Mechanism for Asymmetric Nanoscale ... - ACS Publications

Dec 12, 2015 - Taherian, Marcon, and van der Vegt and Leroy. 2013 29 (5), pp 1457–1465. Abstract: Although experimental and theoretical studies have ...
0 downloads 0 Views 3MB Size
Subscriber access provided by CMU Libraries - http://library.cmich.edu

Article

Mechanism for Asymmetric Nanoscale Electrowetting of an Ionic Liquid on Graphene Fereshte Taherian, Frédéric Leroy, Lars-Oliver Heim, Elmar Bonaccurso, and Nico F. A. van der Vegt Langmuir, Just Accepted Manuscript • DOI: 10.1021/acs.langmuir.5b04161 • Publication Date (Web): 12 Dec 2015 Downloaded from http://pubs.acs.org on December 14, 2015

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Langmuir is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

Mechanism  for  Asymmetric  Nanoscale   Electrowetting  of  an  Ionic  Liquid  on  Graphene   Fereshte  Taherian,  Frédéric  Leroy,  Lars-­‐Oliver  Heim,  Elmar  Bonaccurso§,  Nico  F.  A.  van  der   Vegt*   Eduard-­‐Zintl-­‐Institut  für  Anorganische  und  Physikalische  Chemie  and  Center  of  Smart   Interfaces,  Technische  Universität  Darmstadt,  Alarich-­‐Weiss-­‐Straße  10,  D-­‐64287,   Darmstadt,  Germany   §  Currently  at  Airbus  Group  Innovations,  Metallic  Technologies  and  Surface  Engineering,   81663  Munich,  Germany   KEYWORDS:  Contact  angle,  electrowetting,  graphene,  ionic  liquid        

 

1    

ACS Paragon Plus Environment

Langmuir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ABSTRACT   The   electrowetting   behavior   of   1-­‐butyl-­‐3-­‐methylimidazolium   tetrafluoroborate   ([bmim][BF4])   confined   between   two   oppositely   charged   graphene   layers   is   investigated   using   molecular   dynamics   simulations.   By   introducing   charges   on   the   surface   counterions   are   attracted   to   the   surface   and   co-­‐ions   are   repelled   from   it   leading   to   the   reduction   of   the   solid-­‐liquid   interfacial   free   energy   and   consequently   the   contact   angle.   Recently,   we   have   shown   that   changes   in   the   contact   angle   upon   charging   the   surface   are   asymmetric   with   respect   to   surface   polarity,   and   opposite  to  the  changes  in  the  solid-­‐liquid  interfacial  free  energy.  In  this  work,  the  asymmetry  of   the   solid-­‐liquid   interfacial   free   energy   is   shown   to   originate   from   differences   in   structural   organization   of   the   ions   at   the   interface,   with   positively   polarized   surfaces   inducing   a   more   favorable  electrostatic  arrangement  of  the  ions.  Analysis  of  the  liquid  structure  in  the  vicinity  of   the   three   phase   contact   line   however   shows   that   the   ion   size-­‐asymmetry,   together   with   differences   in   orientational   ordering   of   the   cations   on   oppositely   polarized   surfaces,   instead   leads   to   enhanced   spreading   on   the   negatively   polarized   surfaces   resulting   in   a   corresponding   contact  angle  asymmetry.     1.  INTRODUCTION   Due  to  the  application  of  ionic  liquids  (ILs)  in  areas  such  as  fuel  cells,1  capacitors,2  catalysis3  or   as   electrowetting   agents,4   the   contact   between   ILs   and   charged   surfaces   has   been   a   topic   of   significant  interest  during  the  last  years.  The  wettability  of  a  surface  can  be  modified  by  applying   an  external  electric  field  in  a  process  which  is  known  as  electrowetting  (EW).5-­‐6  The  consensus  in   the   literature   is   that   the   change   of   the   contact   angle   by   the   applied   field   is   described   by   the   Young-­‐Lippmann  (YL)  equation.  The  contact  angle  reduction  in  the  applied  field  is  caused  by  a   reduced  solid-­‐liquid  interfacial  free  energy  due  to  adsorption  of  counterions  and  desorption  of   co-­‐ions   at   the   interface.   According   to   the   YL   equation,   the   change   in   the   contact   angle   is   independent   of   the   applied   field   polarity,   and   the   solid-­‐vapor   and   the   liquid-­‐vapor   interfacial   2    

