8 Membrane Damage and Protection During Freezing
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
U. HEBER, H. VOLGER, V. OVERBECK, and K. A. SANTARIUS Institute of Botany, University of Dusseldorf, 4000 Dusseldorf, West Germany Freezing can damage biomembranes either mechanically or by solute action. Damage is described using mainly thylakoid membrane vesicles as examples. After freezing in suitable media, light-dependent ion gradient formation across thylakoids no longer occurs, photophosphorylation is inactivated, membrane semipermeability is lost and electron transport is either stimulated or decreased. Membranes aggregate and polar membrane proteins dissociate. A main factor in freezing damage is the action of potentially membrane-toxic solutes which are concentrated during ice formation. Membrane toxicity of salts follows a Hofmeister power series. The mechanism of membrane inactivation is discussed. Freezing damage can be prevented by adding cryoprotectants. Protection occurs by unspecific colligative solute action and by specific membrane stabilization. Sugars, sugar alcohols, and specific proteins are physiological cryoprotectants. Membranes must be protected on both sides against freeze-inactivation.
Tn
1954, L o v e l o c k r e p o r t e d t h a t h e m o l y s i s o f r e d b l o o d c e l l s , w h i c h occurred d u r i n g freezing i n physiological saline, w a s caused b y m e m -
b r a n e d a m a g e ( I ) . N o t t h e i c e crystals f o r m e d b e l o w t h e f r e e z i n g p o i n t , b u t t h e a c c u m u l a t i o n of salts a c c o m p a n y i n g i c e f o r m a t i o n w a s t h o u g h t to b e r e s p o n s i b l e f o r i n j u r y ( 2 ) .
S e v e r a l years l a t e r , p h o t o p h o s p h o r y l a -
t i o n o f t h y l a k o i d m e m b r a n e s i s o l a t e d f r o m chloroplasts of leaf cells w a s f o u n d to b e i n a c t i v a t e d d u r i n g f r e e z i n g i n t h e p r e s e n c e o f c e r t a i n solutes (3,4,5).
A g a i n , mechanical membrane damage, t h o u g h i t occurs d u r i n g 0-8412-0484-5J79J33-180-159$7.75J0 © 1979 American Chemical Society
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
160
PROTEINS
AT
LOW
TEMPERATURES
eutectic f r e e z i n g ( 6 , 7 ) , w a s not r e s p o n s i b l e f o r loss of a c t i v i t y . chondrial oxygen uptake a n d phosphorylation, b o t h
Mito-
membrane-bound
processes, w e r e also d e c r e a s e d b y f r e e z i n g ( 8 , 9 ) . S i n c e m a n y o t h e r c e l l constituents are not a l t e r e d b y f r e e z i n g , t h e i n a c t i v a t i o n of m e m b r a n e activities suggests t h a t d a m a g e to
biomem-
branes is r e s p o n s i b l e f o r the s e n s i t i v i t y of cells a n d organisms to f r e e z i n g I n this c o n t r i b u t i o n , w e w i l l d e s c r i b e c o n d i t i o n s w h i c h l e a d to
(10-15).
m e m b r a n e d a m a g e . D a m a g e w i l l b e c h a r a c t e r i z e d u s i n g the w e l l i n v e s t i g a t e d t h y l a k o i d m e m b r a n e as a n e x a m p l e . M a n y organisms are k n o w n to a c q u i r e f r e e z i n g resistance u n d e r Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
s u i t a b l e e n v i r o n m e n t a l c o n d i t i o n s . O b v i o u s l y , f r e e z i n g does n o t d a m a g e their membranes.
I n v i e w of p o t e n t i a l a p p l i c a t i o n s , p a r t i c u l a r l y i n a g r i -
c u l t u r e , m e d i c i n e , a n d f o o d p r e s e r v a t i o n , i t is i m p o r t a n t to k n o w
how
m e m b r a n e d a m a g e c a n be a v o i d e d . W e w i l l b r i e f l y c o n s i d e r m e c h a n i s m s responsible for membrane protection d u r i n g freezing. Freezing I n t h e m o s t s i m p l e case, w h e n a s u s p e n s i o n of m e m b r a n e s i n a s o l u t i o n c o n t a i n i n g o n l y one solute is f r o z e n , w a t e r is c o n v e r t e d to i c e a n d the solute c o n c e n t r a t i o n rises i n the u n f r o z e n p a r t of t h e system w h i c h also contains the m e m b r a n e s . F i g u r e 1 shows t h e r e l a t i o n b e t w e e n f r e e z i n g t e m p e r a t u r e a n d t h e c o m p o s i t i o n of a b i n a r y system c o n s i s t i n g of w a t e r a n d a salt. W h e n the t e m p e r a t u r e is l o w e r e d b e l o w t h e f r e e z i n g p o i n t a n d t h e i n i t i a l salt c o n c e n t r a t i o n is n o t t o o h i g h , i c e crystals w i l l separate f r o m the s o l u t i o n . T h e m o l e f r a c t i o n of t h e salt i n the u n f r o z e n p a r t of the system increases as t h e t e m p e r a t u r e is f u r t h e r W h e n t h e eutectic t e m p e r a t u r e T m a x i m u m extent.
E
decreased.
is r e a c h e d , the system solidifies to a
A d d i t i o n of a t h i r d c o m p o n e n t to a b i n a r y m i x t u r e
shifts the eutectic t e m p e r a t u r e to l o w e r values. F u r t h e r s h i f t i n g is p r o duced
b y t h e a d d i t i o n of
more
components.
I n complex
biological
systems, w h e r e h i g h v i s c o s i t y m a y also r e t a r d c r y s t a l l i z a t i o n of solutes, eutectic f r e e z i n g is r a r e l y o b s e r v e d . W h e n i t occurs, extensive m e m b r a n e d a m a g e is p r o d u c e d , a p p a r e n t l y b e c a u s e t h e m e m b r a n e s are m e c h a n i c a l l y d i s r u p t e d b y the mass of ice a n d solute crystals f o r m e d ( 6 , 7 ) . E u t e c t i c f r e e z i n g of sea w a t e r i n w h i c h sea u r c h i n eggs w e r e s u s p e n d e d k i l l e d a l l cells
(16).
W h e n f r e e z i n g is s l o w , i c e w i l l f o r m o u t s i d e of
membrane-enclosed
spaces, a n d t h e m e m b r a n e s b e c o m e exposed to i n c r e a s e d solute c o n c e n trations.
Vesicular membranes
respond
concentrations also p r o d u c e other effects. tration of
osmotically.
Increased
solute
A s w i l l b e s h o w n , the c o n c e n -
c e r t a i n solutes is a n i m p o r t a n t f a c t o r i n t h e a l t e r a t i o n o f
b i o m e m b r a n e s d u r i n g f r e e z i n g , a n d t h i s c a n l e a d to loss of
membrane
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER
E TA L ,
Membrane
Damage
and
161
Protection
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
solution
ice plus solution
\ \ \
Jsalt crystals J plus J solution
ice plus sait crystals
mole fraction of salt Figure I .
Rehtion
between temperature and composition tion. Ύ is eutectic temperature
of a single salt solu
Ε
function.
Solute d a m a g e s h o u l d , at first sight, b e e x p e c t e d t o i n c r e a s e
as t h e s u b - f r e e z i n g t e m p e r a t u r e is d e c r e a s e d because t h e solute c o n c e n t r a t i o n i n t h e u n f r o z e n p a r t of a system increases
with
decreasing
temperature. H o w e v e r , t h e changes i n membrane structure w h i c h l e a d to loss of m e m b r a n e f u n c t i o n are t e m p e r a t u r e - d e p e n d e n t processes.
Thus,
w h i l e solute stress increases as t h e t e m p e r a t u r e is l o w e r e d , t h e rate of m e m b r a n e i n a c t i v a t i o n m a y a c t u a l l y b e faster a t h i g h e r t e m p e r a t u r e s t h a n at l o w e r t e m p e r a t u r e s ( 6 ) . W h e n f r e e z i n g i s too fast t o a l l o w t r a n s p o r t of i n t r a v e s i c u l a r w a t e r to e x t r a v e s i c u l a r i c e l o c i , i c e f o r m a t i o n takes p l a c e i n s i d e m e m b r a n e e n c l o s e d spaces. T h i s appears t o b e m e c h a n i c a l l y d i s r u p t i v e . T h e r a t e of f r e e z i n g is therefore a n i m p o r t a n t p a r a m e t e r o f f r e e z i n g i n j u r y .
Slow
f r e e z i n g p r o l o n g s exposure o f m e m b r a n e s t o h i g h solute c o n c e n t r a t i o n s
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
162
PROTEINS
AT
LOW
TEMPERATURES
i n a t e m p e r a t u r e r a n g e w h e r e solute d a m a g e m a y p r o c e e d r a p i d l y
(6),
a n d fast f r e e z i n g m a y p r o d u c e m e c h a n i c a l m e m b r a n e d a m a g e i n c e l l u l a r systems b y i n t r a c e l l u l a r i c e f o r m a t i o n . p r o p o s e d b y M a z u r ( 17,18,19)
T h e two-stage t h e o r y of i n j u r y
describes these relations. D u r i n g f r e e z i n g
of i s o l a t e d t h y l a k o i d m e m b r a n e s s u s p e n d e d i n a n isotonic o r
somewhat
hypotonic m e d i u m , intravesicular ice formation a n d mechanical damage d o n o t o c c u r as l o n g as eutectic f r e e z i n g is a v o i d e d b y a s u i t a b l e c h o i c e of the m e d i u m a n d the final f r e e z i n g t e m p e r a t u r e . T h e f r e e z i n g d a m a g e d e s c r i b e d i n t h e f o l l o w i n g w o r k is therefore u s u a l l y c a u s e d b y h i g h solute
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
concentrations.
Thawing D u r i n g r a p i d t h a w i n g , membranes m a y be m e l t i n g ice.
flooded
by water from
W h e r e this occurs, osmotic e x p a n s i o n w i l l t a k e p l a c e .
If
w a t e r transport b y d i f f u s i o n is too s l o w to a b o l i s h m a j o r gradients i n t h e w a t e r p o t e n t i a l , h y p n o t i c stress is c r e a t e d i n t h e v i c i n i t y of m e l t i n g i c e , w h i l e h y p e r t o n i c stress persists i n other p a r t s of the system.
A s intact
b i o l o g i c a l m e m b r a n e s are c l o s e d a n d o s m o t i c a l l y a c t i v e , osmotic r u p t u r e c a n o c c u r w h e n h y p n o t i c o s m o t i c stress replaces solute stress. A s d u r i n g f r e e z i n g , t w o stages of i n j u r y m a y b e d i s t i n g u i s h e d . E s p e c i a l l y d u r i n g s l o w t h a w i n g , effects of h i g h solute concentrations m a y i n c r e a s e i n j u r y i n a c r i t i c a l t e m p e r a t u r e r a n g e . A l t e r n a t i v e l y , osmotic d a m a g e m a y o c c u r d u r i n g r a p i d t h a w i n g under n o n e q u i l i b r i u m conditions. S i n c e i s o l a t e d t h y l a k o i d s are less sensitive to h y p n o t i c stress t h a n i n t a c t cells, osmotic r u p t u r e does n o t o c c u r to a n y significant extent d u r i n g t h a w i n g of f r o z e n t h y l a k o i d s . Solute
Effects
During
Inorganic Salts.
