N ) P ] (16). T h e l o n g - t i m e exponential fall for the latter, k = 6 5 ( ± 8 ) s" , is i n agreement w i t h that œ

m

x

h

m

+

2 +

1

h

1

1

m

1

1

h

p

p

1

m

3

3 +

3 +

3 +

2

p

1

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

208

E T IN INORGANIC, ORGANIC, A N D BIOLOGICAL SYSTEMS

.012 h

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

-5 .006

0 0

40

20 Tine (ns)

Figure 4. Kinetic progress curves as in Figure 3 at 435 nm for [β(ΖηΡ), a(Fe (L)P)]. Experimental points and nonlinear least-squares fits for L = H 0 and L = CN~ are shown, with absorbance changes normalized to a zerotime triplet concentration (A *) = 10~ M. For [$(ZnP), 0L(Fe (H O)P)], k = 345(±45) s- and k = 134(±15) s" ; for [β(ΖηΡ), a(Fe (CN~)P)], k = 240(±30) s- and k = 65(±8) s" . Buffer: 0.01 M KP pH 7.0. 3+

2

6

0

1

b

3+

2

p

1

b

2

p

2

3+

h

o b s e r v e d i n t r i p l e t - d e c a y data. A b s o r b a n c e changes r e s u l t i n g from f o r m a t i o n o f t h e charge-separated i n t e r m e d i a t e I are p r o p o r t i o n a l to the rate constant k . T h u s k can b e calculated i n d e p e n d e n t l y of any o t h e r c o n t r i b u t i o n s to t

t

triplet-state q u e n c h i n g i f the q u a n t u m y i e l d for the f o r m a t i o n of I can b e determined. W i t h this p r o c e d u r e , analysis o f the r e l a t i v e l y large absorbance changes o b s e r v e d w i t h t h e i n t e r m e d i a t e i n the M = Z n , L = fc (H 0) Zn

t

k

= 90(±30) s

2

3 +

2

t

H 0 . O n the o t h e r h a n d , k

=

(CN")P],

but analysis of absorbance

changes associated

d

a(Fe

H Q h y b r i d gives

a n d thus confirms the p r e v i o u s assignment fc =

for L =

- k

p

_ 1

[β(ΖηΡ)

+

q

2

14(±4) s

1

for [β(ΖηΡ),

, a ( F e ( C N " ) P ] gives an e v e n s m a l l e r v a l u e , J f c ^ i C N " ) = 2 +

with 6(±3)

s" . T h u s , r e p l a c e m e n t of H 0 b y C N " i n the h e m e c o o r d i n a t i o n sphere 1

2

reduces k b y o v e r a n o r d e r of m a g n i t u d e . Q u a n t i t a t i o n o f I w h e n M is M g t

o r Z n , a n d w i t h a l l the ligands s t u d i e d so far, gives t h e

fc (L) M

t

shown i n

F i g u r e 5. R e p l a c e m e n t of H 0 w i t h another n e u t r a l l i g a n d , i m i d a z o l e , does 2

not significantly alter k . R e p l a c e m e n t w i t h o t h e r anions ( N ~ , F~) affects k t

3

t

i n the same fashion as C N " , a 10-fold r e d u c t i o n i n rate. T h e effect o f a n i o n b i n d i n g o n fc is not n e a r l y as great. T h e data i n b

F i g u r e 5 show that, for b o t h metals, a less than 5 0 % r e d u c t i o n i n t h e r m a l l y activated E T rate constant is o b s e r v e d b e t w e e n h y b r i d s c o n t a i n i n g n e u t r a l a n d a n i o n i c ligands.

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

13.

NATAN ET AL.

