Measurement of Transport Properties for Selected Siloxanes and Their

May 26, 2011 - often used as working fluids for ORC processes.1,2. Pure siloxanes and their mixtures are considered as working fluids for higher-tempe...
1 downloads 0 Views 1MB Size
ARTICLE pubs.acs.org/IECR

Measurement of Transport Properties for Selected Siloxanes and Their Mixtures Used as Working Fluids for Organic Rankine Cycles Rima Abbas,†,‡ E. Christian Ihmels,§ Sabine Enders,‡ and J€urgen Gmehling*,† †

Lehrstuhl f€ur Technische Chemie, Carl von Ossietzky Universit€at Oldenburg, 26111 Oldenburg, Germany Fachgebiet Thermodynamik und Thermische Verfahrenstechnik, Institut f€ur Prozess- und Verfahrenstechnik, Technische Universit€at Berlin, 10623 Berlin, Germany § Laboratory for Thermophysical Properties (LTP GmbH), Marie-Curie-Strasse 10, 26129 Oldenburg, Germany ‡

ABSTRACT: Thermal conductivities have been measured for three linear siloxanes [hexamethyl disiloxane (MM), octamethyltrisiloxane (MDM), decamethyltetrasiloxane (MD2M)], two cyclic siloxanes [octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5)], and a mixture of 50 mass % MDM þ 50 mass % MD2M in the temperature range from 290 to 520 K and the pressure range from 500 to 10000 kPa using the transient hot wire method and correlated with a temperaturepressurethermal conductivity relationship. Moreover, the thermal conductivities at atmospheric pressure were measured for MM, D4, D5, and MD2M. The data were compared with the available data from the literature for four compounds. Additionally, the viscosities of the five siloxanes were measured in the temperature range from 238 to 378 K at atmospheric pressure using a rotational Stabinger viscometer.

1. INTRODUCTION To generate electricity from renewable energy, organic Rankine cycle (ORC) processes can be used. The temperature level of the heat source has a major influence on the selection of the working fluid for ORC processes. For heat sources up to 373.15 K, fluorinated alkanes, ethers, alkanes, and fluorinated ethers are often used as working fluids for ORC processes.1,2 Pure siloxanes and their mixtures are considered as working fluids for higher-temperature ORC processes (473.15673.15 K).35 Viscosity and thermal conductivity data are required in heat-transfer calculations for the optimization and design of these thermodynamic cycles. A few thermal conductivity data as functions of temperature have been reported in various works for MM,6 D4,7 and D5.7 Additionally, the dynamic viscosities as functions of temperature for some siloxanes were measured by Palczewska et al.,7 Hurd,8 and Sperkach et al.9 The aim of this work was to provide comprehensive and accurate viscosity data as a function of temperature and thermal conductivity data as a function of pressure and temperature for selected siloxanes. 2. EXPERIMENTAL SECTION 2.1. Chemicals. All studied siloxanes were received from Wacker Chemie AG (M€unchen, Germany). The chemicals used in this work were distilled and dried over molecular sieve. The water content was always less than 100 ppm. The purities of these chemicals were better than 99.8% by gas chromatography (GC). The resulting purities as determined by GC and the water contents obtained by Karl Fischer titration for the studied compounds are listed in Table 1. 2.2. Measurement of Thermal Conductivity. The experimental thermal conductivity data for the five selected pure siloxanes and for the 50 mass % MDM þ 50 mass % MD2M mixture were r 2011 American Chemical Society

Table 1. Purities and Water Contents of the Studied Siloxanes compound

purity (%, GC)

water content (mass ppm)

MM

99.9

20

MDM

99.89

15

MD2M

99.86

30

D4 D5

99.9 99.87

40 50

measured using the transient hot wire method (model Lambda, Flucon, Clausthal-Zellerfeld, Germany). For the measurements, which were carried out in the temperature range from 290 to 520 K and the pressure range from 100 to 10000 kPa, a high-pressure cell (Hastelloy C 274) was used, whereas a glass cell was used for the measurements at atmospheric pressure. The hot wire is the heat source and the sensor at the same time. An electric current flows through the wire and heats it. The variation of the temperature (Ohmic resistance) of the wire depends on the thermal conductivity of the surrounding fluid. Using a Wheatstone bridge, the resistance change can be measured. The platinum heating wire used shows an optimum with respect to steadiness; corrosion resistance; chemical resistance; large specific electrical resistance; and, at the same time, temperature stability. Nieto de Castro et al.10 presented a complete analysis regarding the application of the transient hot wire technique for the measurement of thermal conductivities. The accuracy of the Received: February 5, 2011 Accepted: May 26, 2011 Revised: May 19, 2011 Published: May 26, 2011 8756

dx.doi.org/10.1021/ie2002632 | Ind. Eng. Chem. Res. 2011, 50, 8756–8763

Industrial & Engineering Chemistry Research

ARTICLE

Table 2. Experimental Thermal Conductivities of MM T (K)

P

λ [mW/

(kPa) (m K)]

T (K)

P

λ [mW/

(kPa) (m K)]

T (K)

P

Table 3. Experimental Thermal Conductivities of MDM

λ [mW/

T

(kPa) (m K)]

(K)

P

λ [mW/

(kPa) (m K)]

λ [mW/

T (K)

P (kPa) (m K)]

T (K)

P

λ [mW/

(kPa) (m K)]