Freezing R e d b l o o d cells s u s p e n d e d i n 0.15 M N a C l
first
s h r i n k d u r i n g f r e e z i n g , w h i l e the o s m o l a r i t y of the u n f r o z e n p a r t of t h e s u s p e n d i n g m e d i u m increases. W h e n i t reaches a b o u t 0.8 M, N a C l leaks i n , K is lost, a n d the cells start to h e m o l y z e o n t h a w i n g . F r e e z i n g is n o t +
necessary f o r the effect to o c c u r , as a g r a d u a l increase i n the
NaCl
c o n c e n t r a t i o n to 0.8 M or m o r e at 0 ° C also causes o s m o t i c c e l l s h r i n k a g e a n d then hemolysis ( 2 ) .
H o w e v e r , w i t h i n t a c t cells i t is r a t h e r difficult to
d e c i d e w h i c h effect p r o d u c e s i n j u r y . I n t h e c h l o r o p l a s t s of h i g h e r p l a n t s , c l o s e d c h l o r o p h y l l - c o n t a i n i n g m e m b r a n e s c a l l e d t h y l a k o i d s f u n c t i o n to c o n v e r t l i g h t e n e r g y i n t o c h e m i c a l energy. T h e y c a n b e i s o l a t e d a n d , w i t h o u t too m u c h loss of b i o c h e m i c a l a c t i v i t y , l a r g e l y f r e e d f r o m s o l u b l e c e l l constituents b y c a u t i o u s l y w a s h i n g t h e m i n h y p o t o n i c solutions o r e v e n w a t e r washing, they swell but do
n o t lose t h e i r o s m o t i c
(20,21). properties.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
During When
8.
HUBER
Membrane
ET AL.
resuspended
Damage
163
and Protection
i n m e d i a c o n t a i n i n g n o n p e n e t r a t i n g solutes, t h e y
shrink.
I s o l a t e d t h y l a k o i d s c o n s t i t u t e a m u c h s i m p l e r test system t h a n i n t a c t cells for measuring the susceptibility of biomembranes to freezing. W h e n t h y l a k o i d s are f r o z e n i n a d i l u t e salt m e d i u m ( 5 m M N a C l ) , their capability to form A T P a n d A D P a n d phosphate i n t h e light is m u c h d e c r e a s e d (22,23). freezing,
I f the N a C l c o n c e n t r a t i o n is i n c r e a s e d b e f o r e
loss o f a c t i v i t y d u r i n g f r e e z i n g
is even
more
I n o r g a n i c salts s u c h as N a C l increase f r e e z i n g d a m a g e .
of f r e e z i n g , l o w concentrations o f N a C l d o n o t i n a c t i v a t e phorylation.
W h e n a cryoprotective
compound
pronounced.
I n t h e absence photophos-
is present w i t h
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
d u r i n g f r e e z i n g , t h e osmolar ratios o f these solutes d e t e r m i n e
NaCl
whether
m e m b r a n e f u n c t i o n is p r e s e r v e d o r lost. F i g u r e 2 shows i n a c t i v a t i o n o f t h y l a k o i d s after 3 hours of storage a t — 6 o r — 1 2 ° C as a f u n c t i o n o f the N a C l c o n c e n t r a t i o n i n the s u s p e n d i n g m e d i u m b e f o r e f r e e z i n g . C o n t r o l s w e r e k e p t f o r 3 h o u r s at 0 ° C . 100 m M
0
€ μ ι
*
= Β
20Ô
'
400
'
600
NaCl concentration Cm Ml Figure 2. Effect of temperature on inactivation of thylakoids in the presence of NaCl. Washed thylakoids were suspended in a solution containing 100 mM sucrose and NaCl and were kept for 3 hours at 0°C, — 6°C and — 12°C. Freezing and thawing were fairly rapid and final temperatures were reached within less than 2 minutes. Sucrose served as cryoprotectant and was added to prevent freeze-inactivation of the membranes in the presence of low salt concentrations. After thawing, the activity of cyclic photophosphorylation was measured. Experimental conditions have been described previously (5, 20, 21).
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
164
PROTEINS
A T L O W TEMPERATURES
sucrose, w h i c h is a c r y o p r o t e c t a n t i n t h e t h y l a k o i d system, w a s also a d d e d to p r e v e n t m e m b r a n e i n a c t i v a t i o n c a u s e d b y l o w concentrations o f a d d e d N a C l d u r i n g freezing.
A t —12 ° C , a n i n i t i a l c o n c e n t r a t i o n o f a b o u t 5 0
m M N a C l i n t h e s u s p e n d i n g m e d i u m w a s sufficient t o o v e r c o m e c r y o p r o t e c t i o n b y sucrose a n d p r o d u c e significant m e m b r a n e d a m a g e .
Naturally,
the N a C l concentration i n e q u i l i b r i u m w i t h ice w a s m u c h higher than the i n i t i a l c o n c e n t r a t i o n . A t — 6 ° C , a b o u t 100 m M N a C l i n t h e s u s p e n d i n g m e d i u m w e r e r e q u i r e d to p r o d u c e extensive d a m a g e .
Still higher
concentrations w e r e n e e d e d t o d a m a g e t h e m e m b r a n e s a t 0 ° C
(6,24).
T h u s , b i o m e m b r a n e s as w i d e l y d i f f e r i n g as b l o o d c e l l m e m b r a n e s a n d Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
p h o t o s y n t h e t i c m e m b r a n e s share a s i m i l a r s e n s i t i v i t y t o N a C l . T h e N a C l photosynthetic
membranes
share a s i m i l a r s e n s i t i v i t y t o N a C l . T h e
N a C l - i n d u c e d loss of m e m b r a n e
function during freezing or at 0 ° C
is i r r e v e r s i b l e . I n F i g u r e 2, m e m b r a n e lowered below
freezing.
damage
increases as t h e t e m p e r a t u r e is
Increased damage
is p r o d u c e d
because t h e
c o n c e n t r a t i o n o f N a C l increases p r o g r e s s i v e l y ( a b o v e t h a t s h o w n ) as t h e s u b f r e e z i n g t e m p e r a t u r e is decreased.
H o w e v e r , rates of c h e m i c a l r e a c
tions are d i r e c t l y r e l a t e d t o t e m p e r a t u r e . S o l u t e d a m a g e is n o e x c e p t i o n . It is therefore n o t s u r p r i s i n g that, as the t e m p e r a t u r e is f u r t h e r l o w e r e d below
—12 ° C , t h e extent o f solute d a m a g e m a y decrease r a t h e r t h a n
s h o w a f u r t h e r increase
(6).
1
I
1
I—'
600 ο
if α
ο
-22°C
sucrosp only o
-Vs.
- \\
-
\
·
-A0°C
\
20θί
Ο .
*
\\ η \ · \ \
1t
•·
sucrose + phenylpyruvate ^
X
-22°C 50
^
X
-30»C
v
100
150
200
hours freezing
Figure 3. Inactivation of thylakoids during freezing at various low tempera tures as a function of time. Washed thyhkoids were suspended in a solution containing 50 mM sucrose as a cryoprotectant and 20 mM sodium phenylpyru vate as a cryotoxic solute. The suspensions were rapidly frozen and thawed. After thawing, photophosphorylation was determined. For experimental condi tions, see notes in legend for Fig. 2
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER
E T AL.
Membrane
Damage
and
165
Protection
F i g u r e 3 shows i n a c t i v a t i o n o f t h y l a k o i d s s u s p e n d e d i n a s o l u t i o n c o n t a i n i n g a c r y o t o x i c solute ( 2 0 m M s o d i u m p h e n y l p y r u v a t e ) a n d a c r y o p r o t e c t a n t ( 5 0 m M s u c r o s e ) . C o n t r o l s c o n t a i n e d sucrose o n l y . T h e r e w a s n o significant i n a c t i v a t i o n of t h y l a k o i d f u n c t i o n o f t h e controls d u r i n g 9 d a y s of storage a t — 2 2 ° C . I n t h e presence of p h e n y l p y r u v a t e , d a m a g e w a s essentially c o m p l e t e after 24 h o u r s at — 2 2 ° C . D a m a g e w a s d e c r e a s e d as t h e t e m p e r a t u r e w a s d e c r e a s e d t o — 3 0 ° C o r to — 4 0 ° C .
I n these
experiments, partial crystallization o f s o d i u m phenylpyruvate m a y have o c c u r r e d d u r i n g f r e e z i n g a n d this m a y h a v e r e d u c e d t h e effective c o n c e n t r a t i o n o f t h e c r y o t o x i c agent, p a r t i c u l a r l y a t t h e l o w e r t e m p e r a t u r e s . Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
T h i s effect m a y h a v e c o n t r i b u t e d t o t h e s t r i k i n g differences i n m e m b r a n e d a m a g e seen at t h e different t e m p e r a t u r e s . D u r i n g f r e e z i n g , t h y l a k o i d s suffer m o r e d a m a g e i n t h e
CATIONS.
presence of L i C l than i n t h e presence of isosmolar concentrations of N a C l ( F i g u r e 4 ) . F o r different a l k a l i m e t a l c h l o r i d e s , d a m a g e d e c r e a s e d
0
20
40
60 80 100 salt concentration C mM ]
Figure 4. The effect of different alkali metal chlorides on thylakoid function during freezing to — 20°C. Washed thylakoids were suspended before freezing in a solution containing 0.1 M sucrose and alkali metal chlorides, as indicated. The sucrose served as cryoprotectant and was added to prevent freeze-inactivation of the membranes in the presence of low salt concentrations. The suspensions were slowly frozen for 3 hours at — 20°C. After thawing in a water bath at room temperature, the activity of cyclic photophosphorylation was measured. For experimental conditions, see the legend for Fig. 2.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
166
PROTEINS
i n that order: L i > +
Na
+
>
K
+
>
Rb
+
>
AT
LOW
TEMPERATURES
C s . A t 0 ° C , h i g h concentra +
tions of a l l a l k a l i m e t a l c h l o r i d e s p r o d u c e d c o m p a r a b l e m e m b r a n e i n a c t i v a t i o n (24).
S i m i l a r results h a v e b e e n o b t a i n e d d u r i n g f r e e z i n g of r e d
b l o o d cells (25). more
C h l o r i d e s of d i v a l e n t cations s u c h as C a C l
drastic membrane
(Figure 5). trations of
MgCl
2
inactivation than
chlorides of
h a d a n i n t e r m e d i a t e effect.
2
alkali
produce metals
However, l o w concen
M g , r a t h e r t h a n b e i n g t o x i c , a r e a c t u a l l y necessary + +
for
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
p h o t o p h o s p h o r y l a t i o n of t h y l a k o i d s .