ACS Paragon Plus Environment

Page 2 of 29

Page 3 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

free   energies   are   assumed   not   to   be   affected   by   the   field.   Hence,   the   change   in   the   solid-­‐liquid   interfacial   free   energy   is   assumed   to   be   the   only   source   of   the   field-­‐induced   contact   angle   reduction.  Therefore,  understanding  the  effect  of  the  applied  field  on  the  solid-­‐liquid  interfacial   free  energy  is  essential  for  describing  the  electrowetting  phenomenon.     The   effect   of   the   surface   charges   on  different   structural   properties   of   ILs,   such   as   the   layering   of   ions,   the   electrical   potential   at   the   interface,   the   volume   charge   density   of   the   liquid,   orientation   of   cations   and   anions   and   the   electrical   double   layer   capacitance   at   the   interface   has   been   investigated  experimentally7-­‐10   and  with  MD  simulations.11-­‐19  Experimental  results  of  Mezger  et   al.,20   where   the   electron   density   profile   of   several   ILs   at   a   charged   sapphire   substrate   was   determined   using   high-­‐energy   x-­‐ray   reflectivity,   have   indicated   an   oscillatory   arrangement   of   ions.   Such   layering   of   ILs   at   charged   surfaces   has   been   also   observed   at   the   IL-­‐Au(111)   interface   by   atomistic   force   microscopy   (AFM)   measurements,   and   was   shown   to   be   dependent   on   ion   type.7,   21-­‐22   Maolin   et   al.23   have   published   the   first   use   of   MD   simulations   to   investigate   the   molecular  structure  of  ILs  at  a  solid  surface.  Their  simulations  of  [bmim][PF6]  at  an  uncharged   graphite   surface   revealed   strong   layering   of   the   IL   (extending   up   to   2   nm   into   the   bulk   liquid)   and  flattening  of  the  cations  at  the  interface.   Introducing  charges  on  the  surface  was  shown  to   separate   the   positive   and   negative   charged   layers   at   the   interface,   where   multiple   alternating   layers   of   counter-­‐   and   co-­‐ions   have   been   observed.12,  24-­‐25   Experiments   and   MD   simulations   have   shown  that  the  difference  in  the  size  of  cations  and  anions  and  their  affinity  to  the  surface  may   cause   a   polarity   dependence   of   the   interfacial   IL   properties   such   as   the   volume   charge   density   and  the  electrical  double  layer  potential.  This  may  further  lead  to  an  asymmetric  dependence  of   the   electrical   double   layer   capacitance   on   the   surface   polarity.11,   14-­‐15,   19   Lockett   et   al.26-­‐27   have   measured   experimentally   the   double   layer   capacitance   of   several   ILs   with   different   ion   sizes   adsorbed   at   glassy   carbon,   platinum   and   gold   electrodes   using   impedance   spectroscopy.   Results   have  indicated  that  the  adsorption  of  cations  and  anions,  due  to  the  asymmetry  in  their  size,  is   strongly  influenced  by  the  electrode  polarization.  AFM  measurements  of  several  ILs  at  a  Au(111)   electrode   interface   have   shown   that   the   adsorption   of   ions   is   strongly   influenced   by   the   polarity   3    

ACS Paragon Plus Environment

Langmuir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

of  the  applied  voltage.28  Simulations  of  [bmim][PF6]  on  a  charged  graphite  surface  reported  by   Kislenko  et  al.14  also  revealed  a  polarity  dependence  of  ion  adsorption  and,  consequently,  of  the   electrical   double   layer   capacitance   at   the   interface.   Lynden-­‐Bell   et   al.16   have   reported   a   molecular  simulation  study  of  [dmim][Cl]  on  graphene  in  which  it  was  found  that  stronger  van   der   Waals   interaction   between   the   cations   and   the   surface   leads   to   the   structural   changes   of   the   liquid  upon  charging  the  surface  which  are  mainly  due  to  the  redistribution  of  the  anions  at  the   interface.   Paneru   et   al.29   studied   a   [bmim][BF4]   droplet   immersed   in   hexadecane   and   electrowetted   on   a   Teflon   surface   in   experiments   at   different   DC   voltages.   They   observed   more   spreading   of   the   droplet   at   high   negative   voltages   (above   150   V)   than   at   positive   voltages   and   assigned   the   asymmetric   behavior   to   the   difference   in   the   size   of   the   cation   and   the   anion   and   their   interaction   with   the   surface.   Simulation   results   in   the   case   of   nanometer   sized   water   droplets   also   indicated   an   asymmetric   dependence   of   contact   angle   to   the   polarity   of   applied   electric   field.30-­‐31  The  observed  contact  angle  asymmetry  was  interpreted  through  the  YL  equation  and  in   terms   of   asymmetry   in   the   bulk   solid-­‐liquid   interfacial   free   energy   due   to   the   polarity   dependence  of  water  orientations  and  hydrogen  bonding  at  the  interface.  In  the  above  studies,   electrowetting  asymmetry  is  interpreted  based  on  the  YL  equation,  assuming  that  changes  in  the   fluid   structure   at   the   bulk   solid-­‐liquid   interface   with   the   external   field   polarity   leads   to   an   asymmetry   in   the   electrical   double   layer   capacitance   and   therefore   the   bulk   solid-­‐liquid   interfacial  free  energy.   Recently,   we   have   developed   an   approach   using   molecular   dynamics   (MD)   simulations   to   calculate   the   change   in   the   solid-­‐liquid   interfacial   free   energy   by   integrating   the   reversible   work   performed  during  the  charging  process  of  a  surface.32  This  approach  has  been  used  to  calculate   the   changes   in   the   interfacial   free   energies   of   water,   aqueous   NaCl   salt   solution   and   1-­‐butyl-­‐3-­‐ methylimidazolium   tetrafluoroborate   ([bmim][BF4])   liquid   bridges   spanning   between   two   oppositely   charged   graphene   layers.   The   equilibrium   contact   angle   values   showed   an   asymmetric  dependence  on  the  polarity  of  the  surface:  water  and  NaCl  salt  solution  spread  more   4    