Mixed-Metal Hemoglobin

209

Hybrids

Figure 5. Ligand dependence of rate constants for photoinitiated ET (k , light, speckled) and thermal ET (kb, dark, crosshatched) within the hybrids (A) [ZnP, Fe +(L)P] and (B) [MgP, Fe (L)P]. When M is Zn, the data refer to 1methylimidazole rather than imidazole. t

3

3+

Mechanistic Aspects of Electron Transfer within [MP, Fe +(L)P] 3

T h e single most i m p o r t a n t mechanistic q u e s t i o n c o n c e r n i n g long-range E T i n h e m o g l o b i n h y b r i d s is w h e t h e r the E T reactions u n d e r consideration are single-step events o r m u l t i p l e - s t e p processes w i t h one or m o r e r e a l i n t e r m e d i a t e states (such as one w i t h an o x i d i z e d or r e d u c e d a m i n o a c i d residue). A second k e y issue i n m e c h a n i s t i c studies of long-range e l e c t r o n transfer i n proteins is the r o l e of gating. I f p h o t o i n i t i a t e d or t h e r m a l E T r e q u i r e s a

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

210

E T IN INORGANIC, ORGANIC, A N D BIOLOGICAL SYSTEMS

p r o t e i n conformational change, t h e n fe , the o b s e r v e d rate constant, m a y actually b e m e a s u r i n g a conformational rate rather than an E T rate (24-27). O n e aspect of this issue involves the fate of the h e m e l i g a n d . R e d u c t i o n of F e ( H 0 ) P p r o m p t l y y i e l d s the u n l i g a n d e d ferroheme F e P , b u t the fate of a n i o n i c ligands u p o n r e d u c t i o n of F e ( X " ) P is not clear. I n some cases i n v o l v i n g exogenous reductants, it has b e e n s h o w n that l i g a n d dissociation is a p r e r e q u i s i t e to r e d u c t i o n (28, 29). T h u s , the p o s s i b i l i t y of " l i g a n d g a t i n g " m u s t also be c o n s i d e r e d . T h e ability to alter the redox potentials of b o t h M P a n d F e ( L ) P allows us to address these questions d i r e c t l y , a n d o u r data show that k a n d k represent rate constants for d i r e c t , u n g a t e d e l e c t r o n transfer b e t w e e n the M P a n d F e P . obs

3 +

2 +

2

3 +

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

t

h

P h o t o i n i t i a t e d E T is easily p r o v e d to be direct. I n d i r e c t h o p p i n g of an e l e c t r o n f r o m ( M P ) to F e ( L ) P w o u l d c o r r e s p o n d to oxidative t r i p l e t q u e n c h i n g b y an a m i n o a c i d , w i t h subsequent r e d u c t i o n of F e P b y the a m i n o a c i d a n i o n . H o w e v e r , any such q u e n c h i n g of ( M P ) w o u l d o c c u r e q u a l l y i n the r e d u c e d ( F e P ) h y b r i d s because this process does not i n v o l v e the F e P . C o n s e q u e n t l y , E T b y this m e c h a n i s m w o u l d not give rise to an increase i n t r i p l e t decay, a n d the increased t r i p l e t q u e n c h i n g i n the F e P h y b r i d s m u s t be associated w i t h a d i r e c t E T process. 3

3 +

3 +

3

2 +

3 +

O u r data also indicate that the I —> A E T process is direct. I f i t w e r e not, t h e n there m u s t exist an a m i n o a c i d , y, that mediates e l e c t r o n flow f r o m F e P to ( M P ) v i a an i n t e r n a l E T . T h i s is e q u i v a l e n t to p o s t u l a t i n g a t h e r m o d y n a m i c a l l y accessible discrete i n t e r m e d i a t e , [ ( M P ) , y , ( F e P ) ] , w h i c h w o u l d decay b y a second E T process back to the g r o u n d state. I f the ( M P ) - » y E T process w e r e r a p i d a n d F e P - > y E T w e r e rate l i m i t i n g , c h a n g i n g M w o u l d not affect the o b s e r v e d rate constant a n d fc would e q u a l fc . I f a r a t e - l i m i t i n g ( M P ) —» y E T w e r e s u c c e e d e d b y r a p i d F e P —» y E T , c h a n g i n g the h e m e l i g a n d L w o u l d not affect the E T rate a n d fc (H 0) would equal fc (CN). However, fc (H 0) Φ fc (H 0) Φ fc (CN~). W e c o n c l u d e that a two-step e l e c t r o n h o p p i n g m e c h a n i s m does not o b t a i n a n d that k describes d i r e c t F e P -> ( M P ) E T . 2 +