295.50

520 106.19 362.85 7994

92.93

440.07 4015

73.11

304.73

500

103.5

362.69

4000

90.6

431.36 7980

83.7

295.48

1996 107.50 362.84 9998

94.29

440.09 5986

75.37

304.76 2000

105.4

362.71

5990

92.1

431.37 9980

86.5

295.44

3967 108.63 372.11

594

84.90

440.09 7997

77.25

304.76 4000

107.1

362.71

7990

94.6

441.04

670

72.3

295.38

5997 109.82 372.22 1994

86.36

440.09 9990

79.29

304.75 6000

108.6

362.71

9980

96.2

441.1

2000

74.5

295.32

7994 111.04 372.27 4015

88.32

449.73 1146

67.41

304.8

8000

110.0

372.4

540

85.1

441.11 4000

77.2

295.24 10000 112.00 372.26 5986

89.28

449.81 1997

68.65

304.82 10000

109.6

372.49

2010

86.3

441.11 5990

79.3

301.44 301.65

554 103.95 372.27 7998 2015 105.36 372.28 9992

91.27 92.68

449.92 4017 449.95 5987

71.22 73.24

314.32 480 314.29 1990

99.7 102.3

372.53 372.58

4000 6000

89.2 90.0

441.15 7990 441.2 9990

82.2 84.7

301.77

3988 106.37 381.93

626

82.61

449.96 7998

75.53

314.28 4000

103.1

372.6

7990

92.4

451.47

720

71.2

301.82

5962 107.96 381.99 1995

83.86

449.95 9991

77.25

314.27 5990

104.3

372.59

9990

94.5

451.54 2000

72.9

301.86

7996 108.36 382.02 4015

85.63

459.53 1279

65.19

314.27 8000

105.9

382.43

550

82.5

451.55 4000

76.0

301.90

9994 109.78 382.02 5986

87.35

459.63 2005

66.75

314.28 10000

108.4

382.44

2010

83.6

451.55 5990

79.6

310.89

512 101.08 382.04 7998

88.78

459.67 3997

69.21

323.91

480

96.3

382.42

4000

86.1

451.54 7990

81.9

311.03

2031 102.54 382.05 9992

90.06

459.71 5987

71.60

323.97 2000

98.5

382.46

6000

88.5

451.54 9980

84.4

311.08 311.13

4002 103.38 391.69 665 5975 104.95 391.84 1995

80.07 81.32

459.71 7999 459.75 9991

73.26 75.15

324.02 4000 324.04 5990

100.5 101.4

382.53 382.57

7990 9980

89.9 92.2

461.17 740 461.37 2000

70.2 72.2

311.15

7999 106.96 391.87 4015

83.53

469.39 1438

63.40

324.04 7990

104.2

392.44

540

79.9

461.45 3980

76.0

311.15

9994 107.11 391.88 5986

85.13

469.52 1998

64.16

324.03 10000

105.5

392.52

1990

82.1

461.48 6000

79.1

319.87

519

98.61 391.88 7999

86.58

469.42 3998

67.50

333.78

490

94.9

392.53

3980

84.4

461.49 7990

81.4

320.07

2036

99.78 391.91 9992

88.27

469.41 5987

69.65

333.87 2000

95.6

392.53

5980

86.9

461.52 9990

84.2

320.18

4007 100.48 401.46

715

78.06

469.28 7999

71.44

333.89 3990

97.8

392.52

8000

88.5

472.63

780

69.8

320.23

5980 102.42 401.54 1996

79.57

469.16 9990

73.56

333.91 6000

100.0

392.52

9990

91.0

472.49 1980

71.9

320.27 320.25

7953 104.10 401.61 4016 9997 105.72 401.64 5987

81.15 83.55

480.61 1600 480.70 1995

60.92 61.51

333.93 8000 333.96 9990

101.7 102.7

402.28 402.38

550 1980

78.2 80.0

472.22 3980 471.87 5990

74.7 78.1

329.13

521

96.11 401.67 7999

85.80

480.75 3982

64.83

343.66

490

91.8

402.46

4000

82.8

471.54 7990

80.4

329.30

2039

96.57 401.72 9992

86.75

480.81 5993

67.18

343.74 1970

93.5

402.47

5990

85.1

471.46 10000

83.4

329.41

4009

98.76 411.52

773

75.71

480.78 7994

68.88

343.78 4000

94.3

402.47

8000

87.5

480.73

850

70.0

329.49

5981

99.91 411.10 1995

77.82

480.98 9986

70.48

343.79 5990