ACS Paragon Plus Environment

Page 4 of 29

Page 5 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

on   the   positive   surfaces,   while   [bmim][BF4]   shows   better   wetting   on   the   negative   surfaces.   However,  such  a  dependency  was  not  found  from  calculations  of  the  contact  angle  that  use  solid-­‐ liquid   interfacial   free   energies,   obtained   from   independent   calculations,   in   the   YL   equation.   In   the  case  of  water  and  NaCl  solution  the  solid-­‐liquid  interfacial  free  energy  was  symmetric  with   the   surface   polarity,   while   for   [bmim][BF4]   the   solid-­‐liquid   interfacial   free   energy   showed   an   asymmetric  behavior  however  suggesting  changes  in  wetting  behavior  opposite  to  the  actually   observed   contact   angle   variation.   Therefore,   the   YL   equation,   where   the   interfacial   free   energies   are   taken   from   the   bulk   interfaces,   fails   in   describing   the   observed   asymmetries   in   electrowetting  behavior  of  the  liquids  at  the  nanoscale.  In  the  case  of  water  and  NaCl  solution,   field-­‐polarity-­‐dependent  orientation  of  water  dipoles  and  structural  organization  of  ions  at  the   contact  line  area  leads  to  the  observed  contact  angle  asymmetry.32     In  this  work,  a  detailed  analysis  of  the  [bmim][BF4]  liquid  structure  at  the  center  and  the  contact   line   of   the   liquid   bridge   is   given   to   describe,   at   the   molecular   level,   the   main   sources   of   the   observed  asymmetries  in  the  solid-­‐liquid  interfacial  free  energy  and  the  contact  angle.  We  will   report  different  structural  properties  of  [bmim][BF4]  such  as  the  density  distribution  of  the  ions,   the  orientational  ordering  of  the  cations  and  the  volume  charge  density  of  the  liquid  along  the   centerline   and   the   contact   line   of   the   liquid   bridge.   This   analysis   provides   a   mechanistic   explanation  for  the   asymmetric  behavior  of  the  contact   angle   and  the  solid-­‐liquid  interfacial   free   energy.  We  conclude  that  the  YL  equation  based  on  the  bulk  interfacial  free  energies  describes   correctly   the   nanoscale   electrowetting   behavior   (decrease   of   contact   angle   with   the   surface   charge   density)   but   not   the   observed   asymmetry   in   the   contact   angle.   To   explain   the   asymmetry   one  needs  to  take  into  account  the  local  solid-­‐liquid  free  energy  change  in  the  region  close  to  the   contact  line.   A  coarse-­‐grained  (CG)  model  developed  originally  by  Merlet  et  al.33  is  modified  in  this  work  to   include   the   flexibility   of   the   cation.   Different   bulk   properties   of   the   IL   such   as   mass   density,   diffusion   coefficient   of   the   ions   and   the   liquid-­‐vapor   surface   tension   are   calculated   using   the   refined   model,   and   the   comparison   with   experimental   data   is   provided   in   Section   2.   As   it   will   be   5    

ACS Paragon Plus Environment

Langmuir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 29

shown  in  the  following,  the  CG  model  reproduces  very  well  the  experimental  wetting  behavior  of   the   IL   on   a   graphite   surface.   The   experimental   contact   angle   measurement   of   the   IL   on   graphite,   based   on   which   we   parameterized   the   IL-­‐surface   interaction   potential,   is   reported   in   the   Supporting   Information.   The   approach   to   calculate   the   solid-­‐liquid   interfacial   free   energy   is   shortly  described  in  Section  3,  and  the  contact  angle  and  the  solid-­‐liquid  interfacial  free  energy   calculations   are   reported.   Then,   the   asymmetry   observed   in   the   solid-­‐liquid   interfacial   free   energy  and  the  contact  angle  is  discussed  based  on  the  packing  and  distribution  of  the  ions  on   the  positive  and  the  negative  surfaces  at  the  centerline  and  the  contact  line  of  the  liquid  bridge.   The  main  outcomes  of  the  work  are  summarized  in  Section  4.   2.  METHODOLOGY   Molecular  Simulation.  For  the  electrowetting  simulation  of  [bmim][BF4]  a  refined  version  of  the   coarse-­‐grained   (CG)   model   developed   by   Merlet   et   al.33   is   used.   Figure   1a   and   b   shows   a   schematic  view  of  the  mapping  scheme  used  between  the  atomistic  and  the  CG  models.  As  it  is   shown,   the   [BF4]‒   anion   is   represented   by   a   single   bead   A,   while   three   CG   beads   are   used   to   map   the  [bmim]+  cation:  bead  T  for  the  alkyl  tail,  bead  R  for  the  imidazolium  ring  and  bead  H  for  the   methyl  group  of  the  imidazolium  ring.    

  Figure  1.  Schematic  CG  mapping  scheme  of  (a)  [bmim]+  cation,  (b)  [BF4]−  anion  and  (c)  graphene   surface.   6    

ACS Paragon Plus Environment

Page 7 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

  In  the  original  CG  model  of  Merlet  et  al.,33  H-­‐R  and  R-­‐T  bonds  are  constrained  to  0.27  and  0.38   nm,   respectively,   and   the   H-­‐R-­‐T   angle   is   fixed   at   116°.   However,   the   atomistic   simulation   of   [bmim][BF4]  carried  out  in  this  work  using  the  atomistic  force  field  parameters  of  Chaban  et  al.34   shows  a  broad  distribution  for  the  intramolecular  degrees  of  freedom  of  the  cation  especially  for   the  R-­‐T  bond  and  the  H-­‐R-­‐T  angle  (as  it  is  shown  in  Figure  2).    

  Figure   2.   Distribution   of   (a)   H-­‐R,   (b)   R-­‐T   bond   lengths   and   (c)   H-­‐R-­‐T   angle   obtained   from   the   atomistic  and  the  CG  simulations  of  the  bulk  IL  at  350  K.     Therefore,   the   CG   model   of   Merlet33   is   refined   here   to   have   a   better   representation   of   the   IL   structure.  To  do  so,  the  bonds  and  the  angle  within  the  cation  are  considered  to  be  flexible.  The   7    

ACS Paragon Plus Environment

Langmuir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 29

potential   energy   functions   for   the   bonds   and   angles   are   derived   using   the   iterative   Boltzmann   inversion  method.35  In  this  method  the  potential  of  mean  force  𝑈 𝜒 = −𝑘! 𝑇𝑙𝑛 𝑃 𝜒 ,  where  kB   is   the   Boltzmann   constant,   T   is   the   temperature   and   𝑃 𝜒   is   the   probability   distribution   of   the   intramolecular  degree  of  freedom  χ  (corresponding  to  R-­‐T  and  H-­‐R  bonds  and  H-­‐R-­‐T  angle),  is   iteratively  corrected  as  following  to  reproduce  the  probability  distributions  extracted  from  the   atomistic  simulations  (𝑃!"# 𝜒 ):  