Ο
•
ι-
20 40 60 salt concentration [mM]
Figure 5. Inactivation of thyhkoids during freezing in the presence of chlo rides of different divalent and monovalent metals. Washed thylakoids were suspended before freezing to —20°C in a solution containing 0.1 M sucrose as cryoprotectant and various chlorides at concentrations indicated on the abscissa. After thawing, the activity of cyclic photophosphorylation was measured. For experimental conditions, see legend for Fig. 2.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER
ET AL.
ANIONS.
Membrane
Damage
and
167
Protection
B y h o l d i n g t h e c a t i o n constant a n d v a r y i n g t h e a n i o n , t h e
effects o f different anions o n t h y l a k o i d s d u r i n g f r e e z i n g or at 0 ° C c a n b e c o m p a r e d . A s i n the case of cations, l o w c o n c e n t r a t i o n s of different anions are n o t d e s t r u c t i v e i f o c c a s i o n a l specific effects o n p h o t o p h o s p h o r y l a t i o n , s u c h as t h a t exerted b y sulfate ( 2 6 ) , are d i s r e g a r d e d ( F i g u r e 6 ) .
The
m e m b r a n e toxicities of different anions v a r y w i d e l y at h i g h concentrations. A m o n g t h e h a l o g e n i d e s , fluoride is t o l e r a t e d e v e n at r a t h e r h i g h c o n c e n trations. T o x i c i t y increases i n the o r d e r of c h l o r i d e , n i t r a t e , b r o m i d e , a n d i o d i d e [ F i g u r e 6 a n d (24)].
W i t h r e d b l o o d cells, t h e o r d e r of a n i o n
c r y o t o x i c i t y also i n c r e a s e d f r o m c h l o r i d e to i o d i d e ( 2 5 ) .
H o w e v e r , i t is
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
i m p o r t a n t to e m p h a s i z e t h a t m e m b r a n e i n a c t i v a t i o n is s l i g h t w h e n t h e salt c o n c e n t r a t i o n is l o w , e v e n f o r those salts t h a t are h i g h l y d e t r i m e n t a l at h i g h concentrations.
F o r e x a m p l e , c h l o r i d e at a l o w c o n c e n t r a t i o n is
a c t u a l l y necessary for t h y l a k o i d f u n c t i o n
(27).
60 80 100 salt concentration [mM] Figure 6. Cryotoxic effects of anions on thyhkoids during freezing in the presence of different sodium salts. Washed thylakoids were suspended in a solution containing 0.1 M sucrose and various sodium salts at concentrations indicated on the abscissa. For experimental conditions see legend for Fig. 2.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
168
PROTEINS
O r g a n i c Salts. nontoxic
AT
LOW
TEMPERATURES
O r g a n i c salts, as is t r u e of i n o r g a n i c salts, are u s u a l l y
at v e r y l o w c o n c e n t r a t i o n s .
A t higher concentrations, their
m e m b r a n e t o x i c i t y varies g r e a t l y . F r e e z i n g r e d b l o o d cells i n the p r e s e n c e of s o d i u m acetate p r o d u c e s h e m o l y s i s (25).
Thylakoids, however,
p r o t e c t e d against f r e e z e - i n a c t i v a t i o n b y s o d i u m acetate (21).
are
T h i s effect
of s o d i u m acetate is m a r k e d l y different f r o m t h e d e t r i m e n t a l effect t h a t s o d i u m c h l o r i d e u s u a l l y has o n t h y l a k o i d s d u r i n g f r e e z i n g .
Obviously,
s o d i u m acetate is a c r y o p r o t e c t a n t f o r t h y l a k o i d s , b u t n o t f o r r e d b l o o d cells.
S o d i u m c i t r a t e , p y r u v a t e , m a l a t e , a n d tartrate are o t h e r examples
of o r g a n i c salts w h i c h c a n , a t least to some extent, p r e v e n t t h e freezeDownloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
i n a c t i v a t i o n of t h y l a k o i d s (21).
I n these instances, l o w
concentrations
are less p r o t e c t i v e t h a n h i g h c o n c e n t r a t i o n s . In
contrast to
these
salts, s o d i u m s u c c i n a t e increases t h y l a k o i d
d a m a g e d u r i n g f r e e z i n g i f p r e s e n t as t h e o n l y solute. A s w i l l b e d i s c u s s e d later, the s i t u a t i o n b e c o m e s m o r e c o m p l i c a t e d i f s i g n i f i c a n t c o n c e n t r a t i o n s of o t h e r solutes are also p r e s e n t w i t h s o d i u m s u c c i n a t e d u r i n g f r e e z i n g . M e m b r a n e i n a c t i v a t i o n b y h i g h concentrations o f s o d i u m succinate o c c u r s even atO°C
(21).
Salts of w e a k o r g a n i c acids that are s o l u b l e i n l i p i d s are also i n j u r i o u s to t h y l a k o i d s . E x a m p l e s are t h e salts of p h e n y l p y r u v i c a c i d ( F i g u r e 3 ) a n d c a p r y l i c a c i d (28).
T h e s e salts, e v e n i f present a t v e r y l o w c o n c e n
t r a t i o n s , cause extensive m e m b r a n e i n a c t i v a t i o n d u r i n g f r e e z i n g , i f c r y o protectants are absent.
A t 0 ° C , m o d e r a t e c o n c e n t r a t i o n s of these salts
w i l l slowly inactivate thylakoids. Amino Acids.
A s is t r u e of o r g a n i c a c i d s , a m i n o acids c a n e i t h e r
p r e v e n t i n a c t i v a t i o n of t h y l a k o i d s b y f r e e z i n g o r t h e y c a n a g g r a v a t e t h e s i t u a t i o n . S o m e of t h e m , f o r i n s t a n c e g l y c i n e , serine, g l u t a m a t e , or a s p a r tate, p r o m o t e i n j u r y i f p r e s e n t as the o n l y m a j o r solutes d u r i n g f r e e z i n g . H o w e v e r , the same a m i n o acids c a n b e p r o t e c t i v e i f c e r t a i n other solutes are also p r e s e n t
(28).
T h e reason f o r t h i s b e h a v i o r , w h i c h i s
also
o b s e r v e d w i t h s u c c i n a t e , w i l l be c o n s i d e r e d later. P r o l i n e , t h r e o n i n e , or γ-aminobutyric a c i d c a n p r o t e c t t h y l a k o i d s a g a i n s t i n a c t i v a t i o n d u r i n g f r e e z i n g . A m i n o acids w i t h a p o l a r side c h a i n s s u c h as p h e n y l a l a n i n e , l e u c i n e , or v a l i n e a l w a y s c o n t r i b u t e to t h y l a k o i d inactivation d u r i n g freezing. Proteins.
U s u a l l y , t h y a l k o i d s at 0 ° C c a n t o l e r a t e s o l u b l e p r o t e i n s
at h i g h concentrations b u t these p r o t e i n s a r e u s u a l l y n o t p r o t e c t i v e d u r i n g f r e e z i n g . R e m a r k a b l e exceptions are some of the p r o t e i n s f o u n d i n differ ent organs of frost-resistant p l a n t s . T h e s e p r o t e i n s c o n t a i n a h i g h p e r centage of h y d r o p h i l i c a m i n o a c i d s , are heat stable, h a v e
molecular
w e i g h t s r a n g i n g b e t w e e n 10,000 a n d 20,000 daltons, a n d are b e l i e v e d to p l a y a n i m p o r t a n t r o l e i n frost hardiness
(29,30,31).
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER
Protection
169
A m o n g the neutral compounds,
sugars o c c u p y a
Membrane
ET AL.
N e u t r a l Solutes.
Damage
and
d o m i n a n t p o s i t i o n as f a r as p h y s i o l o g i c a l i m p o r t a n c e is c o n c e r n e d . k o i d s tolerate v e r y h i g h concentrations of sugars at 0 ° C ( 3 2 ) .
Thyla-
Freezing
i n the presence of sufficiently h i g h concentrations of h i g h l y s o l u b l e sugars s u c h as raffinose, sucrose, glucose, o r ribose does n o t l e a d to damage
(15,33).
Sugars t h u s possess c r y o p r o t e c t i v e
membrane
properties.
The
same is t r u e for sugar alcohols. H o w e v e r , p r o t e c t i o n of t h y l a k o i d s against f r e e z i n g d a m a g e c a n b e o b s e r v e d o n l y w h e n eutectic f r e e z i n g is a v o i d e d M a n n i t o l , f o r instance, is n o t effective i n p r e v e n t i n g the i n a c t i v a t i o n
(34).
of t h y l a k o i d s d u r i n g f r e e z i n g to l o w t e m p e r a t u r e s because i t c r y s t a l l i z e s Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
easily
(7).
G l y c e r o l is u s e d as a c r y o p r o t e c t i v e agent i n the f r e e z i n g of s p e r m a t o z o a a n d r e d b l o o d cells ( 3 5 , 3 6 , 3 7 ) . A n o t h e r c o m p o u n d t h a t has f o u n d p r a c t i c a l a p p l i c a t i o n i n t h e f r e e z e - p r e s e r v a t i o n o f cells is d i m e t h y l s u l f oxide.
B o t h g l y c e r o l a n d d i m e t h y l s u l f o x i d e c a n p r e v e n t i n a c t i v a t i o n of
thylakoids
during freezing.
Interestingly,
m e t h a n o l or e t h a n o l h a v e c r y o p r o t e c t i v e t h e y are n o t the p r e d o m i n a n t solutes During
ethylene
glycol
properties
(38),
and
even
but only if
(13).
h a r d e n i n g , m a n y p l a n t cells p r o d u c e
s u p p l y of c r y o p r o t e c t i v e c o m p o u n d s .
their o w n
internal
I n those instances, n o n p e n e t r a t i n g
s o l u b l e sugars s u c h as raffinose or sucrose are often a c c u m u l a t e d , a n d resistance to f r e e z i n g increases. Membrane Damage During Mechanical Damage
Freezing
P i e r c i n g of b i o m e m b r a n e s b y g r o w i n g i c e o r
o t h e r crystals is a s e l f - e v i d e n t means of d a m a g e .
D u r i n g fast f r e e z i n g ,
i n t r a c e l l u l a r i c e f o r m a t i o n appears to cause m e c h a n i c a l d a m a g e .
Also,
eutectic f r e e z i n g leads, e v e n i n t h e presence of a h i g h c o n c e n t r a t i o n of a c r y o p r o t e c t i v e solute, to c o m p e t e i n a c t i v a t i o n , w h i c h is p r e s u m a b l y d u e to m e c h a n i c a l d a m a g e
(7).
D u r i n g slow, natural freezing, mechanical
m e m b r a n e i n j u r y is the e x c e p t i o n , not the r u l e . Solute Injury.