97.9

402.46

9990

89.1

480.85 1990

70.7

329.50

7955 100.59 410.96 4014

80.26

490.86 1808

58.33

343.76 8000

98.0

411.68

570

77.1

480.9

3980

74.0

329.52

9998 102.37 410.97 5985

81.26

491.15 1991

58.75

343.74 9990

100.6

411.86

1980

79.1

480.97 5980

77.0

338.64 338.68

532 2040

92.88 411.09 7996 94.05 411.15 9998

83.49 85.50

490.98 3996 490.95 5998

61.80 64.73

353.43 490 353.43 1990

87.7 90.8

411.83 411.85

3970 6000

81.2 83.6

480.98 8000 480.99 10000

80.4 83.0

339.13

4029

95.83 420.90

839

74.58

491.10 8000

65.89

353.41 4000

92.6

411.9

7990

85.6

490.61

890

69.7

339.81

6000

97.42 420.90 1997

75.93

491.20 9994

68.54

353.4

6000

95.3

411.94 10000

87.7

490.71 1980

70.5

340.13

7957

98.26 420.92 4006

77.70

500.90 2025

56.11

353.45 7990

96.2

421.42

600

75.8

490.89 3990

74.1

340.14

9996

99.80 420.93 5996

79.24

500.85 3990

59.39

353.51 9990

97.7

421.68

1990

77.9

490.88 5990

76.7

352.77

547

90.52 420.94 7998

81.42

500.85 5993

61.69

352.68

510

88.4

421.78

3980

80.4

490.89 7990

80.0

352.86

1997

91.57 420.92 9990

82.78

500.93 7982

63.36

352.8

1990

90.1

421.81

5980

83.0

490.9

9990

82.8

352.94 352.99

4007 5997

92.19 430.60 931 94.36 430.65 1991

71.82 73.47

500.98 9994 507.37 2352

66.06 54.39

352.84 3980 352.91 5980

92.8 93.9

421.8 7970 421.79 10000

85.1 87.5

500.42 1000 500.49 2010

68.2 70.5

353.04

7992

96.20 430.66 4011

75.42

507.44 3992

57.39

352.94 7980

96.3

431.29

640

74.0

500.5

3990

73.1

353.04

9995

97.09 430.64 5981

77.72

507.51 6000

60.07

352.94 9970

98.0

431.33

2000

76.6

500.51 5980

76.2

362.56

570

87.26 430.60 7994

79.82

507.54 7985

62.10

362.61

530

86.4

431.36

3990

78.2

500.53 7980

79.0

362.69

2000

88.69 430.62 9996

80.65

507.56 9998

64.03

362.68 2000

89.3

431.36

5990

81.9

500.54 10000

82.2

362.76

4010

90.60 439.97 1030

69.59

440.07 4015

73.11

362.82

5982

92.33 440.01 1996

71.12

measured thermal conductivities using this technique is about (1%. In the used equipment, the pressure was measured with a calibrated pressure transducer (model PDCR 4010, GE Sensing, Taunton, Somerset, U.K.) with an accuracy of (5 kPa. The temperature was determined with an integrated calibrated Pt(100) probe (accuracy (0.1 K). The overall uncertainty in the

thermal conductivity measurements is about (1% [about ((0.71 mW/(m K)]. The obtained experimental thermal conductivity data at atmospheric pressure and the measured data as a function of temperature and pressure for the five studied pure siloxanes and for the 50 mass % MDM þ 50 mass % MD2M mixture are listed in Tables 211. 2.3. Measurement of Dynamic Viscosity. Dynamic viscosities are among the basic pure-component transport properties 8757

dx.doi.org/10.1021/ie2002632 |Ind. Eng. Chem. Res. 2011, 50, 8756–8763

Industrial & Engineering Chemistry Research

ARTICLE

Table 4. Experimental Thermal Conductivities of MD2M T (K)

P

λ [mW/

(kPa) (m K)]

λ [mW/

T

(K) P (kPa) (m K)]

T (K)

P

Table 5. Experimental Thermal Conductivities of D4

λ [mW/

T

(kPa) (m K)]

(K)

P

λ [mW/

(kPa) (m K)]

λ [mW/

T (K)

P (kPa) (m K)]

T (K)

P

λ [mW/

(kPa) (m K)]