⎡ P (χ ) ⎤ U i+1 ( χ ) = U i ( χ ) + k BT ln ⎢ i ⎥     ⎢⎣ Patm ( χ ) ⎥⎦

 

 

 

 

 

(1)  

Here,   i   is   the   iteration   count,   𝑃! 𝜒   is   the   calculated   distribution   at   the   ith   iteration,   and   𝑈! 𝜒  and  𝑈!!! 𝜒    are  the  effective  potentials  at  the  ith  and  (i+1)th  iterations,  respectively.  The   iteration  procedure  is  carried  out  using  VOTCA  package.36  The  comparison  of  the  atomistic  and   the  CG  distributions  shown  in  Figure  2  indicates  a  very  good  agreement  between  the  atomistic   and  the  CG  models.  To  reproduce  correctly  the  experimental  mass  density  and  the  IL  diffusion   coefficients   with   the   CG   model   the   Lennard-­‐Jones   parameters   ε   for   beads   A   and   T   have   been   manually  refined.  The  interaction  parameters  are  reported  in  Table  1.       Table   1.   Lennard-­‐Jones   parameters   and   fixed   partial   charges   for   the   CG   model   of  [bmim][BF4]   and  the  graphene  surface.   interaction  site   A   H   R   T   C3  

σ  [nm]   0.451   0.341   0.438   0.504   0.4788  

ε  [kJ/mol]   3.44   0.36   2.56   2.33   0.4937  

q  [e]   -­‐0.78   0.1578   0.4374   0.1848   -­‐  

  Simulations  at  a  constant  number  of  particle,  pressure  and  temperature  (NPT)  with  the  number   of   ions   pairs   equal   to   1331,   P=1.0   bar   and   T=350   K   have   been   performed   to   determine   the   mass   density  and  the  ionic  diffusion  coefficients.  The  equilibration  run  is  set  to  30  ns  followed  by  a  20   ns   production   run.   The   simulation   box   has   a   size   of   7.53   nm   in   x,   y   and   z   directions.   The   8    

ACS Paragon Plus Environment

Page 9 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

temperature  and  the  pressure  are  kept  constant  using  the  Nose-­‐Hoover  thermostat37  with  a  time   constant   of   10   ps   and   the   Parrinello-­‐Rahman   barostat38   with   a   time   constant   of   20   ps,33   respectively.  The  timestep  is  set  to  2  fs,  and  the  cutoff  radius  for  the  non-­‐bonded  interaction  is   equal  to  1.6  nm.  The  particle  mesh  Ewald  (PME)  method39  with  the  cubic  interpolation  order  and   Fourier   grid   spacing   of   0.12   nm   is   used   to   compute   the   long-­‐range   Coulomb   interactions.   The   PME  method,  used  in  this  work  to  include  the  effect  of  the  long-­‐range  electrostatic  interactions,   has  been  applied  extensively  in  the  past  to  study  different  structural  and  dynamic  properties  of   ILs   at   the   charged   surfaces.25,   40-­‐41   The   method   has   been   also   used   to   calculate   the   electrical   double  layer  capacitance  of  ILs  at  charged  surfaces,11,   14,   19  which  requires  precise  calculation  of   long   range   electrostatic   interactions.   All   the   simulations   are   performed   using   the   GROMACS   package.42  The  comparison  of  the  diffusion  coefficients  of  the  cation  and  the  anion  and  the  bulk   density   of   the   IL   with   different   simulation   models   and   the   corresponding   experimental   values   is   shown   in   Table   2.   The   results   indicate   a   higher   diffusion   of   the   cations   in   the   refined   model   compared  to  the  original  one.  We  believe  that  higher  diffusion  of  the  cations  in  the  refined  model   is  due  to  the  flattening  of  the  cations  by  making  the  T-­‐R-­‐H  angle  flexible  based  on  the  atomistic   simulations.  However,  the  higher  diffusion  of  the  cations  is  not  affecting  the  current  discussion,   since  we  are  interested  in  the  static  contact  angle  behaviour. Table   2.   Atomistic,   CG   and   experimental   values   of   density,   diffusion   coefficient   (cations   and   anions)  and  surface  tension  at  T=350K.   Model  

Density  [kg.m−3]  

D−   D+   Surface  tension   [×10−11  m2.s−1]   [×10−11  m2.s−1]   [mN/m]  

Atomistic  

1158.5  (±0.2)  

9.9  (±  0.8)  

10.3  (±  0.9)  

36.9  (±  1.8)  

CG  (Merlet  et  al.)a  

1175  

10.1  

11.3  

33.8  (T=400  K)  

CG  (refined  force   field)  

1174.1   (±  2.9)  

10.6  (±  0.2)  

13.6  (±  0.1)  

40.4  (±  0.7)  

Experiment  b  

1167  

9.5  

9.2  

41.6  (T=341  K)  

a  T=348  K,  Ref.33.   b  T=348  K,  Ref.43.  