A s has b e e n o u t l i n e d a b o v e , a n u m b e r of n a t u r a l
c e l l constituents are p o t e n t i a l l y h a r m f u l . I n t h e absence of f r e e z i n g a n d at p h y s i o l o g i c a l c o n c e n t r a t i o n s , t h e y are i n n o c u o u s
a n d may even
essential for the n o r m a l f u n c t i o n i n g of c e l l u l a r m e t a b o l i s m .
be
However,
d u r i n g f r e e z i n g t h e i r concentrations c a n r i s e to d a m a g i n g levels c a u s i n g i r r e v e r s i b l e alterations i n m e m b r a n e s . MEMBRANE
AGGREGATION.
I s o l a t e d t h y l a k o i d s f o r m stable s u s p e n -
sions at n e u t r a l p H , since t h e m e m b r a n e s c a r r y a net n e g a t i v e
charge.
D u r i n g t h a w i n g of t h y l a k o i d suspensions w h i c h h a v e b e e n f r o z e n i n salt solutions t h e m e m b r a n e s
aggregate
a n d precipitate.
r e d u c t i o n i n the net c h a r g e of t h e m e m b r a n e s .
T h i s indicates
a
P r e c i p i t a t i o n does n o t
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
170
PROTEINS
AT
LOW
TEMPERATURES
o c c u r w h e n the m e m b r a n e s are f r o z e n i n sufficiently c o n c e n t r a t e d s o l u t i o n s of sucrose o r o t h e r c r y o p r o t e c t i v e
solutes.
Usually, precipitation
indicates membrane damage. PERMEABILITY
blood
CHANGES.
AS
has b e e n m e n t i o n e d , exposure of r e d
cells sufficiently c o n c e n t r a t e d N a C l solutions at 0 ° C
f r e e z i n g w i l l r e s u l t first i n s h r i n k a g e t h e n h e m o l y s i s .
or d u r i n g
Obviously, the
c e l l u l a r m e m b r a n e b e c o m e s l e a k y a n d p e r m i t s passage
of solutes.
In
t h y l a k o i d s , A T P synthesis d u r i n g p h o t o p h o s p h o r y l a t i o n is i n a c t i v a t e d b y f r e e z i n g . I t is w i d e l y a c c e p t e d t h a t e n e r g y c o n s e r v a t i o n i n m i t o c h o n d r i a a n d chloroplasts requires membranes w i t h a l o w proton permeability. Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
P r o t o n transport across v e s i c u l a r m e m b r a n e s , w h i c h is c o u p l e d to e l e c t r o n f l o w ( 3 9 ) , leads to the f o r m a t i o n of t r a n s m e m b r a n e p r o t o n g r a d i e n t s , t h e e n e r g y f r o m w h i c h is b e l i e v e d to b e u s e d for the e n d e r g o n i c of A T P ( 4 0 ) .
synthesis
I n d e e d , i n t h y l a k o i d s w h i c h h a d b e e n i n a c t i v a t e d b y freez
ing, light-induced transmembrane proton
gradients
are d e c r e a s e d
a b o l i s h e d , e v e n i f e l e c t r o n t r a n s p o r t is l i t t l e affected (41,42).
or
W h e n the
m e m b r a n e s h a v e suffered o n l y m i l d d a m a g e b y f r e e z i n g , e l e c t r o n t r a n s p o r t m a y a c t u a l l y b e e n h a n c e d , w h i l e p h o t o p h o s p h o r y l a t i o n is lost U n c o u p l i n g of p h o s p h o r y l a t i o n f r o m
28).
(5,22,
e l e c t r o n t r a n s p o r t is
thus
observed. It
is n o t
Functional
only proton
p e r m e a b i l i t y t h a t changes
thylakoids respond
solutes (41,43).
osmotically
to
the
after
freezing.
a d d i t i o n of
many
T h e y s h r i n k i n h y p e r t o n i c solutions of sucrose o r N a C l
a n d e x p a n d i n h y p o t o n i c solutions.
T h e i r p e r m e a b i l i t y to cations
a n d h y d r o p h i l i c n e u t r a l m o l e c u l e s of m o d e r a t e o r l a r g e size (43) T h e y exhibit somewhat c h l o r i d e (45,46,47).
(44)
is l o w .
greater p e r m e a b i l i t y to s o m e anions s u c h as
G l y c e r o l (43)
or e t h y l e n e g l y c o l penetrate r a p i d l y .
A f t e r f r e e z i n g d a m a g e , m e m b r a n e p e r m e a b i l i t y increases i n d i s c r i m i n a t e l y . O s m o t i c responses are no l o n g e r o b s e r v e d
and the membranes
collapsed w h e n v i e w e d w i t h an electron microscope ELECTRON
TRANSPORT.
appear
(41).
I t has b e e n m e n t i o n e d t h a t m i l d
freezing
c a n i n a c t i v a t e p h o t o p h o s p h o r y l a t i o n a n d at t h e same t i m e s t i m u l a t e l i g h t dependent electron transport i n thylakoids ( 5 ) .
E l e c t r o n flow f r o m w a t e r
t h r o u g h b o t h photosystems is i n c r e a s e d i n d a m a g e d t h y l a k o i d s . H o w e v e r , after f r e e z i n g i n t h e presence of c o m p a r a t i v e l y h i g h levels of
substances
t h a t are p o t e n t i a l l y t o x i c to m e m b r a n e s , e l e c t r o n t r a n s p o r t f r o m
water
decreases a n d the w a t e r - s p l i t t i n g system b e c o m e s i n a c t i v a t e d (28).
Still,
e l e c t r o n t r a n s p o r t f r o m a d o n o r s u c h as ascorbate t h r o u g h p h o t o s y s t e m Τ
m a y b e m u c h greater i n s u c h m e m b r a n e s
thylakoids.
t h a n i t is i n f u n c t i o n a l
O n l y after v e r y severe f r e e z i n g stress is e l e c t r o n t r a n s p o r t
through photosystem Τ
decreased
(48).
T h e s e observations s h o w t h a t
the extent of m e m b r a n e d a m a g e d u r i n g f r e e z i n g d e p e n d s o n t h e f r e e z i n g c o n d i t i o n s a n d t h e solute e n v i r o n m e n t .
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER
Membrane
ET AL.
PROTEIN RELEASE.
Damage
and
171
Protection
B i o m e m b r a n e s consist of l i p i d s a n d p r o t e i n s . T h e
latter m a y b e s u b d i v i d e d i n t o s o - c a l l e d i n t r i n s i c a n d e x t r i n s i c p r o t e i n s Intrinsic proteins supposedly
(49).
are i n t e g r a t e d i n t o t h e
phase primarily by the hydrophobic
membrane
interaction w i t h lipids.
p r o t e i n s are a t t a c h e d to t h e m e m b r a n e s .
Extrinsic
I o n i c i n t e r a c t i o n s are b e l i e v e d
to b e i m p o r t a n t i n the b i n d i n g of e x t r i n s i c p r o t e i n s . W h e n these p r o t e i n s dissociate f r o m t h e m e m b r a n e , t h e y m a y b e sufficiently h y d r o p h i l i c t o b e s o l u b l e i n the aqueous phase. W h e n freeze-aggregated
t h y l a k o i d s are
s e d i m e n t e d , a n u m b e r of m e m b r a n e proteins are f o u n d i n the s u p e r natant
fluid.
A m o n g t h e m are c a t a l y t i c p r o t e i n s i n v o l v e d i n
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
c o n s e r v a t i o n a n d e l e c t r o n t r a n s p o r t (42,48).
energy
T h e t o t a l a m o u n t of p r o t e i n s
r e l e a s e d d e p e n d s o n f r e e z i n g c o n d i t i o n s a n d t h e solute e n v i r o n m e n t , b u t m a y b e as m u c h as 5 %
of t h e t o t a l m e m b r a n e p r o t e i n (48).
When
f r o z e n i n the presence of a c r y o p r o t e c t i v e solute, at a sufficient c o n c e n t r a t i o n , t h y l a k o i d s r e m a i n f u n c t i o n a l a n d d o not release p r o t e i n s i n s i g n i f i cant amounts.
P r o t e i n release t h u s a c c o m p a n i e s
membrane injury and,
i n fact, is a n i n d i c a t i o n of s u c h i n j u r y . F r e e z i n g is n o t t h e o n l y cause of p r o t e i n release. P r o t e i n s dissociate from the membranes
d u r i n g i n a c t i v a t i o n of t h y l a k o i d s b y exposure
h i g h concentrations of salts at 0 ° C
(48,50).
T h e p a t t e r n of
to
membrane
p r o t e i n s released b y f r e e z i n g is s i m i l a r to the p a t t e r n of p r o t e i n s f o u n d i n the s u p e r n a t a n t fluid f r o m m e m b r a n e s w h i c h h a v e b e e n exposed h i g h salt c o n c e n t r a t i o n at 0 ° C
(Figure 7).
to a
U s u a l l y , eight bands
are
c l e a r l y a p p a r e n t i n e l e c t r o p h e r o g r a m s of p r o t e i n s released f r o m t h y l a k o i d s d u r i n g f r e e z i n g i n t h e presence of N a C l . a n d t h e y constitute m i n o r c o m p o n e n t s .
S e v e n f u r t h e r b a n d s are f a i n t T h e m o l e c u l a r w e i g h t s of
the
released p o l y p e p t i d e s r a n g e b e t w e e n 15,000 a n d 60,000 d a l t o n s . Differences i n the g e n e r a l p a t t e r n of r e l e a s e d p r o t e i n s o c c u r r e d w h e n t h y l a k o i d s w e r e f r o z e n i n solutions c o n t a i n i n g different c r y o t o x i c
com-
pounds. M o r e proteins were released w h e n thylakoids were frozen i n the presence
of
NaBr
or K B r r a t h e r t h a n N a C l .
This probably
can
be
a t t r i b u t e d to t h e greater c r y o t o x i c i t y of t h e b r o m i d e a n i o n . T h e p a t t e r n of p o l y p e p t i d e s p r o d u c e d w h e n t h y l a k o i d s w e r e f r o z e n i n the presence of sodium phenylpyruvate, sodium caprylate, or isoleucine differed greatly i n a q u a l i t a t i v e m a n n e r , a n d also to some d e g r e e i n a q u a n t i t a t i v e m a n n e r , as c o m p a r e d to t h e p a t t e r n o b t a i n e d w h e n t h e m e m b r a n e s w e r e
frozen
i n a N a C l s o l u t i o n . T h e o r g a n i c c r y o t o x i c solutes c o n t a i n i n g a p o l a r side chains released m u c h m o r e of p o l y p e p t i d e s 5 a n d 6 t h a n d i d the i n o r g a n i c salts. T h e i n t e r a c t i o n of s o d i u m p h e n y l p y r u v a t e w i t h t h e m e m b r a n e s also c a n b e d i r e c t l y o b s e r v e d at 0 ° C or 2 0 ° C b y m o n i t o r i n g s l o w changes i n l i g h t s c a t t e r i n g of the m e m b r a n e s b r o u g h t a b o u t b y the salt
(51).