304.03

490 107.5 371.88

500

90.4

439.63

550

77.9

295.56

510

114.7

362.85

8000

103.5

442.98 3990

304.1

2000 109.9 371.99

2000

92.2

439.8

2010

80.2

295.58 1990

115.8

362.92

9990

104.7

442.98 5990

86.2

304.12 3990 111.4 372.06

4000

93.6

439.91

4000

81.9

295.57 3990

116.6

372.11

510

96.2

442.95 7990

88.0

304.13 6030 113.6 372.13

5990

94.9

440.04

5990

85.2

295.61 5990

117.4

372.22

2000

97.1

442.96 9990

89.6

304.22 7990 113.7 372.13

8000

98.0

440.11

8000

87.5

295.59 7990

118.1

372.26

4000

98.6

453.2

304.34 10000 116.3 372.16

9990

98.8

440.12

9990

90.7

295.57 10000

119.6

372.27

6000

312.93 500 105.4 381.77 313.12 2000 106.1 381.8

500 1990

87.5 89.4

449.51 449.52

560 1990

77.3 79.0

302.88 510 303.09 1990

113.6 114.1

372.32 372.36

313.22 3990 108.5 381.86

4000

91.5

449.53

4000

81.9

303.33 4000

114.6

313.28 6030 109.9 381.86

5990

93.4

449.51

5990

83.8

303.44 6000

115.0

313.3

8000

95.9

449.53

8000

86.9

303.51 8000

9990

97.4

449.57

9990

89.8

8020 110.6 381.8

313.3 10020 112.8 381.77 322.5

620

78.8

100.1

453.29 1990

80.5

8000 9990

101.9 103.0

453.33 3990 453.35 5990

82.2 83.8

382.46

500

94.2

453.35 8000

85.5

382.69

2000

94.7

453.32 9990

87.5

115.9

382.82

4000

97.1

462.92

660

77.2

303.52 9990

117.2

382.88

5990

97.8

462.97 1980

79.2

500

85.9

459.11

590

75.4

313.07

500

110.3

382.92

8000

99.4

462.97 4000

80.6

322.69 2000 104.4 391.56

2000

88.2

459.19

2000

77.5

313.19 1990

111.4

382.92

9990

100.8

462.97 6000

81.5

322.87 3990 106.5 391.65 322.99 6000 107.5 391.78

4000 5990

90.6 92.0

459.18 459.19

4000 5990

80.1 82.7

313.3 4000 313.33 5990

111.5 113.2

393.53 393.64

530 2000

91.7 92.8

462.96 8000 462.95 9990

83.8 85.3

323.08 8000 109.6 391.76

8000

93.4

459.22

8000

85.4

313.35 8000

114.3

393.74

4000

94.6

472.57

680

75.0

323.13 9990 110.4 391.79 10000

96.4

459.21

9990

87.8

313.38 10000

115.1

393.75

5990

96.2

472.62 1990

76.4 77.9

332.78

500 103.1 391.5

83.9

98.4 401.21

510

83.3

468.77

610

73.7

322.83

500

108.0

393.76

8000

97.1

472.61 4000

2000 101.4 401.36

2000

86.6

468.99

2020

76.9

323.06 2000

108.2

393.81

9990

98.2

472.6

5990

79.7

332.99 4000 103.1 401.35

3990

88.5

468.99

3990

79.3

323.18 3990

109.5

403.57

550

89.3

472.6

7990

81.2

333.06 6000 103.9 401.41

6000

90.1

469.017 6000

82.3

323.31 5990

111.2

403.62

1990

90.5

472.58 10000

83.0

333.08 8000 106.5 401.4 8000 333.1 9990 108.8 401.41 10000

93.3 95.8

469.04 469.04

7990 9990

85.4 87.4

323.42 8000 323.45 10000

112.2 113.3

403.66 403.7

4000 6000

91.9 94.0

482.42 730 482.38 2010

73.7 74.0 76.1

332.9

342.71

500

500

96.4 410.96

520

82.7

478.62

630

72.9

332.95

500

106.0

403.75

7990

95.4

482.52 3980

342.76 2000

98.2 411.04

2000

84.2

478.65

1990

75.0

333.12 2010

106.3

403.77 10000

96.9

482.47 5980

78.4

342.81 3990

99.9 411.11

3990

86.4

478.74

3980

78.3

333.21 4000

107.6

413.39

530

87.3

482.49 8000

80.1

342.85 6000 102.5 411.16

6000

89.1

478.74

6000

81.5

333.31 6000

109.3

413.54

1990

88.2

482.52 10000

81.0

342.89 7990 103.1 411.19

7990

91.3

478.75

8000

84.0

333.4

8000

109.9

413.63

3990

90.1

492.82

790

71.0

342.88 10000 104.6 411.21 10000

93.8

478.67 10000

86.5

333.45 9990

111.6

413.74

5990

91.9

492.94 2010

72.2

352.47 490 352.57 1990

94.9 420.69 96.4 420.75

520 2000

81.2 82.5

488.21 488.2

680 1990

72.9 75.0

342.88 500 343.13 2010

102.9 104.2

413.74 7990 413.72 10000

93.1 95.1

493.13 4010 493.09 5990

74.4 75.9

352.65 4000

97.3 420.65

3990

84.9

488.25

3990

77.4

343.34 4000

105.8

423.33

570

84.9

493.04 8000

77.8

352.77 6000

99.8 420.63

6000

88.1

488.35

5990

80.7

343.42 6000

106.5

423.41

1980

86.7

493.12 9990

79.2

352.79 8000 101.0 420.72

8000

89.2

488.35

7980

83.6

343.55 8010

108.4

423.44

3990

88.1

502.92

840

69.3

352.81 10000 102.8 420.82

9990

92.7

488.34 10000

86.5

343.68 10000

108.7

423.51

5990

89.6

502.98 1990

70.6 72.8

362.03

500

92.4 430.43

540

79.5

498.29

720

71.5

353.45

500

101.0

423.55

7990

91.1

502.86 4000

362.15 2000

94.6 430.47

2000

81.7

498.26

1990

73.6

353.64 2000

101.6

423.56

9990

92.8

502.92 6000

74.1

362.2 4000 362.31 5990

96.0 430.51 98.3 430.55

3990 5990

83.3 86.1

498.29 498.33

3990 5990

76.7 80.2

353.78 4000 353.86 5990

103.9 104.4

433.28 433.2

580 1990

83.2 84.6

502.95 8000 502.95 10000

76.1 77.8

362.32 8000 100.1 430.55

8000

88.2

498.32

7980

83.1

353.89 7990

105.4

433.3

3990

86.7

512.41

900

67.1

362.42 9990 101.7 430.51

9990

91.2

498.31 10010

85.6

353.87 10000

106.7

433.22

5990

88.0

512.5

1990

68.2

362.52

used for many engineering processes, for calculations, and for optimization of ORC processes. In this work, dynamic viscosities for various siloxanes were measured using a rotational Stabinger viscometer (model SVM 3000, Anton Paar GmbH, Graz, Austria). The sample and a coaxial rotor are located in a rotational cylinder. The movements of the rotational cylinder set the sample in motion, which creates a parallel rotation of the coaxial rotor. A magnet is located on the rotor. This magnet produces a circulated magnetic field and induces a turbulent flow in a block made of copper. The Hall sensor measures the frequency of the rotating magnetic field and the speed of the rotor. The measured