  9    

ACS Paragon Plus Environment

Langmuir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 29

Since  the  wetting  properties  of  the  IL  are  investigated  in  this  work,  it  is  essential  to  verify  if  the   CG   model   reproduces   the   liquid-­‐vapor   surface   tension   (γLV).   To   do   so,   the   box   size   of   the   final   configuration  of  the  bulk  simulation  in  the  z-­‐direction  is  extended  to  50  nm.  The  liquid  vapour   interfaces   are   equilibrated   for   100   ns   under   constant   temperature   and   volume   of   the   system.   The  liquid  vapor  surface  tension  is  obtained  from:44    

γ LV =

(

)

Lz ⎡ 2P − Pxx + Pyy ⎤     ⎦ 4 ⎣ zz

 

 

 

 

 

 

(2)  

where   Pzz,   Pxx   and   Pyy   indicate   pressure   components   along   z,   x   and   y   directions,   respectively,   and   Lz   is   the   size   of   the   box   in   z   direction.   The   truncation   of   the   Lennard-­‐Jones   interactions   at   the   cutoff   introduces   an   error   in   the   surface   tension   calculations   which   can   be   corrected   as   following.  In  the  first  step,  the  density  profile  of  the  liquid  along  the  z  axis  is  fitted  with  a  tangent   hyperbolic  function:  

ρ(z) =

ρL ρL − tanh ⎡⎣( z − z0 ) d ⎤⎦     2 2

 

 

 

 

 

(3)  

where  ρ(z)  is  the  liquid  density  as  a  function  of  z,  and  ρL,  z0  and  d  are  the  fitting  parameters.  In   the  second  step,  the  fitting  parameters  are  plugged  into  the  following  equation  to  calculate  the   surface  tension  tail  correction:45     1 ∞ ⎛ 2rs ⎞ ⎛ 3s 2 − s ⎞ γ tail = 12π ε σ 6 ρ L2 ∫ ∫ coth ⎜ dr ds   ⎝ d ⎟⎠ ⎜⎝ r 3 ⎟⎠ 0 rC

 

 

 

 

(4)  

Table  2  compares  the  surface  tension  of  the  refined  CG  model  with  the  atomistic  and  the  original   CG   model   of   Merlet   et   al.33   and   with   the   corresponding   experimental   value.   The   simulation   results  show  that  the  refined  CG  model  closely  reproduces  the  experimental  surface  tension.     The  mapping  scheme  shown  in  Figure  1c  is  used  for  the  CG  model  of  the  graphene  surface.  The   CG   bead   of   the   surface   (denoted   as   C3)   is   located   at   the   center   of   the   phenyl   ring   which   includes   three   carbon   atoms.   The   graphene   surface   is   assumed   to   be   rigid   in   this   work.   The   interaction   10    

ACS Paragon Plus Environment

Page 11 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

parameters   between   the   surface   and   the   liquid   are   optimized   in   such   a   way   to   reproduce   the   experimental   contact   angle   of   49°   for   [bmim][BF4]   on   the   graphite   surface.   The   details   of   the   experimental   measurements   are   provided   in   the   Supporting   Information   section.   The   graphite   surface  consists  of  six  graphene  layers,  and  has  a  thickness  of  1.7  nm.  Details  of  the  experimental   contact   angle   measurements   are   described   below.   The   same   approach   as   used   in   our   recent   work46-­‐47   on   water-­‐graphene   interfacial   systems   is   applied   here   to   develop   the   interaction   parameters   between   the   surface   and   the   IL.   The   graphene   surfaces   in   the   setup   shown   in   Figure   3b   are   replaced   with   graphite   (six   graphene   layers)   and   the   Lennard-­‐Jones   parameter   εC3   is   systematically   increased   from   a   value   of   0.35   kJ/mol   to   0.51   kJ/mol   in   increments   of   0.04   kJ/mol.   By   using   a   linear   interpolation   for   the   contact   angle   versus   εC3,   the   Lennard-­‐Jones   parameter  which  reproduces  the  experimental  contact  angle  is  determined  (εC3   =  0.4937  kJ  mol-­‐ 1).  The  value  of  σC3  has  been  fixed  at  0.4788  nm.48  The  Lorentz-­‐Berthelot  mixing  rules  are  used  to  

generate  the  interaction  parameters  between  the  IL  and  the  surface.   For  the  contact  angle  calculations,  7986  ion  pairs  are  confined  between  two  graphene  surfaces   oriented  parallel  to  the  x-­‐y  plane.  The  dimension  of  the  surface  in  the  x  and  y  directions  are  set  to   8.118   and   16.18   nm,   respectively.   The   distance   between   the   surfaces   is   set   to   19.54   nm   to   reproduce   the   bulk   mass   density   of   the   IL.   The   size   of   the   simulation   box   in   the   z-­‐direction   is   set   to  100  nm  to  exclude  the  effect  of  the  periodic  boundary  condition  in  this  direction  (Figure  3a).   The  PME  calculations  in  the  z-­‐direction  are  corrected  to  have  a  pseudo-­‐2D  Ewald  summation.49   After  equilibrating  the  system   in   the   confined   configuration,  the   graphene   surfaces  are  extended   in  the  y-­‐direction  to  56.66  nm  to  create  a  liquid-­‐vapor  interface,  as  it  is  shown  in  Figure  3b.  Since   with  this  setup  the  liquid  bridge  has  infinite  contact  line  length,  the  effect  of  the  line  tension  is   excluded  from  the  calculations.  An  equilibration  run  of  30  ns  is  performed  on  the  liquid  bridge,   followed   by   a   production   run   of   15   ns   for   the   contact   angle   calculations.   The   same   approach   described  in  our  recent  publication32  is  followed  here  for  the  contact  angle  calculations.  The  final   configuration  is  used  for  the  simulations  of  the  charged  surfaces.  