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
172
PROTEINS
AT
LOW
TEMPERATURES
Figure 7. Electrophoretic patterns of proteins which are released from thyla koids during freezing or exposure to 0°C in the presence of various solutes. The solute concentration before freezing is indicated under the gels. Freezing time was 3 hours at — 25°C. After thawing, supernatant fluids from membranes were treated with sodium dodecylsulfate (SO) and mercaptoethanol then subjected to gel electrophoresis. Phe is sodium phenylpyruvate, Cap is sodium caprylate, lie is isoleucine. From Volger, Heber, and Berzborn (48).
I n v i e w of t h e p a r t i a l l y n o n p o l a r p r o p e r t i e s of t h e p h e n y l p y r u v a t e a n d c a p r y l a t e anions a n d of the l i p i d s o l u b i l i t y of t h e i r p r o t o n a t i o n p r o d u c t s w h i c h are i n e q u i l i b r i u m w i t h the anions, i t is l i k e l y t h a t these o r g a n i c salts not o n l y release extrinsic h y d r o p h i l i c p r o t e i n s w h i c h are a t t a c h e d to t h e m e m b r a n e s , b u t also affect h y d r o p h o b i c b o n d i n g w i t h i n t h e m e m b r a n e structure. S u c h effects c a n n o t b e seen i n p r o t e i n release experiments b e c a u s e a p o l a r proteins r e m a i n i n s o l u b l e . S o m e of t h e proteins r e l e a s e d d u r i n g f r e e z i n g h a v e b e e n i d e n t i f i e d e i t h e r b y i m m u n o e l e c t r o p h o r e t i c analysis o r b y co-electrophoresis of p u r e p r o t e i n s or p o l y p e p t i d e c h a i n s . B a n d s 1, 2, 4, 8, a n d 9 c o n t a i n t h e α, β, γ, δ a n d €-subunits of the c o u p l i n g f a c t o r C F i , r e s p e c t i v e l y .
The coupling
f a c t o r is r e s p o n s i b l e f o r t h e synthesis of A T P i n p h o t o p h o s p h o r y l a t i o n . S t i l l , t h e loss of p h o t o p h o s p h o r y l a t i o n d u r i n g f r e e z i n g i n v o l v e s m o r e t h a n just the loss of t h e c o u p l i n g f a c t o r (15,41,42,52).
Since the i o n gradients
t h o u g h t to d r i v e t h e e n d e r g o n i c synthesis of A T P c a n b e m a i n t a i n e d o n l y b y m e m b r a n e s h a v i n g a l o w i o n p e r m e a b i l i t y , t h e o b s e r v e d loss of s e m i p e r m e a b i l i t y d u r i n g f r e e z i n g is b y itself a sufficient cause f o r the i n a c t i v a t i o n of p h o t o p h o s p h o r y l a t i o n .
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER
E T AL.
Membrane
Damage
and
173
Protection
F r o m F i g u r e 7 i t is a p p a r e n t t h a t the s u b u n i t s of C F i a p p e a r i n s o l u t i o n at v e r y different ratios d e p e n d i n g o n t h e n a t u r e of t h e c r y o t o x i c solute present d u r i n g f r e e z i n g . A n a n t i s e r u m to t h e n a t i v e c o u p l i n g factor did
not
react w i t h
the
supernatant
fluids
derived
from
membranes
d a m a g e d b y f r e e z i n g . I f C F i h a d left t h e m e m b r a n e as a n i n t a c t m o l e c u l e a n d h a d s u b s e q u e n t l y d i s s o c i a t e d i n t o s u b u n i t s as m i g h t b e
expected
f r o m its c o l d l a b i l i t y i n s o l u t i o n ( 5 3 ) , i t w o u l d h a v e g i v e n rise to b a n d patterns of
a uniform intensity distribution. T h e
observed
intensity
d i s t r i b u t i o n , w h i c h w a s v e r y different i n the presence of different c r y o toxic solutes, suggests i n s t e a d t h a t the m o l e c u l e h a d d i s i n t e g r a t e d o n the Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
m e m b r a n e a n d h a d released o n l y some of its s u b u n i t s . I n d e e d , the δs u b u n i t of C F w a s s h o w n b y specific antisera to b e present i n p a r t i c u l a r l y X
large amounts
i n supernatant
fluids
from
membranes
frozen
in
the
presence of s o d i u m c a p r y l a t e . W h e n t h e m e m b r a n e s w e r e f r o z e n i n t h e presence of i s o l e u c i n e , v e r y l i t t l e o f the δ-subunit, b u t a l a r g e p r o p o r t i o n of the a a n d β-subunits, w a s r e l e a s e d i n t o s o l u t i o n . I t s h o u l d b e
noted
that the k n o w n c o l d - l a b i l i t y of t h e c o u p l i n g factor is n o r m a l l y e x h i b i t e d o n l y i n s o l u t i o n , a n d not w h e n membrane.
the m o l e c u l e
is i n t e g r a t e d i n t o
the
T h e o b s e r v e d d i s i n t e g r a t i o n of the m o l e c u l e d u r i n g f r e e z i n g
therefore appears to b e p r e d o m i n a n t l y a solute effect, t h o u g h t e m p e r a t u r e m a y also p l a y a role
(15).
B a n d 2 of F i g u r e 7 w a s o c c a s i o n a l l y seen to c o n t a i n a s e c o n d
com
p o n e n t i n a d d i t i o n to the β-subunit of C F i . T h i s c o m p o n e n t is p r o b a b l y t h e l a r g e s u b u n i t of c a r b o x y d i s m u t a s e w h i c h sometimes tends to a t t a c h to t h y l a k o i d s a l t h o u g h i t is a s o l u b l e e n z y m e .
T h e s m a l l s u b u n i t of
c a r b o x y d i s m u t a s e , a n d p l a s t o c y a n i n , w h i c h w a s i d e n t i f i e d b y a specific a n t i s e r u m , are l o c a t e d i n t h e area of b a n d 9. T h e p r o t e i n of b a n d 3 is p r o b a b l y f e r r e d o x i n - N A D P - r e d u c t a s e . T h e b a n d s 5 to 7 r e m a i n u n i d e n t i fied, as are the 7 to 9 f a i n t b a n d s w h i c h are n o t v i s i b l e i n F i g u r e 7. W h i l e c o n s i d e r a b l e p r o t e i n w a s r e l e a s e d w h e n the m e m b r a n e s
were
f r o z e n a n d i n a c t i v a t e d i n the presence of salts or i s o l e u c i n e , some p r o t e i n loss is also a p p a r e n t i n the sucrose
e x p e r i m e n t of F i g u r e 7.
During
f r e e z i n g i n sucrose s o l u t i o n , the m e m b r a n e s r e m a i n e d f u n c t i o n a l . A s i n t h e salt e x p e r i m e n t s , t h e a- a n d β-subunits of t h e c o u p l i n g f a c t o r p r o m i n e n t a m o n g the c o m p o n e n t s
released i n t h e sucrose
were
experiment.
H o w e v e r , t h e r e is g o o d reason t o assume t h a t t h e p a r t i a l loss of
the
c o u p l i n g factor, w h i c h sometimes o c c u r r e d i n t h e presence of the c r y o p r o t e c t i v e agent sucrose, w a s a t t r i b u t a b l e to different causes t h a n those w h i c h l e d to d e s t r u c t i o n of the c o u p l i n g factor d u r i n g f r e e z i n g i n the presence of c r y o t o x i c salts. T h e c o u p l i n g factor c a n b e s o l u b i l i z e d a n d r e m o v e d f r o m the t h y l a k o i d s b y t r e a t m e n t w i t h E D T A , w h i c h effectively complexes
d i v a l e n t cations
(54).
E v e n w a s h i n g the membranes
salt-free sucrose solutions c a n d e t a c h t h e c o u p l i n g factor ( 5 5 ) .
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
with
Indeed,
174
PROTEINS
membranes
A T LOW
w a s h e d less c a r e f u l l y t h a n t h e m e m b r a n e s
TEMPERATURES
o f t h e sucrose
e x p e r i m e n t o f F i g u r e 7 s h o w e d v e r y l i t t l e loss o f p r o t e i n d u r i n g f r e e z i n g i n the p r e s e n c e o f sucrose. T h e p o s s i b i l i t y s h o u l d b e c o n s i d e r e d t h a t p r o t e i n loss d u r i n g i n a c t i v a t i o n o f t h y l a k o i d s b y f r e e z i n g results f r o m a n increase i n m e m b r a n e permeability, w h i c h w o u l d permit the leakage of intrathylakoid proteins t h r o u g h the m e m b r a n e s i n t o t h e m e d i u m . H o w e v e r , a m o n g t h e i d e n t i f i e d p r o t e i n s r e l e a s e d f r o m t h y l a k o i d s , o n l y p l a s t o c y a n i n is l o c a t e d o n t h e i n s i d e of the m e m b r a n e s .
C o u p l i n g factor C F i a n d N A D P r e d u c t a s e a r e
a t t a c h e d t o t h e o u t s i d e o f t h e t h y l a k o i d s (56,57,58,59,60). Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
natant
fluids
derived from membranes
W h e n super-
that h a d been inactivated b y
f r e e z i n g w e r e u s e d as i m m u n o g e n s , t h e r e s u l t i n g a n t i s e r a a g g l u t i n a t e d intact thylakoids. Since antibodies are large hydrophobic molecules w h i c h c a n n o t p e n e t r a t e b i o m e m b r a n e s , this also shows that antigens are l o c a t e d o n t h e m a t r i x side of t h y l a k o i d s (48). PROTEIN
RELEASE
IN RELATION T O
Loss
O F MEMBRANE
FUNCTION.
W h e n t h y l a k o i d s are f r o z e n i n the presence o f sucrose, m e m b r a n e f u n c t i o n is p r e s e r v e d . I f a c r y o t o x i c salt s u c h as N a C l is also present, r e t e n t i o n of m e m b r a n e f u n c t i o n a l i t y d u r i n g f r e e z i n g d e p e n d s o n t h e r a t i o o f sucrose to salt ( 5 ) . L o s s o f c y c l i c p h o t o p h o s p h o r y l a t i o n is t h e m o s t sensitive p a r a m e t e r o f m e m b r a n e i n a c t i v a t i o n . P h o t o p h o s p h o r y l a t i o n is l a r g e l y lost b e f o r e significant p r o t e i n release f r o m t h e m e m b r a n e s c a n b e d e t e c t e d ( F i g u r e 8 ) . Since photophosphorylation requires membranes w i t h u n -
l
~Ï0Ô
80 •
1
60 Ζθ • 40 mM NaCl 2
20 · 3
0 *150 4
0 mM Sucrose • 500 mM NaCl 5
Figure 8a. Fhotosystem-I-dependent phosphorylation (CPP), photosystem-Idependent electron transport (MV, methylviologen reduction in the presence of an electron donor system), and electron transport through photosystems II and I (NADP and ferricyanide reduction) in thylakoids after freezing for 3 hours to —25°C in solutions containing different ratios of sucrose to NaCl
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
8.
HUBER
ET AL.