500

98.4

433.12

7990

89.5

512.53 3990

70.8

362.67 2000

99.8

433.11 10000

91.4

512.63 5990

72.3

362.75 4000

101.4

442.67

600

80.6

512.4

8000

74.5

362.82 5990

102.5

442.8

2000

82.5

512.31 10000

75.9

viscosity of the sample depends on the measured speed of the rotor. The temperature is measured with a Pt(100) probe with an accuracy of about 0.05 K. The overall accuracy of the performed viscosity measurements is estimated to be (1%. The measurements were performed at atmospheric pressure and in the temperature range of 238378 K. A more detailed description of this device 8758

dx.doi.org/10.1021/ie2002632 |Ind. Eng. Chem. Res. 2011, 50, 8756–8763

Industrial & Engineering Chemistry Research

ARTICLE

Table 6. Experimental Thermal Conductivities of D5 T (K) 294.92

P

λ [mW/

(kPa) (m K)] 510

116.2

λ [mW/

T (K) 363.91

P (kPa) (m K)] 7990

105.4

T (K) 443.7

P

λ [mW/

Table 7. Experimental Thermal Conductivities of MM at Atmospheric Pressure T (K)

λ [mW/(m K)]

T (K)

λ [mW/(m K)]

86.0

292.20

108.4

333.31

94.9

104.8 100.9

343.81 353.75

92.2 89.6

97.8

363.25

87.2

(kPa) (m K)] 4000

9990

106.5

443.52 6000

87.4

373.74

510

98.0

443.42 7990

89.1

301.53 312.07

373.92

1990

98.9

443.43 9990

90.6

322.87

119.8

374.01

3990

100.4

453.17

540

80.0

121.6

374.06

6000

102.3

453.19 2000

81.3

303.45 510 303.62 2000

114.7 115.5

374.13 374.17

8000 9990

103.5 104.8

453.25 4000 453.32 6000

83.4 84.9

303.77 4000

115.7

383.81

520

95.9

453.25 7990

87.1

T (K)

λ [mW/(m K)]

T (K)

λ [mW/(m K)]

303.87 5990

116.2

383.91

2000

96.8

453.15 10000

88.6

296.66

114.6

343.32

103.0

303.93 7990

117.2

383.97

4000

98.1

463.09

550

77.4

301.58

113.0

353.75

100.5

303.92 10000

119.6

384

6000

100.0

463.25 1990

79.1

313.67

520

111.4

384.04

7990

101.0

463.28 3990

81.0

311.89 322.43

110.5 107.6

363.92 374.07

98.1 95.8

313.86 2000

111.8

384.19 10000

102.0

463.29 5990

83.2

332.90

105.3

313.98 3990 314.04 5990

112.4 114.6

393.92 394.06

500 1990

93.3 94.5

463.26 8000 463.27 9990

84.9 87.1

314.09 8000

116.1

394.13

3990

96.2

473.05

570

75.0

314.12 9990

117.4

394.15

6000

96.8

473.07 2000

76.7

323.8

294.92 2000

118.0

363.93

294.92 4000

118.7

294.92 6000

118.7

294.89 7990 294.88 9990

500

108.7

394.2

8000

98.6

473.02 3990

79.2

323.92 2000

110.2

394.2

9990

100.1

472.96 5990

80.9

324.02 4000

111.2

403.82

500

91.4

472.92 8000

82.3

324.11 6000

113.0

403.92

2000

91.9

472.89 9990

84.3

324.13 7990 324.16 10000

113.6 114.5

404.02 404.12

3990 5990

94.6 95.9

482.74 590 482.77 2010

72.5 74.5

334

490

106.7

404.13

8000

96.6

482.79 3990

76.4

334.14 2000

107.5

404.08

9990

99.0

482.8

5990

78.5

334.23 3990

109.0

414.02

510

90.1

482.81 8000

80.8

334.27 6000

109.6

414.02

2000

90.9

482.82 10000

82.5

334.29 8000

110.7

414.01

3990

92.5

492.25

630

70.1

334.31 9990

111.8

413.96

5990

94.2

492.28 2010

72.2

344.01 500 344.19 2010

103.9 105.9

413.96 413.99

7990 9990

95.2 96.5

492.36 3990 492.38 5990

Table 8. Experimental Thermal Conductivities of D4 at Atmospheric Pressure

Table 9. Experimental Thermal Conductivities of D5 at Atmospheric Pressure T (K)

λ [mW/(m K)]

T (K)

λ [mW/(m K)]

294.04

115.3

364.44

99.2

314.49

111.1

375.31

97.4

325.39 333.30

108.7 106.5

385.76 395.82

94.7 92.7

354.29

101.6

405.81

90.6

Table 10. Experimental Thermal Conductivities of MD2M at Atmospheric Pressure T (K)

λ [mW/(m K)]

T (K)

λ [mW/(m K)]