11    

ACS Paragon Plus Environment

Langmuir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 29

It   is   worth   noting   that   due   to   the   particular   setup   of   the   simulations   used   in   the   simulations   (Figure  3),  the  effect  of  the  line  tension  is  excluded  from  the  MD  simulation  results.  With  such  a   setup,  it  is  in  fact  not  possible  to  calculate  the  value  of  the  line  tension.  However,  one  could  use   spherical   droplets   of   various   sizes   to   investigate   the   effect   of   the   line   tension   on   the   MD   simulation  results.  This  is  however  out  of  scope  of  this  work.   The   contact   angle   calculations   are   performed   on   the   charged   graphene   surfaces   with   surface   charge  densities  of  ±0.2,  ±0.4,  ±0.6  μC/cm2  and  ±0.8  μC/cm2.  The  corresponding  partial  charges   of   the   graphene   CG   bead   (C3)   are   ±0.981×10-­‐3,   ±1.962×10-­‐3,   ±2.943×10-­‐3   e   and   ±3.924×10-­‐3   e   respectively.   Such   surface   charge   densities   can   be   introduced   experimentally   by   chemically   doping   the   surface50   or   applying   external   voltage5.   The   top   graphene   surface   is   charged   positively,   while   the   corresponding   negative   charge   is   applied   on   the   bottom   layer   to   have   a   neutral   system   in   each   case.   Simulation   results   indicate   that   at   surface   charge   densities   ±0.8   μC/cm2   the   ions   are   pulled   from   the   liquid   bridge,   and   the   contact   angle   saturation   occurs   (Figure  4),  in  agreement  with  the  simulation  results  of  Liu  et  al.51  

  Figure  3.  Snapshot  of  the  simulation  setup  (a)  in  the  initial  slab  geometry  and  (b)  for  the  contact   angle  calculation.  The  IL  on  the  right-­‐hand-­‐side  is  shown  in  a  configuration  before  spreading  of   the  liquid  on  the  surface  has  taken  place.   12    

ACS Paragon Plus Environment

Page 13 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

3.  RESULTS  AND  DISCUSSION   The  liquid  bridge  on  an  uncharged  single  graphene  layer  has  a  contact  angle  of  73.6°,  which  is   24.6°   higher   than   the   corresponding   value   on   graphite,   due   to   the   weaker   van   der   Waals   interaction  between  the  surface  and  the  liquid  in  the  case  of  graphene.  Introducing  the  positive   or  the  negative  charges  on  the  graphene  surface  leads  to  the  reduction  of  the  contact  angle  as  it   is  reported  in  Table  3  and  shown  in  Figure  4  (black  squares).  On  the  negatively  charged  surfaces,   the  cations  are  attracted  to  the  surface  while  the  anions  are  repelled  from  it.  Opposite  behavior   is   observed   on   the   positively   charged   surfaces   where   the   anions   are   attracted   to   the   surface   and   the  cations  are  repelled.  Such  addition  of  the  counterions  and  removal  of  the  co-­‐ions  at  the  solid-­‐ liquid  interface  leads  to  the  reduction  of  the  solid-­‐liquid  interfacial  free  energy  and  therefore  of   the  contact  angle.  At  surface  charge  densities  above  ±0.6  µC/cm2  the  cations  and  the  anions  are   pulled  from  the  bridge  on  the  negative  and  the  positive  surfaces,  respectively,  and  leads  to  the   contact  angle  saturation  in  agreement  with  the  simulation  results  of  Liu  et  al.51   The   contact   angle   displayed   in   Figure   4   at   σ   ≤   ±0.6   µC/cm2   shows   a   clear   asymmetric   dependence  on  the  surface  polarity.  The  liquid  spreads  more  on  the  negatively  charged  surfaces.   Such   asymmetric   behavior   of   the   contact   angle   has   been   also   observed   for   pure   water   and   aqueous  salt  solutions.30-­‐32   Hanly   et   al.52   has   developed   a   theoretical   approach   to   calculate   the   change   in   the   solid-­‐liquid   interfacial   tension   of   water   and   salt   solutions   at   a   charged   surfaces   on   the   basis   of   the   Gouy-­‐ Chapman   model.   The   model   considers   ions   as   point   charges,   and   it   is   on   the   basis   of   dilute-­‐ solution  approximation.  Such  model  however  was  shown  to  be  not  applicable  for  ILs  due  to  the   charge  delocalization  of  ions,  high  concentration  of  ions,  strong  correlation  between  ions  and  the   multilayer   structure   of   ions   at   the   interface.53   Recently,   we   have   proposed   a   direct   method,   based  on  the  thermodynamic  integration  approach,54  to  calculate  the  change  in  the  solid-­‐liquid   interfacial  free  energy  upon  charging  the  surface.32  The  change  in  the  solid-­‐liquid  interfacial  free   energy,   Δγ SL ,   between   the   uncharged   surface   system   (denoted   as   A)   and   the   system   with   the   13    

ACS Paragon Plus Environment

Langmuir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 29

surface  charge  density  σ  (denoted  as  B)  is  equal  to  the  change  in  the  Gibbs  free  energy  per  unit   area  upon  the   surface  charging  process  and  is  calculated  using  the  thermodynamic  integration   (TI)  method54    

Δγ SL

λ 1 B ∂H ( λ ) = γ SL,B − γ SL,A = ∫ Aλ ∂λ A

d λ ′    

 

 

 

 

(5)  

λ′

In   Eq.   (5),   H   is   the   Hamiltonian   of   the   system,   λ   is   a   coupling   parameter   which   quantifies   the   transformation   from   the   uncharged   surface   system   to   the   charged   one,   and   ⟨···⟩λ’   denotes   an   ensemble   average   over   the   configurational   distribution   of   the   liquid   molecules   in   contact   with   surface   at   a   surface   charge   density   determined   by   the   set   value   of   the   coupling   parameter   λ.   Since  only  the  solid-­‐liquid  Coulomb  interaction  potential  (USL,Coul)  is  affected  upon  charging  the   surface,  the  change  in  the  solid-­‐liquid  interfacial  free  energy  is  given  by:  