Membrane
Damage
and
175
Protection
Figure 8b. Polypeptide patterns of proteins, which were released from thylakoids during freezing. The numbers 1 to 5 relate to the conditions shown along the abscissa of Fig. 8 (A). From Volger, Heber and Berzborn (48). changed
p e r m e a b i l i t y c h a r a c t e r i s t i c s , t h i s suggests
that permeability
changes o c c u r b e f o r e m u c h p r o t e i n dissociates f r o m t h e m e m b r a n e .
Thus
p r o t e i n release i n d i c a t e s a n a d v a n c e d r a t h e r t h a n a n i n i t i a l state membrane
damage.
A s photophosphorylation
decreases,
of
t h e rate
of
e l e c t r o n t r a n s p o r t increases. T h i s shows t h a t t h e loss of c o m p o n e n t s
of
t h e e l e c t r o n t r a n s p o r t c h a i n f r o m t h e m e m b r a n e s is n o t y e t c r i t i c a l , e v e n t h o u g h p r o t e i n release is a l r e a d y significant. A s the r a t i o of salt to sucrose increases, m e m b r a n e d a m a g e b e c o m e s m o r e severe a n d e l e c t r o n t r a n s p o r t is decreased.
A t the same t i m e , t h e d i s s o c i a t i o n of p r o t e i n s f r o m the
m e m b r a n e s increases c o n s i d e r a b l y . A s has b e e n m e n t i o n e d ,
components
of t h e e l e c t r o n t r a n s p o r t c h a i n s u c h as p l a s t o c y a n i n a n d N A D P r e d u c t a s e are a m o n g t h e r e l e a s e d p r o t e i n s (42,48).
I n d e e d , S t e p o n k u s et a l . ( 1 5 )
h a v e s h o w n t h a t loss of e l e c t r o n t r a n s p o r t c a n b e d e c r e a s e d b y e x p o s i n g t h y l a k o i d s to a h i g h c o n c e n t r a t i o n of p l a s t o c y a n i n d u r i n g f r e e z i n g . T h i s m i n i m i z e s loss of p l a s t o c y a n i n f r o m the m e m b r a n e s .
H o w e v e r , the con-
c l u s i o n is p r e m a t u r e t h a t p r o t e i n release is m o r e c l o s e l y r e l a t e d to i n a c t i vation
of
e l e c t r o n t r a n s p o r t t h a n to
the freeze-induced
changes
in
m e m b r a n e p e r m e a b i l i t y w h i c h cause loss of n o r m a l m e m b r a n e f u n c t i o n .
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
176
PROTEINS
AT
LOW
TEMPERATURES
It is r a t h e r l i k e l y that a w e a k e n i n g of i n t r a m e m b r a n e i n t e r a c t i o n s w h i c h first
causes
loss of p h o t o p h o s p h o r y l a t i o n
finally
culminates i n protein
dissociation. Mechanism
of Membrane
Damage
F a c t o r s c o n t r i b u t i n g to t h e s t a b i l i z a t i o n of b i o m e m b r a n e s are h y d r o phobic
interactions among
lipids and hydrophobic
l i p i d components
a n d between
membrane
p r o t e i n s , a n d electrostatic i n t e r a c t i o n s
among
m e m b r a n e ions a n d b e t w e e n i o n i z e d groups a n d p o l a r m o l e c u l e s .
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
trostatic forces a r e p a r t i c u l a r l y i m p o r t a n t i n t h e b i n d i n g of
Elec-
extrinsic
p r o t e i n s a n d i n i n t e r a c t i o n s b e t w e e n m e m b r a n e s a n d t h e solute phase. D u r i n g f r e e z i n g , w a t e r is r e m o v e d f r o m t h e m e m b r a n e suspension a n d c o n v e r t e d to ice, a n d the i o n i c s t r e n g t h increases.
Since
electrostatic
forces are not o r i e n t e d , a n increase i n the i o n i c s t r e n g t h of t h e m e d i u m w i l l finally suppress electrostatic i n t e r a c t i o n s w i t h i n t h e m e m b r a n e , p r o v i d e d ions of the solute p h a s e get close e n o u g h to the i o n i z e d m e m b r a n e sites. I n t h e i n i t i a l stages of t h e f r e e z i n g process, changes i n m e m b r a n e s t r u c t u r e are l i k e l y to o c c u r a n d this m i g h t l e a d to changes i n m e m b r a n e permeability.
A s d a m a g e progresses
a n d a sufficient n u m b e r of b o n d s
are c l e a v e d , h y d r o p h i l i c m e m b r a n e p r o t e i n s w i l l leave t h e
membrane.
T h i s process is s h o w n b e l o w f o r a s i t u a t i o n i n v o l v i n g i n t e r a c t i o n of N a C l with
noncovalent
bonds
linking
two
protein molecules
in a
single
membrane: I I
A g g r e g a t i o n of m e m b r a n e s w i l l o c c u r i f b i n d i n g of c o u n t e r i o n s
reduces
t h e net c h a r g e of m e m b r a n e s , t h e r e b y f a c i l i t a t i n g n o n c o v a l e n t i n t e r a c t i o n s b e t w e e n different m e m b r a n e s . I t is a p p r o p r i a t e t o c o n s i d e r the toxicities of different ions t o w a r d m e m b r a n e s . D u r i n g f r e e z i n g of t h y l a k o i d s , a n i o n t o x i c i t y decreases i n t h e o r d e r I " > B r " > N 0 " > C l " > F * > acetate . T h i s is r e m i n i s c e n t of t h e 3
H o f m e i s t e r l y o t r o p i c p o w e r series, w h i c h w a s o r i g i n a l l y o b s e r v e d
with
r e g a r d to d e n a t u r a t i o n of e u g l o b u l i n s , t h e n f o r b l o o d c l o t t i n g , t h e n f o r
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER
Membrane
ET AL.
Damage
and
177
Protection
the h y d r o t h e r m a l s h r i n k a g e t e m p e r a t u r e of c o l l a g e n a n d other
effects
T h e s i m i l a r i t y b e t w e e n t h e a n i o n series t h a t f u n c t i o n s d u r i n g
(61,62, 63).
t h e f r e e z e - i n a c t i v a t i o n of
t h y l a k o i d s a n d the H o f m e i s t e r series
lends
s u p p o r t to the i d e a t h a t salt i n a c t i v a t i o n of b i o m e m b r a n e s o c c u r s t h r o u g h i n t e r f e r e n c e w i t h p o l a r b i n d i n g of m e m b r a n e c o m p o n e n t s . M a g i d (64)
Larsen and
m e a s u r e d heats of transfer of a v a r i e t y of salts f r o m w a t e r t o
solutions of m i c e l l e - f o r m i n g surfactants. T h e m i c e l l e s m a y , f o r o u r p u r pose, serve as s i m p l e m o d e l s of m e m b r a n e s .
B i n d i n g of anions to c a t i o n i c
m i c e l l e s , w h i c h i n v o l v e s c o m p e t i t i o n w i t h a n d r e p l a c e m e n t of o r i g i n a l c o u n t e r i o n s , w a s strongest for anions h a v i n g a s m a l l Stokes' l a w h y d r a t e d Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
r a d i u s a n d decreased w i t h i n c r e a s i n g r a d i u s . T h e o r d e r of a n i o n b i n d i n g as d e r i v e d f r o m Δ Η trans w a s B r " > citrate '.
N0 " > 3
Cl" >
F" >
acetate"
T h i s H o f m e i s t e r p o w e r series is v i r t u a l l y i d e n t i c a l w i t h
3
o r d e r of m e m b r a n e toxicities exerted b y anions i n f r e e z i n g
experiments
w i t h t h y l a k o i d s . I t is therefore c o n c l u d e d t h a t c r y o t o x i c
anions
membrane
for
binding
effects b y
sites o n
competing
w i t h membrane
the m e m b r a n e ,
thereby
anions
suppressing
> the
exert
cationic
intramembrane
interactions. M e m b r a n e i n a c t i v a t i o n d e p e n d s o n h o w closely anions c a n a p p r o a c h c a t i o n i c b i n d i n g sites. P o o r l y s o l v a t e d ions s h o w t h e strongest b i n d i n g . T h e y are also k n o w n to b e the most effective p r o t e i n dénaturants
(65).
T h e Stokes' l a w h y d r a t e d r a d i u s of the t o x i c b r o m i d e a n i o n is a b o u t A , that of t h e r e l a t i v e l y n o n t o x i c
fluoride
1.2
a b o u t 1.6 A a n d t h a t of t h e
c r y o p r o t e c t i v e acetate a n i o n 2.2 Â. B i o l o g i c a l m e m b r a n e s u s u a l l y a p p e a r i n t h i n sections as t h r e e - l a y e r e d structures 60 to 100 A t h i c k . I n v i e w of this r e l a t i v e l y l a r g e cross section, a c c e s s i b i l i t y of b i n d i n g sites b e c o m e s of obvious importance. I n t e r e s t i n g l y , the e n v e l o p e of i n t a c t chloroplasts has a n a n i o n p e r m e a b i l i t y , w h i c h f o l l o w s the order of a n i o n t o x i c i t y to t h y l a k o i d m e m b r a n e s d u r i n g f r e e z i n g . T h e i o d i d e a n i o n penetrates r a p i d l y a n d is f o l l o w e d i n order b y bromide, chloride, and penetrate
chloroplasts
slowly
fluoride
(46,66).
(Figure 9).
Acetate
S i n c e the rate of
anions
membrane
p e n e t r a t i o n b y , f o r instance, c h l o r i d e is p r o p o r t i o n a l to its c o n c e n t r a t i o n g r a d i e n t , a n d since n o c o m p e t i t i o n a p p a r e n t l y exists a m o n g v a r i o u s p e n e t r a t i n g anions, the anions diffuse across the m e m b r a n e s r a t h e r t h a n b e i n g t r a n s f e r r e d b y a c a r r i e r m e c h a n i s m . T h e a n i o n p e r m e a b i l i t y of t h y l a k o i d s seems to b e l o w e r t h a n t h a t of t h e c h l o r o p l a s t e n v e l o p e , b u t here a g a i n i o d i d e w a s f o u n d to b e t h e a n i o n that penetrates m o s t r a p i d l y
(67).
M e m b r a n e p e n e t r a t i o n b y the anions shows t h a t n o t o n l y e x t e r n a l b u t also i n t e r n a l m e m b r a n e sites are accessible f o r i n t e r a c t i o n . F o r cations, the o b s e r v e d o r d e r of t o x i c i t y d u r i n g f r e e z i n g of t h y l a k o i d s is S r
+ +
, Ca
+ +
, Ba
+ +
>
Mg
+
+
and L i
+
>
Na , K +
+
>
Rb
+
>
Cs . +
A t 0 ° C , h i g h concentrations of m o n o v a l e n t a l k a l i m e t a l cations e x h i b i t e d
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
178
PROTEINS
AT
LOW
TEMPERATURES
Figure 9. Change in chloroplast size on addition of various substances. Halogenides were added in 30 mM increments, which resulted in shrinkage. These additions were followed by valinomycin (val) at a concentration of 2 μΜ, which resulted in expansion. Changes in chloroplast size at 20°C were monitored by changes in the apparent absorbance of the chhroplast suspension at 535 nm (43). Note different slopes of the absorbance decrease seen on addition of valinomycin, which increases the K permeability of the chhroplast envelope. As in the presence of the .antibiotic, K diffusion is not limiting the rate of salt uptake, different slopes indicate different anion fluxes. For experimental con ditions see Kef. 91. +
+
o n l y s m a l l differences i n t h e i r m e m b r a n e toxicities (24).