74.3 76.0

295.98

110.2

344.01

96.9

302.23

107.8

354.37

94.5

104.5 101.9

364.49 374.77

92.8 89.6

100.6

344.24 3990

106.8

423.82

510

87.0

492.41 8000

77.9

344.29 6000

108.3

423.88

1990

88.4

492.39 10000

80.3

312.76 323.28

344.31 8000

108.8

423.9

3990

90.2

501.83

670

66.9

333.76

344.33 9990

110.3

423.9

5990

91.6

501.85 1990

69.2

354.2

500

103.0

423.91

7990

93.3

501.77 4000

71.7

354.25 2000

104.1

423.87

9990

95.2

501.69 6000

74.2

354.24 3990 354.23 5990

105.0 106.2

433.2 433.45

540 2010

84.9 86.0

501.65 7990 501.63 10000

75.5 78.3

354.17 7990

106.9

433.57

3990

88.2

512.42

700

64.5

354.14 10000

109.1

433.54

5990

89.2

512.6

1990

66.3

363.78

520

100.3

433.72

8000

91.4

512.67 4000

68.6

363.82 2000

101.7

433.79 10000

92.7

512.64 6000

71.2

363.89 4000

102.8

443.46

530

82.1

512.63 7990

73.2

363.89 6000

104.6

443.7

2000

84.2

512.81 10000

75.1

can be found in ref 11. The obtained experimental dynamic viscosities for the five siloxanes are listed in Tables 1216.

3. RESULTS AND DISCUSSION The measured thermal conductivities can be correlated as a function of temperature and pressure using the following

polynomial relationship λ ¼ A þ BT þ CP þ DTP þ ET 2

ð1Þ

where λ is the thermal conductivity [mW/(m K)], T is the temperature (K), P is the pressure (kPa), and AE are parameters fitted to the experimental thermal conductivities as functions of temperature and pressure. These parameters are listed in Table 17 for the five siloxanes and the 50 mass % MDM þ 50 mass % MD2M mixture. The temperature and pressure dependencies of the thermal conductivities of MM are shown together with the correlated data (eq 1) in Figure 1. It can be seen from this figure that the correlated data are in good agreement with the experimental data. The correlated thermal conductivities can be extrapolated to other pressures (e.g., atmospheric pressure). In Figure 2, published thermal conductivities at atmospheric pressure6 are shown together with the extrapolated data for MM. As can be seen, good agreement is achieved between the measured data and 8759

dx.doi.org/10.1021/ie2002632 |Ind. Eng. Chem. Res. 2011, 50, 8756–8763

Industrial & Engineering Chemistry Research

ARTICLE

Table 11. Experimental Thermal Conductivities of 50 mass % MDM þ 50 mass % MD2M T (K) 303.34

P

λ [mW/

(kPa) (m K)]

T (K)

P

λ [mW/

T

(kPa) (m K)]

(K)

Table 13. Experimental Dynamic Viscosities of MDM

λ [mW/

P

(kPa) (m K)]

T (K)

η (mPa s)

T (K)

η (mPa s)

258.15

1.413

303.15

0.799

263.15

1.336

313.15

0.707

510

105.6

373.21

520

87.2

441.05

510

76.9

268.15

1.255

323.15

0.628

303.48 1980

106.5

373.32

1990

88.7

441.12 1990

78.9

273.15

1.173

333.15

0.562

303.56 3980

108.0

373.38

3990

90.9

441.17 3990

80.7

278.15

1.104

343.15

0.503

303.61 5980

109.6

373.43

5980

92.4

441.2

5980

85.0

283.15

1.031

353.15

0.45

303.65 7970

110.7

373.46

7980

94.6

441.23 7980

87.0

288.15

0.968

363.15

0.403

303.71 10000

112.4

373.45

9970

96.4

441.27 10000

88.5

293.15

0.909

373.15

0.365

313.5

510

102.9

382.92

520

84.2

450.59

520

74.6

313.61 1990

104.4

383.02

2000

86.0

450.66 1990

78.4

313.72 3990

106.2

383.07

3990

88.5

450.72 3990

80.7

313.79 5980

106.9

383.1

5990

90.6

450.86 5980

83.0

T (K)

η (mPa s)

T (K)

η (mPa s)

313.85 7980

109.4

383.13

7980

92.5

450.87 7980

85.7

313.87 10000

110.6

383.17

9980

94.0

450.86 9970

88.3

238.15 243.15

3.584 3.314

288.15 293.15

1.525 1.422

323.41

Table 14. Experimental Dynamic Viscosities of MD2M

520

99.5

392.48

520

82.3

460.09

520

74.5

248.15

3.05

303.15

1.234

323.61 2000

100.7

392.61

2000

85.4

460.08 2000

76.7

253.15

2.778

313.15

1.079

323.72 3990

101.7

392.66

3990

87.6

460.06 3990

79.1

258.15

2.535

323.15

0.95

323.77 5980

103.1

392.66

5990

89.0

460.12 5980

82.0

263.15

2.32

333.15

0.842

323.81 7980

106.3

392.8

7980

91.8

460.18 7980

84.9

268.15

2.117

343.15

0.751

323.86 9970

107.6

392.79

9980

94.3

460.23 9970

87.5

273.15

1.95

353.15

0.672

278.15 283.15

1.793 1.655

363.15 373.15

0.602 0.54

333.52

520

96.7

402.37

520

80.9

469.34

510

74.6

333.6

2000

96.9

402.49

2000

83.9

469.38 2000

76.4

333.77 3990

99.1

402.58

3990

86.4

469.39 3990

78.9

333.86 5980

100.6

402.61

5990

88.2

469.38 5990

82.0

333.91 7980

103.0

402.65

7980

89.2

469.4

7980

84.9

333.93 9970

105.5

402.69

9970

91.5

469.43 9980

87.0

510

93.5

412.23

510

79.4

478.94

510

73.2

343.34 1990

95.1

412.31

1990

81.9

479.07 2000

75.5

343.45 3990

97.0

412.35

3980

84.8

479.15 4000

343.54 5980

100.1

412.37

5980

86.7

343.62 7980

100.6

412.39

8000

89.1

343.69 10000

102.3

412.43

9990

510

92.1

421.88

353.54 1990

93.7

353.48 3980

94.9

353.46 5980

Table 15. Experimental Dynamic Viscosities of D4 T (K)