Δγ SL =

σ ∂U SL,Coul (σ ′ ) 1 dσ ′   ∫ A0 ∂σ ′

 

 

 

 

 

 

(6)  

The   change   in   the   solid-­‐liquid   interfacial   free   energy   is   therefore   obtained   by   integrating   the   average   derivative   of   solid-­‐liquid   Coulomb   interaction   at   different   surface   charge   densities   σ.   Using   the   setup   shown   in   Figure   3,   USL,Coul   is   calculated   at   the   centerline   of   the   liquid   bridge   with   a  base  area  of  8.118  ×  4.0  nm2.  The  cations  whose  geometric  centers  are  located  in  the  defined   centerline   region   are   taken   into   account   in   the   Coulomb   interaction   potential   calculations.   The   calculations  are  done  with  a  spherical  cutoff  of  2.5  nm  corresponding  to  the  distance  above  the   surface   where   the   density   of   the   IL   is   same   as   the   bulk   value.   The   calculations   of   ΔγSL   at   different   cutoff   distances   have   shown   that   even   though   the   magnitude   of   ΔγSL   changes   with   changing  the  cutoff,  its  overall  behavior  is  independent  of  the  choice  of  it.32         14    

ACS Paragon Plus Environment

Page 15 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

Table  3.  Surface  charge  densities  (σ),  partial  charge  of  the  coarse-­‐grained  surface  sites  (qC3),  the   contact  angle  (θ)  and  the  change  in  the  solid-­‐liquid  interfacial  free  energy  at  the  centerline  of  the   liquid  bridge.  The  errors  are  calculated  using  blocking  average  over  a  time  frame  of  15  ns  with  a   block  size  of  3  ns.       σ  [µC/cm2]   qC3  [e]  (x10-­‐3)   θ  [degree]   Δ γSL  [mJ  m-­‐2]   0.8   3.924   61.6  (0.9)   -­‐   0.6   2.943   62.8  (0.7)   -­‐3.16  (0.16)   0.4   1.962   67.5  (0.9)   -­‐1.48  (0.12)   0.2   0.981   72.4  (0.8)   -­‐0.36  (0.07)   0.0   0.0   73.6  (0.6)   0.0   -­‐0.2   -­‐0.981   69.9  (0.8)   -­‐0.33  (0.08)   -­‐0.4   -­‐1.962   60.9  (0.9)   -­‐1.21  (0.15)   -­‐0.6   -­‐2.943   53.7  (0.6)   -­‐2.46  (0.20)   -­‐0.8   -­‐3.942   54.3  (0.9)   -­‐  

  Figure  4.  Contact  angles  (black  squares),  solid−liquid  Coulomb  energy  (open  red  squares)  and   change  in  the  solid−liquid  interfacial  free  energy  (filled  red  squares)  at  different  surface  charge   densities.  The  lines  are  spline  fits  to  the  data  points  and  are  included  to  guide  the  eye.    

15    

ACS Paragon Plus Environment

Langmuir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 29

The  change  in  USL,Coul  upon  charging  the  surface  is  displayed  in  Figure  4  (open  red  squares).  The   results   show   that   although   the   liquid   spreads   less   on   the   positive   surfaces,   the   solid-­‐liquid   Coulomb   interaction   is   slightly   more   attractive   on   these   surfaces   than   on   the   negatively   charged   ones.   These   results   indicate   that   in   addition   to   the   solid-­‐liquid   Coulomb   interaction   other   parameters   such   as   the   change   in   the   solid-­‐liquid   interfacial   entropy   and/or   structural   peculiarities   in   the   three-­‐phase   contact   line   region   may   influence   the   observed   contact   angle.   The   dependence   of   ΔγSL   (obtained   from   TI   calculations)   on   the   surface   charge   density   is   shown   in  Figure  4  by  the  filled  red  squares.  According  to  the  YL  equation,  these  values  of  ΔγSL  should   produce   a   more   favorable   wetting   on   the   positive   surfaces,   which   however   is   opposite   to   the   observed   contact   angle   asymmetry.   In   the   following   a   detailed   analysis   of   the   interfacial   structure  of  the  liquid  at  the  centerline  and  at  the  contact  line  of  the  bridge  is  given  to  provide   microscopic  explanation  of  the  asymmetries  observed  in  the  solid-­‐liquid  interfacial  free  energy   and  the  contact  angle.     Solid-­‐liquid  interfacial  free  energy  asymmetry:   Figure   5   shows   the   number   density   of   the   cations   and   the   anions   at   different   surface   charge   densities  calculated  around  the  centerline  within  a  base  area  of  8.118  ×  4.0  nm2.  The  top  panel  in   Figure   5   shows   the   density   distribution   of   the   ions   at   the   zero   surface   charge   density.   Due   to   the   stronger   van   der   Waals   interaction   between   the   cations   and   the   surface,   there   is   a   higher   tendency   for   the   cations   compared   to   anions   to   be   adsorbed   on   the   surface.   The   specific   adsorption   of   the   ions   to   the   surface   at   zero   surface   charge   density   gives   rise   to   an   electrical   potential  distribution  drop  at  the  interface  which  can  be  quantified  using  the  Poisson  equation  

ϕ (z) = −

1 ε0



z

0

dz ′ ∫ ρe ( z ′′ ) dz ′′ .   A   positive   value   of   0.12±0.03   V   is   found   for   the   potential   z′

0

difference   between   the   graphene   surface   and   the   middle   of   the   channel,   which   confirms   the  