+

2 +

+

+

2 +

+

Mg

b

Zn

+

b

2 +

+

Zn

b

Zn

2

Mg

b

b

Zn

2

b

2

Zn

b

2 +

h

+

C o m p a r i s o n of rates for the [ M , F e ] h y b r i d s w h e r e M is M g a n d Z n p r o v i d e s a test of w h e t h e r E T is gated (i.e., c o n t r o l l e d b y a slow confor­ mational transformation) to an " E T - a c t i v e " state i n w h i c h E T is p r e s u m e d to b e r a p i d . T h e rate of such a conformational transformation w o u l d not change because of the alteration i n d r i v i n g force caused b y the Z n - M g s w i t c h . Because k is i n d e e d different w h e n M is M g a n d Z n , it cannot represent a rate constant for conformational i n t e r c o n v e r s i o n . t

W h a t is the fate of the h e m e - l i g a n d , L , d u r i n g the E T cycle of S c h e m e I? W h e n L is H 0 , r e d u c t i o n of the a q u o - b o u n d h e m e y i e l d s the fivecoordinate f e r r o h e m e , F e P . F o r C N " , l i g a n d dissociation from F e ( C N " ) P is slow; this fact indicates that the I —> A process involves reoxidation of the C N - b o u n d species. T h e data i n F i g u r e 5 show that N ~ a n d F " also r e m a i n b o u n d o n the E T t i m e scale. I f E T - i n d u c e d l i g a n d loss w e r e r a p i d c o m p a r e d 2

2 +

2 +

3

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

13.

NATAN ET AL.

Mixed-Metal

Hemoglobin

Hybrids

211

to the I —» A E T process, one w o u l d p r e d i c t that for a g i v e n m e t a l , fc (X ) = fc (H 0). T h i s p r e d i c t i o n is contrary to observation w i t h b o t h metals. M

b

M

b

2

T h e data also show that for a g i v e n a n i o n , fc (X~) < k (X-). This d e p e n d e n c e o n m e t a l i o n indicates that fc (X~) cannot r e p r e s e n t a ratel i m i t i n g l i g a n d dissociation f r o m the F e ( X ~ ) P p a r t n e r of I, f o l l o w e d b y fast E T (i.e., l i g a n d gating of I —» A ) . T h u s the variation i n the t h e r m a l E T rate, fc (L), as a f u n c t i o n of l i g a n d a n d m e t a l indicates that a l l a n i o n i c ligands r e m a i n b o u n d d u r i n g the e n t i r e E T cycle of S c h e m e I. I n contrast, the e x t r e m e l y slow r e d u c t i o n of ligated f e r r i m y o g l o b i n [ M b ( L ) ] b y exogenous S 0 ~ r e q u i r e s anionic dissociation for most ligands, notably fluoride (28, 29). T a k e n together, these data suggest a difference i n the m e c h a n i s m s for r e d u c t i o n b y exogenous d i t h i o n i t e a n d b y an i n t e r n a l ( M P ) . Mg

Zn

h

b

M

b

2 +

M

b

3 +

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

2

4

2

3

In s u m m a r y , the simple variation of ligands and metals w i t h i n [ M P , F e ( L ) P ] allows a heretofore u n p a r a l l e l e d v i e w of the m e c h a n i s t i c aspects of long-range E T b e t w e e n proteins. 3 +

Conclusions and Prospectus M e t a l - s u b s t i t u t e d h e m o g l o b i n h y b r i d s , [ M P , F e ( H 0 ) P ] are w e l l - s u i t e d to the study of long-range E T w i t h i n p r o t e i n complexes. B o t h p h o t o i n i t i a t e d a n d t h e r m a l l y activated E T can be s t u d i e d b y flash excitation of Z n - or M g s u b s t i t u t e d complexes. D i r e c t spectroscopic observation of the charge-sep­ arated i n t e r m e d i a t e , [(MP) , F e P ] , u n a m b i g u o u s l y demonstrates p h o ­ t o i n i t i a t e d E T , a n d the t i m e course of this E T p r o d u c t indicates the p r e s e n c e of t h e r m a l E T . R e p l a c e m e n t of the c o o r d i n a t e d H 0 b y a n i o n i c ligands ( C N ~ , F ~ , o r N ~ ) i n the f e r r i h e m e s u b u n i t dramatically lowers the p h o t o i n i t i a t e d rate constant, k , b u t has a r e l a t i v e l y m i n o r effect o n the t h e r m a l rate, k . 3 +