η (mPa s)

T (K)

η (mPa s)

78.7

293.15 298.15

2.468 2.227

333.15 343.15

1.222 1.055

479.14 5980

80.8

303.15

2.022

353.15

0.917

479.19 8000

82.8

308.15

1.844

363.15

0.801

90.6

479.24 9990

86.4

313.15

1.687

373.15

0.705

500

78.5

488.76

480

72.5

323.15

1.428

421.91

1980

79.8

488.85 1980

75.2

421.94

3980

83.1

489.01 3990

77.2

95.7

421.93

5970

85.1

489.01 5980

79.6

353.53 8000

99.1

421.91

8000

87.9

489.03 7990

82.7

353.66 9990

99.3

421.91 10000

89.8

489.02 9990

85.1

363.56

510

88.5

431.41

510

77.0

498.25

490

72.2

363.6

1990

91.1

431.46

1980

80.2

498.26 1990

74.7

363.62 3990

92.4

431.52

3980

81.9

498.23 3980

77.2

363.66 5980

94.1

431.54

5970

84.2

498.21 5980

80.1

363.68 7980

96.4

431.55

8000

87.0

497.96 7990

83.4

363.69 10000

98.4

431.56

9990

88.9

497.9

86.1

343.22

353.51

10000

Table 16. Experimental Dynamic Viscosities of D5 T (K)

η (mPa s)

T (K)

η (mPa s)

243.15

19.058

303.15

3.478

248.15

15.609

313.15

2.851

253.15

12.967

323.15

2.371

263.15

9.274

333.15

1.996

273.15

7.139

343.15

1.696

278.15

6.236

353.15

1.454

283.15

5.484

363.15

1.254

288.15 293.15

4.852 4.318

373.15

1.103

Table 12. Experimental Dynamic Viscosities of MM T (K)

η (mPa s)

T (K)

η (mPa s)

273.15

0.611

303.15

0.461

278.15 283.15

0.589 0.566

313.15 323.15

0.414 0.371

293.15

0.514

the available data from the literature.6 It can also be seen that the extrapolated data are in good agreement with the experimental data up to 340 K. Because of convection effects (disturbing the thermal conductivity measurements) caused by partial vaporization of MM at atmospheric pressure and at higher temperatures, larger deviations are obtained at higher temperatures. 8760

dx.doi.org/10.1021/ie2002632 |Ind. Eng. Chem. Res. 2011, 50, 8756–8763

Industrial & Engineering Chemistry Research

ARTICLE

Table 17. Correlation Parameters Fitted to Experimental Thermal Conductivities in This Work parameter compound

A [mW/(m K)]

B [mW/(m K2)]

C [mW/(m K kPa)]

D [mW/(m kPa K2)]

E [mW/(m K3)]

MM

196.053

0.346 86

0.000 210 2

0.000 002 9

0.000 13

MDM

272.32

0.783 28

0.000 447

0.000 004

0.000 746

MD2M

258.11

0.679 65

0.000 498

0.000 004 1

0.000 61

D4

195.86

0.307 60

0.000 187 6

0.000 002 3

0.000 12

D5

171.743

0.166 68

0.000 434

0.000 003

50% MDM þ 50% MD2M

255.235

0.699

0.000 101

0.000 003 1

Figure 1. Experimental (blue circles, high-pressure cell) and correlated (green diamonds, eq 1) thermal conductivities for MM.

Figure 2. Experimental (blue diamonds, this work; red triangles, ref 6) thermal conductivities at atmospheric pressure and (solid red line) extrapolated data (eq 1) for MM.

The measured thermal conductivities as a function of pressure and temperature for D4 are similar to the results for D5 (see Tables 4 and 5). In Figure 3, a comparison of the experimental thermal conductivities at atmospheric pressure obtained in this work are shown together with the published data7 and the extrapolated data as functions of the pressure and temperature for D4 and D5. Although the measured data and the literature data7 for D4 are in good agreement, it can be seen that the maximum deviations are about 10% for D5. The extrapolated data reproduce the obtained data in this work for both compounds (D4 and D5).

0.000 08 0.000 665

Figure 3. Experimental (blue triangles, D4, this work; orange circles, D5, this work; red diamonds, D4, ref 7; maroon squares, D5, ref 7) thermal conductivities at atmospheric pressure and (black lines) extrapolated data (eq 1).

Figure 4. Experimental (blue circles, high-pressure cell) and correlated (green diamonds, eq 1) thermal conductivities for 50 mass % MDM þ 50 mass % MD2M.