T h e o r d e r of
m e m b r a n e toxicities of cations as o b s e r v e d d u r i n g f r e e z i n g of t h y l a k o i d s is s i m i l a r to the o r d e r of c a t i o n effects i n t h e l y o t r o p i c p o w e r series of H o f m e i s t e r a n d others (61,62,63).
I t is also s i m i l a r to the o r d e r i n w h i c h
cations d e n a t u r e p r o t e i n s , t h a t i s , s t r o n g l y h y d r a t e d species s u c h as L i are better dénaturants t h a n w e a k l y h y d r a t e d species s u c h as C s T h e correlation between
cationic toxicity to membranes
and
+
+
(65).
cationic
b i n d i n g to a n i o n i c surfactants is n o t as i m p r e s s i v e as i n t h e case of anions (64).
K u n t z a n d T a y l o r (65) have already noted that arguments similar
to those u s e d to e x p l a i n d i f f e r e n t i a l a n i o n b i n d i n g are n o t l i k e l y t o a p p l y
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER
ET AL.
Membrane
Damage
and
179
Protection
to c a t i o n i c effects o n d e n a t u r a t i o n . S t i l l , i n a g r e e m e n t w i t h t h e o r d e r of i o n t o x i c i t y to m e m b r a n e s , t h e e n t h a l p y f o r t h e transfer o f salt to s o l u t i o n of s o d i u m d o d e c y l s u l f a t e w a s m o r e n e g a t i v e for C a C l M g B r , a n d that for M g B r 2
bromides
a
t h a n for
2
was more negative t h a n that for alkali m e t a l
2
(64).
I t has b e e n m e n t i o n e d t h a t t h y l a k o i d s are m o r e sensitive to salts of c e r t a i n o r g a n i c acids s u c h as p h e n y l p y r u v i c a c i d a n d c a p r y l i c a c i d t h a n to salts of i n o r g a n i c acids (28).
Differences i n the release of
proteins
a n d different p o y l p e p t i d e p a t t e r n s of r e l e a s e d p r o t e i n s ( F i g u r e 7 ) ,
(48),
suggest differences i n the a c t i o n of i n o r g a n i c a n d o r g a n i c anions. Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
latter b i n d to m e m b r a n e s e l e c t r o s t a t i c a l l y as w e l l as b y other
The
means.
T h i s has b e e n v e r i f i e d b y c a l o r i m e t r i c measurements of the b i n d i n g e n e r g y of the tosylate a n i o n to c a t i o n i c surfactants (64).
Depending on their
p K v a l u e s , some l o w p r o p o r t i o n of t h e p h e n y l p y r u v a t e a n d c a p r y l a t e anions are p r o t o n a t e d e v e n at n e u t r a l p H . T h e p r o t o n a t e d species
are
l i p i d s o l u b l e a n d o n f r e e z i n g t h e i r c o n c e n t r a t i o n s increase t o g e t h e r w i t h t h e concentrations of ions. T h e l i p i d - s o l u b l e m a t e r i a l w i l l a c c u m u l a t e i n t h e l i p i d p a r t of t h e m e m b r a n e p h a s e a n d d i s t u r b s h y d r o p h o b i c i n t e r actions i n the m e m b r a n e .
A s a c o n s e q u e n c e , f o r m a t i o n of
protuberances
a n d d i s i n t e g r a t i o n of m e m b r a n e s c a n be easily o b s e r v e d w i t h a m i c r o s c o p e w h e n h i g h c o n c e n t r a t i o n s of s o d i u m c a p r y l a t e a r e a d d e d t o t h y l a koids.
H y d r o p h o b i c d a m a g e to m e m b r a n e s w i l l not, h o w e v e r , b e v e r y
a p p a r e n t i n p r o t e i n release e x p e r i m e n t s , since a p o l a r p r o t e i n s a n d l i p i d s cannot b e e x p e c t e d to leave t h e m e m b r a n e p h a s e e v e n i f t h e m e m b r a n e structure is seriously d i s t u r b e d b y f r e e z i n g . P h e n y l p y r u v a t e a n d c a p r y l a t e are n o n p h y s i o l o g i c a l salts. T h u s , t h e p h y s i o l o g i c a l r e l e v a n c e of observations m a d e w i t h these c o m p o u n d s m i g h t be questioned.
H o w e v e r , p l a n t cells c o n t a i n m a n y solutes w h i c h h a v e
effects o n t h y l a k o i d s s i m i l a r to those
exerted
by
phenylpyruvate
or
c a p r y l a t e . I n c l u d e d a m o n g these c o m p o u n d s are t h e a m i n o a c i d s p h e n y l alanine,
valine, leucine,
and
isoleucine
and
a
number
of
phenolic
substances.
Membrane
Protection
Colligative Protection.
T h e p r i n c i p l e s of c o l l i g a t i v e p r o t e c t i o n w e r e
first o u t l i n e d b y L o v e l o c k ( 3 5 ) f o r t h e r e d b l o o d c e l l . T h e s e p r i n c i p l e s are also v a l i d for the t h y l a k o i d system (14,21,68). present i n a m e m b r a n e
I f o n l y one solute is
suspension, its c o n c e n t r a t i o n , regardless of its
i n i t i a l c o n c e n t r a t i o n , w i l l rise d u r i n g f r e e z i n g to a l e v e l d e t e r m i n e d solely b y the final f r e e z i n g t e m p e r a t u r e . I f t h e solute is a c r y o t o x i c
compound,
this final l e v e l m a y b e sufficient t o cause m e m b r a n e i n a c t i v a t i o n . W h e n several solutes are present a n d o n l y one is a c r y o t o x i c solute, t h e same
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
180
PROTEINS
AT LOW
TEMPERATURES
t o t a l o s m o l a r solute c o n c e n t r a t i o n w i l l b e o b t a i n e d w h e n s o l i d - l i q u i d e q u i l i b r i u m is a c h i e v e d at t h e same s u b f r e e z i n g t e m p e r a t u r e u s e d i n t h e first case. final
H o w e v e r , i n t h e s e c o n d case several solutes c o n t r i b u t e to the
solute c o n c e n t r a t i o n , a n d t h e c r y o t o x i c solute constitutes o n l y
f r a c t i o n of t h e t o t a l o s m o l a r c o n c e n t r a t i o n .
a
Its f r a c t i o n a l c o n c e n t r a t i o n
d e p e n d s , s i m p l y , o n the ratios of the v a r i o u s solutes e x i s t i n g i n t h e o r i g i n a l s a m p l e . I f t h e f r a c t i o n of the c r y o t o x i c solute is s m a l l , its c o n c e n t r a t i o n m a y not r e a c h a d a m a g i n g l e v e l d u r i n g f r e e z i n g . solutes t h a t " d i l u t e " t h e c r y o t o x i c c o m p o u n d
E v e n i f the n o n t o x i c
d o n o t exert a n y d i r e c t
i n f l u e n c e o n the m e m b r a n e s , t h e y w i l l nonetheless act as c r y o p r o t e c t i v e Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
agents. T h e s e relations m a k e i t p o s s i b l e to e x p l a i n the p a r a d o x i c a l o b s e r v a t i o n t h a t c r y o t o x i c solutes s u c h as N a C l c a n sometimes protectants d u r i n g f r e e z i n g (21).
act as
membrane
Thylakoids suspended i n a m e d i u m
c o n t a i n i n g , for i n s t a n c e , s o d i u m s u c c i n a t e as t h e p r e d o m i n a n t solute are i n a c t i v a t e d b y f r e e z i n g , b e c a u s e h i g h concentrations of s u c c i n a t e are not t o l e r a t e d b y the m e m b r a n e s ( F i g u r e 10, l e f t p a r t , I I a , b , c ) . If, h o w e v e r , i n c r e a s i n g c o n c e n t r a t i o n s of N a C l are a d d e d to t h e m e m b r a n e - s u c c i n a t e system, a r a n g e of N a C l concentrations is e n c o u n t e r e d w h e r e f r e e z i n g does n o t r e s u l t i n m e m b r a n e
damage.
A t these p a r t i c u l a r ratios
of
s u c c i n a t e to c h l o r i d e , n e i t h e r of t h e anions w i l l r e a c h d a m a g i n g levels d u r i n g f r e e z i n g a n d p r o t e c t i o n is o b s e r v e d .
T h e solute ratios, n o t t h e
i n i t i a l c o n c e n t r a t i o n s , d e t e r m i n e w h e n p r o t e c t i o n occurs.
I f the r a t i o of
N a C l to s u c c i n a t e is f u r t h e r i n c r e a s e d , f r e e z i n g w i l l raise t h e c o n c e n t r a t i o n of N a C l to a l e v e l t h a t is d a m a g i n g . S u c h observations s h o w t h a t t h e t e r m " c r y o p r o t e c t i v e a g e n t " has a v e r y loose m e a n i n g a n d does n o t necessarily i m p l y t h a t a
compound
p l a y s a n y a c t i v e r o l e i n m e m b r a n e s t a b i l i z a t i o n . W h e n a s o l u b l e sugar ( G r o u p I , F i g u r e 10)
is present i n the t h y l a k o i d suspension, f r e e z i n g
w i l l n o t cause m e m b r a n e d a m a g e , as l o n g as t h e r a t i o o f sugar to N a C l does n o t f a l l b e l o w a c r i t i c a l t h r e s h o l d v a l u e , b e c a u s e e v e n h i g h c o n c e n trations of sugars are t o l e r a t e d b y t h e m e m b r a n e s . Specific Protection.
Low
MOLECULAR
WEIGHT
SOLUTES.
Colliga-
t i v e p r o t e c t i o n is nonspecific. A n y solute w h i c h does n o t d a m a g e a b i o m e m b r a n e m u s t , just b y its presence,
r e d u c e t h e c o n c e n t r a t i o n of
a
p o t e n t i a l l y c r y o t o x i c solute d u r i n g f r e e z i n g as c o m p a r e d to t h e c o n c e n t r a t i o n the c r y o t o x i c solute w o u l d a t t a i n i n the absence of a s e c o n d solute. O n a n o s m o l a r basis, different n e u t r a l solutes s h o u l d b e e q u a l l y effective. H o w e v e r , t h e facts differ f r o m t h i s e x p e c t a t i o n .