16    

ACS Paragon Plus Environment

Page 17 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

specific  adsorption  of  cations  at  zero  surface  charge  density.  The  specific  adsorption  of  [bmim]+   ions  has  been  also  observed  previously  on  graphite  surface  by  MD  simulations.11,  19,  23,  55-­‐56     The  number  density  profiles  of  the  ions  at  different  surface  charge  densities  shown  in  Figure  5   indicates  a  strong  layering  of  the  cations  and  the  anions  at  the  interface  extending  around  2  nm   into  the  bulk  liquid.  Such  strong  interfacial  layering  has  been  also  observed  experimentally  by  x-­‐ ray   reflectometry20,  

57  

and   atomistic   force   microscopy   (AFM)28,  

58  

and   as   well   as   by   MD  

simulations11,  19,  25.     Due   to   the   difference   in   the   size   of   the   cations   and   the   anions   and   also   the   stronger   van   der   Waals   interaction   between   the   positive   ions   and   the   surface,11,   16   the   reorganization   of   the   positive  and  the  negative  ions  upon  charging  the  surface  is  different.  In  Table  4,  the  number  of   cations  and  anions  adsorbed  or  removed  from  the  first  (0.59  and  0.69  nm  from  the  surface  for   cation  and  anion,  respectively)  and  the  second  (0.85  and  1.11  nm  from  the  surface  for  cation  and   anion,   respectively)   adsorption   layers   at   different   surface   charge   densities   are   reported.   The   position   of   the   layers   for   cations   and   anions   are   determined   by   the   minimum   of   the   corresponding  number  density.     Table   4.   Relative   cation   and   anion   adsorption   (positive   numbers)   and   desorption   (negative   numbers)  from  the  first  (0.59  and  0.69  nm  from  the  surface  for  cation  and  anion,  respectively)   and   the   second   (0.85   and   1.11   nm   from   the   surface   for   cation   and   anion,   respectively)   adsorption  layers  at  different  surface  charge  densities.   Surface   charge   density   [μC/cm2]   -­‐  0.6   -­‐  0.4   -­‐  0.2   0.0   +  0.2   +  0.4   +  0.6  

Relative  cation  adsorption  (+)  or   desorption  (-­‐)  [%]   First  layer   Second  layer   2.50   3.75   1.25   0   -­‐1.25   -­‐3.75   -­‐3.75  

Relative  anion  adsorption  (+)  or   desorption  (-­‐)[%]   First  layer   Second  layer  

3.26   0.72   4.87   0   0.92   2.76   2.61  

 

17    

ACS Paragon Plus Environment

-­‐5.62   -­‐4.61   -­‐2.39   0   5.48   7.59   11.09  

0.93   0.24   2.16   0   0.56   1.96   0.77  

Langmuir

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 29

  Figure  5.  Number  density  profiles  of  the  anions  and  the  cations  along  the  centerline  of  the  liquid   bridge  at  different  surface  charge  densities.   The  simulation  results  indicate  that  while  the  density  of  the  cations  close  to  the  surface  varies   weakly  with  the  charge  on  the  surface,  the  addition  and  the  removal  of  the  anions  on  the  positive   and  the  negative  surfaces,  respectively,  are  shown  to  be  the  main  structural  changes  of  the  liquid   at  the  interface.19  The  simulation  results  however  indicate  that  the  addition  of  the  anions  to  the   interface   on   the   positive   surfaces   is   more   pronounced   than   their   removal   on   the   negative   surfaces.  By  introducing  more  positive  charges  on  the  surface,  removal  of  a  few  bulky  [bmim]+   ions  leads  to  the  adsorption  of  several  smaller  [BF4]−  ions.  However,  by  increasing  the  negative   charges  on  the  surface  on  the  one  hand  the  adsorption  of  the  [bmim]+  ions  is  not  changing  that   much   due   to   their   high   accumulation   at   the   neutral   interface,   and   on   the   other   hand   the   18    

ACS Paragon Plus Environment

Page 19 of 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Langmuir

attractive   interactions   between   the   anions   and   the   high   accumulated   cations   prevent   the   removal  of  the  anions  from  the  interface.  As  a  result,  the  accumulation  of  the  negative  charges   close  to  the  positive  surfaces  is  higher  than  the  positive  charges  close  to  the  negative  surfaces.   Similar  behavior  was  found  in  the  atomistic  simulation  of  [bmim][BF4]  on  graphene  by  Feng  et   al.19.   As   discussed   in   the   introduction,   the   polarity   dependence   of   the   ion   adsorption   has   been   also   observed   experimentally   using   impedance   spectroscopy26-­‐27   and   AFM   measurements.28   Such   dependency   of   ion   adsorption   leads   to   an   asymmetry   in   the   electrical   double   layer   capacitance   at   the   interface.14   Electrowetting   experimental   results   of   Paneru   el   al.29   for   [bmim][BF4]   on   fluoropolymer   surfaces   have   also   shown   an   asymmetric   dependence   of   the   contact   angle   on   the   polarity   of   the   applied   voltage.   The   authors   have   interpreted   the   results   based   on   the   difference   in   the   size   of   the   counter   ions   and   their   adsorption   to   the   bulk   interface.   Hence,   the   consensus   in   the   literature   is   that   the   asymmetry   in   the   electrical   double   layer   capacitance  leads  to  the  polarity  dependence  of  the  bulk  solid-­‐liquid  interfacial  free  energy  and   explains  the  asymmetric  electrowetting  based  on  the  YL  equation.29-­‐31  In  the  following,  we  will   show   that   one   needs   to   take   into   account   the   local   change   of   the   solid-­‐liquid   interfacial   free   energy   at   the   vicinity   of   the   contact   line   to   be   able   to   correctly   describe   the   electrowetting   asymmetry  at  the  nanoscale.   The   difference   in   the   charge   density   distributions   close   to   the   surface   (away   from   the   contact   line,  between  approx.  6