Figure 4 shows the measured and correlated thermal conductivities as a function of pressure and temperature for the 50 mass % MDM þ 50 mass % MD2M mixture. The results show that the measured data for the mixture are between the measured data for its pure compounds (see Tables 2, 3, and 9). The linear pressure dependencies of the correlated thermal conductivities at temperature T = 298.15 K for the studied linear siloxanes (MM, MDM, MD2M, and 50 mass % MDM þ 50 mass % MD2M) are shown in Figure 5. 8761

dx.doi.org/10.1021/ie2002632 |Ind. Eng. Chem. Res. 2011, 50, 8756–8763

Industrial & Engineering Chemistry Research

ARTICLE

Figure 5. High-pressure data obtained by eq 1 for (purple 's) MM, (red triangles) MDM, (blue diamonds) MD2M, and (green circles) 50 mass % MDM þ 50 mass % MD2M at T = 298.15 K.

Table 18. Average Absolute Relative Deviations (AARDs) between Experimental and Correlated Thermal Conductivities for the Studied Siloxanes compound

AARD (%)

MM

0.7

MDM

0.5

MD2M

0.4

D4

0.3

D5

0.4

50% MDM þ 50% MD2M

0.6

Figure 7. Experimental dynamic viscosities for D4 (maroon circles, this work; blue diamonds, ref 12; þ's, ref 7) and D5 ('s, this work; red asterisks, ref 12; green triangles, ref 7).

4. CONCLUSIONS Because of the recent applications of siloxanes and their mixtures as working fluids in ORC processes, their transport properties (thermal conductivities and dynamic viscosities) are needed for the proper construction and design of these processes. In this article, the thermal conductivities as a function of temperature and pressure for five selected siloxanes and for a 50 mass % MDM þ 50 mass % MD2M mixture are presented. The measurements were performed using the transient hot wire method. The measured thermal conductivities data were correlated as a function of temperature and pressure using a polynomial relationship. Additionally, thermal conductivities as a function of temperature for MM, D4, D5, and MD2M were measured at atmospheric pressure with the transient hot wire method using a glass cell. Furthermore, dynamic viscosities for five siloxanes were measured using the rotational Stabinger viscometer. The obtained data are in good agreement with published data. ’ AUTHOR INFORMATION Corresponding Author

*Tel.: þ49 441 798 3831. Fax: þ49 411 798 3330. E-mail: [email protected]. URL: http://www. uni-oldenburg.de/tchemie. Figure 6. Experimental dynamic viscosities for MDM (asterisks, this work; red circles, ref 8; blue diamonds, ref 9) and MD2M (þ's, this work; green triangles, ref 8).

Within the measured temperature range (from 290 to 520 K) and the measured pressure range (from 500 to 10000 kPa), the deviations between experimental and correlated thermal conductivities for the studied siloxanes are given in Table 18. The average absolute relative deviation (AARD) is defined as follows 1 n λcalc  λexp ð2Þ AARD ¼ n i ¼ 1 λexp



It can be seen that the correlated thermal conductivities and the experimental data are in good agreement. Figures 6 and 7 show a comparison between the experimental dynamic viscosities for MDM, MD2M, D4, and D5 obtained in this work and the available literature data.79,12 Good agreement is obtained between the measured and literature data.

’ ACKNOWLEDGMENT The authors thank the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AIF: 13885N) for financial support of this work. R.A. thanks Al-Baath University in Syria for the fellowship. ’ REFERENCES (1) Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for low-temperature organic Rankine cycles. Energy 2007, 32 (7), 1210–1221. (2) Tchanche, B. F.; Papadakis, G.; Lambrinos, G.; Frangoudakis, A. Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng. 2009, 29 (1112), 2468–2476. (3) Colonna, P.; Nannan, N. R.; Guardone, A.; Lemmon, E. W. Multiparameter equations of state for selected siloxanes. Fluid Phase Equilib. 2006, 244 (2), 193–211. (4) Lai, N. A.; Wendland, M.; Fischer, J. Description of linear siloxanes with PC-SAFT equation. Fluid Phase Equilib. 2009, 283 (12), 22–30. 8762

dx.doi.org/10.1021/ie2002632 |Ind. Eng. Chem. Res. 2011, 50, 8756–8763

Industrial & Engineering Chemistry Research

ARTICLE

(5) Lai, N. A.; Wendland, M.; Fischer, J. Working fluids for hightemperature organic Rankine cycles. Energy 2011, 36, 199–211. (6) Bates, O. K. Thermal conductivities of liquid silicones. J. Ind. Eng. Chem. 1949, 41, 1966–1968. (7) Palczewska-Tulinska, M.; Oracz, P. Selected physicochemical properties of hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane. J. Chem. Eng. Data 2005, 50 (5), 1711–1719. (8) Hurd, C. B. Siloxanes. I. The specific volume and viscosity in relation to temperature and constitution. J. Am. Chem. Soc. 1946, 68, 364–370. (9) Sperkach, V. S.; Cholpan, P. F. Study of acoustic scattering in some siloxanes. Fiz. Zhidk. Sostoyaniya 1979, No. 7, 104–109. (10) Nieto de Castro, C. A.; Taxis, B.; Roder, H. M.; Wakeham, W. A. Thermal diffusivity measurement by the transient hot-wire technique: A reappraisal. Int. J. Thermophys. 1988, 9 (3), 293–316. (11) Product Presentation: Stabinger Viscometer. http://www. anton-paar.com/001/en/Web/Document/download/1603?clng=en (Accessed January 2010). (12) Dortmund Data Bank Software & Separation Technology. http://www.ddbst.de/ (Accessed January 2010).

8763

dx.doi.org/10.1021/ie2002632 |Ind. Eng. Chem. Res. 2011, 50, 8756–8763