+

2

2 +

2

3

t

h

Because m e t a l substitution a n d l i g a n d variation can b e effected w i t h o u t structural p e r t u r b a t i o n of the E T complex, such changes can be u s e d to p r o b e m e c h a n i s t i c aspects o f E T . T h e data show that b o t h p h o t o i n i t i a t e d a n d t h e r m a l E T are direct processes. F u r t h e r m o r e , E T is not gated e i t h e r b y p r o t e i n conformational changes or b y l i g a n d o n - o f f processes. T h e sta­ b i l i t y of h e m o g l o b i n tetramers i n cryosolvent, c o u p l e d w i t h the absence of gating i n these systems, has a l l o w e d observation of long-range E T at t e m ­ peratures near 77 Κ (30), w h e r e q u a n t u m m e c h a n i c a l t u n n e l i n g is operative. T h e ease w i t h w h i c h E T can be s t u d i e d i n m i x e d - m e t a l h e m o g l o b i n h y b r i d s suggests that this system w i l l be of value i n addressing several l o n g ­ standing p r o b l e m s i n this field. F o r example, m i x e d - m e t a l m u t a n t h e m o ­ globins, i n w h i c h a m i n o acids b e t w e e n p o r p h y r i n s have b e e n c h a n g e d f r o m aliphatic to aromatic a n d vice versa, are b e i n g used to assess the role of E T pathways a n d of hole superexchange i n long-range e l e c t r o n transfer. W e are e x t e n d i n g o u r studies of E T w i t h i n [ M P , F e ( L ) P ] to l i q u i d h e l i u m (4 K ) temperatures. F i n a l l y , a m o r e c o m p l e t e p i c t u r e of the role of energetics i n long-range E T is b e i n g r e a l i z e d t h r o u g h e x p a n d e d m e t a l s u b s t i t u t i o n a n d 3 +

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

212

ET IN INORGANIC, ORGANIC, A N D BIOLOGICAL SYSTEMS

l i g a n d v a r i a t i o n . B y a l t e r i n g the p r o t e i n e n v i r o n m e n t , the solvent, the t e m p e r a t u r e , a n d the E T sites themselves, w e h o p e to greatly a d d to the u n d e r s t a n d i n g o f this i m p o r t a n t biological process.

Acknowledgment

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

T h i s research was s u p p o r t e d b y N a t i o n a l Institutes of H e a l t h G r a n t s H L 13531 a n d H L 40453, a n d b y N a t i o n a l Science F o u n d a t i o n G r a n t D M B 8907559 to B r i a n M . H o f f m a n , a n d b y N a t i o n a l Institutes o f H e a l t h N a t i o n a l R e s e a r c h S e r v i c e A w a r d postdoctoral fellowship H L 0 7 5 3 1 to M i c h a e l J . Natan.

Β.

Β.

References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. M. 14. 15. 16. M. 17. 18. 19. 20. 21. 22.

Gray, H. B.; Malmström, B. G . Biochemistry 1989, 28, 7499. Marcus, R. Α.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. M c L e n d o n , G . Acc. Chem. Res. 1988, 21, 160. Mayo, S. L.; Ellis, W. R., Jr.; Crutchley, R. J.; Gray, Η. B. Science (Washington, D.C.) 1986, 233, 948. Bowler, Β. E.; Meade, T. J.; Mayo, S. L.; Richards, J. H.; Gray, Η. B. J. Am. Chem. Soc. 1989, 111, 8757. Meade, T. J.; Gray, Η. B.; Winkler, J. R. J. Am. Chem. Soc. 1989, 111, 4353. Elias, H.; Chou, M. H.; Winkler, J. R. J. Am. Chem. Soc. 1988, 110, 429. Cowan, J. Α.; Upmacis, R. Κ.; Beratan, D. Ν.; Onuehic, J. Ν.; Gray, Η. Β. Ann. Ν.Ύ. Acad. Sci. 1988, 550, 68. Axup, A. W.; Albin, M.; Mayo, S. L.; Crutchley, R. J.; Gray, Η. Β. J. Am. Chem. Soc. 1988, 110, 435. Jackman, M. P.; McGinnis, J.; Powls, R.; Salmon, G. Α.; Sykes, A. G. J. Am. Chem. Soc. 1988, 110, 5880. Osvath, P.; Salmon, G. Α.; Sykes, A. G. J. Am. Chem. Soc. 1988, 110, 7114. Nocek, J. M.; Liang, N.; Wallin, S. Α.; Mauk, A. G.; Hoflman, Β. M. J. Am. Chem. Soc. 1990, 112, 1623. Liang, N.; Mauk, A. G.; Pielak, G. J.; Johnson, J. Α.; Smith, M.; Hoflman, Science (Washington, D.C.) 1988, 240, 311. Liang, N.; Pielak, G. J.; Mauk, A. G.; Smith, M.; Hoflman, Β. M. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 1249. Natan, M. J.; Hoffman, Β. M. J. Am. Chem. Soc. 1989, 111, 6468. Natan, M. J.; Kuila, D.; Baxter, W. W.; King, B. C.; Hawkridge, F. M.; Hoffman, J. Am. Chem. Soc. 1990, 112, 4081. McGourty, J. M.; Peterson-Kennedy, S. E.; Ruo, W. Y.; Hoffman, Β. M. Biochemistry 1987, 26, 8302. Gingrich, D. J.; Hoffman, Β. M., unpublished results. Kuila, D.; Natan, M. J.; Rogers, P.; Gingrich, D. J.; Baxter, W.; Arnone, Α.; Hoffman, Β. M. J. Am. Chem. Soc., unpublished results. Arnone, Α.; Rogers, P.; Blough, Ν. V.; McGourty, J. L.; Hoffman, Β. M. J. Mol. Biol. 1986, 188, 693. Gingrich, D. J.; Nocek, J. M.; Natan, M. J.; Hoffman, Β. M. J. Am. Chem. Soc. 1987, 109, 7533. Antonini, E.; Brunori, M. Hemoglobin and Myoglobin in Their Reactions with Ligands; North Holland Publishing Co.: Amsterdam, Netherlands, 1971.

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

13.

NATAN ET AL.

Mixed-Metal

Hemoglobin

Hybrids

213

Downloaded by COLUMBIA UNIV on March 20, 2013 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch013

23. Moffat, J. K.; Deatherage, J . F.; Seybert, D . W. Science (Washington, D.C.) 1979, 206, 1035. 24. Hoffman, B. M.; Ratner, M. R. J. Am. Chem. Soc. 1987, 109, 6237. 25. Hoffman, Β. M.; Ratner, Μ. Α.; Wallin, S. A . In Electron Transfer in Biology and the Solid State; Johnson, M. K.; King, R. B.; Kurtz, D. M., J r . ; Kutal, C.; Norton, M. L.; Seott, R. Α., E d s . ; Advances in Chemistry Series 226; American Chemical Society: Washington, D C , 1990; pp 125-146. 26. Brunschwig, B. S.; Sutin, N. J. Am. Chem. Soc. 1989, 111, 7454. 27. M c L e n d o n , G . ; Pardue, K . ; Bak, P. J. Am. Chem. Soc. 1987, 109, 7540. 28. Cox, R. P.; Holloway, M. R. Eur. J. Biochem. 1977, 74, 575. 29. Olivas, E.; deWaal, D . J. Α.; Wilkins, R. G. J. Biol Chem. 1977, 252, 4038. 30. Kuila, D.; Baxter, W. W.; Natan, M. J.; Hoffman, Β. M. J. Phys. Chem. 1991, 95, 1. R E C E I V E D for review April 27, 1990. A C C E P T E D revised manuscript August 17, 1990.

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.