O n an
basis, raffinose is a b e t t e r c r y o p r o t e c t a n t t h a n sucrose
equi-osmolar
is s u p e r i o r to
glucose, a n d g l u c o s e is m o r e effective t h a n g l y c e r o l (15,33,34).
Similar
d e v i a t i o n s f r o m " i d e a l " c o l l i g a t i v e b e h a v i o r h a v e b e e n o b s e r v e d f o r other solutes (68).
T o e x p l a i n the differences, i t is necessary to e i t h e r i n t r o d u c e
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
8.
HUBER
Membrane
E T AL.
Damage
and
181
Protection
N a C l concentration Figure 10. Thylakoid protection by two different groups of compounds as a function of the concentration of a potentially cryotoxic solute such as NaGL Examples of solutes belonging to group! are soluble sugars, sugar alcohols, proline, threonine. Representatives of group II include sodium succinate, glutamate and asparate. a, b, c, are different concentrations increasing from a to c. The osmolar ratio of a given compound from group I or II versus NaCl, that is needed to produce 50% inactivation of the membrane during freezing, differs depending on the compound (not indicated in this figure). o s m o t i c coefficients o r t o assume t h a t solutes h a v e d i r e c t solute-specific effects o n m e m b r a n e s
i n a d d i t i o n t o t h e i r c o l l i g a t i v e effects.
s t a b i l i z a t i o n c a n i n d e e d b e o b s e r v e d i n t h e absence
Direct
of f r e e z i n g , w h e n
c o l l i g a t i v e d i l u t i o n of m e m b r a n e - t o x i c solutes is n o t p o s s i b l e . F o r e x a m p l e , t h y l a k o i d s s u s p e n d e d i n N a C l solutions a t 0 ° C are i n a c t i v a t e d faster i n t h e absence dimethyl
o f sucrose
sulfoxide
t h a n i n its p r e s e n c e
c a n protect
unfrozen
(21).
Furthermore,
o v a r y cells o f t h e C h i n e s e
h a m s t e r against d a m a g e b y a h y p e r o s m o t i c salt s o l u t i o n (69).
Molecular
details o f specific m e m b r a n e p r o t e c t i o n are n o t y e t k n o w n . I t is p o s s i b l e t h a t effects o n w a t e r s t r u c t u r e are i n v o l v e d . CRYOPROTECTTVE
PROTEINS.
I n general, soluble proteins are either
w e a k l y effective or ineffective f o r p r e v e n t i n g t h e f r e e z e - i n a c t i v a t i o n of t h y l a k o i d s s u s p e n d e d i n d i l u t e salt solutions. T h i s is n o t u n e x p e c t e d since l o w concentrations of h i g h m o l e c u l a r w e i g h t c o m p o u n d s s u c h as p r o t e i n s c a n n o t s i g n i f i c a n t l y r e d u c e t h e f r e e z e - c o n c e n t r a t i o n of c r y o t o x i c solutes by
colligative action.
H o w e v e r , some p r o t e i n s
extracted f r o m
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
frost-
182
PROTEINS
AT
LOW
TEMPERATURES
resistant p l a n t s c a n , e v e n at v e r y l o w c o n c e n t r a t i o n s , exert a p r o t e c t i v e effect o n t h y l a k o i d s d u r i n g f r e e z i n g . A t c o n c e n t r a t i o n s of less t h a n 40 μΜ, these p r o t e i n s p r o d u c e as m u c h m e m b r a n e p r o t e c t i o n as sucrose at a c o n c e n t r a t i o n of 3 0 m M ( c a l c u l a t e d f r o m refs. 31 a n d 7 0 ) .
T h e s e facts
a l o n e m a k e p r o t e c t i o n o n a c o l l i g a t i v e basis h i g h l y u n l i k e l y f o r p r o t e i n s . T h e p r o t e i n s are h e a t stable a n d w a t e r s o l u b l e .
T h e amino
com
p o s i t i o n s o f t w o of t h e m h a v e b e e n d e t e r m i n e d , a n d t h e y c o n t a i n h i g h percentages of p o l a r a m i n o a c i d s a n d l o w percentages of a m i n o a c i d s w i t h n o n p o l a r side c h a i n s .
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
L i t t l e is k n o w n c o n c e r n i n g m e c h a n i s m s b y w h i c h these p r e v e n t i n a c t i v a t i o n of t h y l a k o i d s d u r i n g f r e e z i n g , b u t t h e y
proteins somehow
c o n t r i b u t e to m e m b r a n e s t a b i l i z a t i o n . T h e y act w i t h some specificity, since c r y o p r o t e c t i v e p r o t e i n s f r o m s p i n a c h not o n l y f a i l t o p r o t e c t r e d b l o o d cells d u r i n g f r e e z i n g b u t are a c t u a l l y i n j u r i o u s . A b i l i t y of Cryoprotectants to Penetrate Membranes.
Preserving
n o r m a l m e m b r a n e p r o p e r t i e s d u r i n g f r e e z i n g poses s p e c i a l p r o b l e m s . L o v e l o c k (71)
has r e p o r t e d t h a t o n l y n e u t r a l h y d r o p h i l i c m o l e c u l e s of a
size s m a l l e n o u g h to p e n e t r a t e m e m b r a n e s
were
successful
cryopro
tectants f o r r e d b l o o d cells s u s p e n d e d i n p h y s i o l o g i c a l saline. T h i s s u g gests t h a t not o n l y t h e o u t e r b u t also t h e i n n e r side of t h e c e l l u l a r membrane requires protection.
M o r e recent w o r k ( 9 2 )
has s h o w n t h a t
the i n n e r s i d e is less sensitive to f r e e z i n g d a m a g e t h a n the o u t e r p e r h a p s because solutes o f
t h e i n n e r p h a s e c o n t r i b u t e to
one,
protection.
P r o v i d e d the i n t e r i o r of a c e l l contains a n excess o f a c r y o t o x i c solute, p r o t e c t i o n is p o s s i b l e o n l y i f i t c a n l e a k o u t d u r i n g f r e e z i n g t o
be
colligatively d i l u t e d b y a nonpenetrating cryoprotectant located outside, o r i f a p e n e t r a t i n g c r y o p r o t e c t a n t c a n enter t h e c e l l .
If b o t h
cannot
p e n e t r a t e , t h e y m u s t b e p r e s e n t o n t h e same m e m b r a n e side f o r p r o t e c t i o n to b e c o m e p o s s i b l e . I n p l a n t cells, a c c u m u l a t i o n of s o l u b l e sugars has often b e e n n o t i c e d d u r i n g h a r d e n i n g a n d this has b e e n suggested as a f a c t o r i n frost h a r d i ness (12,14,68).
E x t r a c e l l u l a r a d d i t i o n of sugars to frost-sensitive cells
fails t o p r o t e c t against f r e e z i n g i n j u r y (72,73) s u g a r u p t a k e w a s s u b s t a n t i a l (74,75).
e x c e p t i n cases w h e r e
I n v i e w of this, i t is s u r p r i s i n g
t h a t t h y l a k o i d s s u s p e n d e d i n solutions c o n t a i n i n g c r y o t o x i c solutes c a n b e p r o t e c t e d against f r e e z e - i n a c t i v a t i o n n o t o n l y b y p e n e t r a t i n g solutes s u c h as g l y c e r o l or d i m e t h y l s u l f o x i d e , b u t also b y r e l a t i v e l y l a r g e sugars such
as
glucose,
sucrose,
or
raffinose
r e g a r d e d as n o n p e n e t r a t i n g (43).
(15,33),
w h i c h are n o r m a l l y
A s mentioned above, even some p r o
teins w i t h m o l e c u l a r w e i g h t s of 10,000-20,000 d a l t o n s p r o t e c t t h y l a k o i d s against f r e e z i n g d a m a g e , a l t h o u g h c o m p l e t e p r o t e c t i o n i s n o t unless other c r y o p r o t e c t a n t s are p r e s e n t (
31).
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
observed
8.
HUBER
Membrane
ET AL.
Damage
and
183
Protection
P r o t e c t i o n of t h y l a k o i d s b y l a r g e m o l e c u l e s m i g h t b e e x p l a i n e d i n several ways.
P e r h a p s the t h y l a k o i d m e m b r a n e
is sensitive to
solute
i n j u r y o n l y o n the o u t e r side, or the i n t r a t h y l a k o i d space contains, e v e n after l o n g i n c u b a t i o n , l i t t l e of t h e a d d e d c r y o t o x i c solute, or p e n e t r a t i o n of t h e m e m b r a n e b y n o r m a l l y n o n p e n e t r a t i n g solutes b e c o m e s p o s s i b l e under freezing conditions
(76).
T h e fact t h a t c r y o p r o t e c t i v e proteins alone cannot p r o v i d e
complete
p r o t e c t i o n to t h y l a k o i d s d u r i n g f r e e z i n g , e v e n w h e n present at s a t u r a t i n g concentrations, c a n b e r e g a r d e d as e v i d e n c e t h a t n o t o n l y t h e o u t s i d e b u t also t h e i n s i d e of t h e t h y l a k o i d m e m b r a n e r e q u i r e s p r o t e c t i o n .
When
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
f r o z e n i n a sucrose s o l u t i o n of sufficient c o n c e n t r a t i o n , t h y l a k o i d s are completely protected.
A l t h o u g h sugars, w h e n first a d d e d to t h y l a k o i d
m e m b r a n e s , p r o d u c e a n osmotic response as e x p e c t e d f r o m v a n t H o f F s l a w , t h e y a p p a r e n t l y l e a k i n t o t h e i n t r a t h y l a k o i d space d u r i n g f r e e z i n g ( 7 6 ) , t h e r e b y p r o v i d i n g p r o t e c t i o n to the i n n e r side of the m e m b r a n e . I t is n o t k n o w n w h e t h e r c r y o t o x i c solutes l e a k c o n c u r r e n t l y o u t f r o m t h e i n t r a t h y l a k o i d space.
O b v i o u s l y , the p e r m e a b i l i t y p r o p e r t i e s of b i o m e m -
branes h a v e a n i m p o r t a n t r o l e i n m e m b r a n e p r o t e c t i o n . S i n c e the p e r m e a b i l i t y p r o p e r t i e s of a m e m b r a n e d e p e n d o n m e m b r a n e s t r u c t u r e , a n y s t r u c t u r a l changes s h o u l d influence m e m b r a n e s u r v i v a l d u r i n g f r e e z i n g . Protection by Changes i n M e m b r a n e S t r u c t u r e .
Development
of
frost h a r d i n e s s i n p l a n t s is o f t e n a c c o m p a n i e d b y a n i n c r e a s e i n m e m b r a n e l i p i d s , p a r t i c u l a r l y p h o s p h o l i p i d s (77, 78, 7 9 ) .
A n increase i n the d e g r e e
of u n s a t u r a t i o n of t h e f a t t y a c i d c o m p o n e n t s
of p h o s p h o l i p i d s also has
been
observed
by
some
(78,79)
b u t not b y
A t t e m p t s to correlate increases i n m e m b r a n e
a l l investigators
t h y l a k o i d s f r o m c a b b a g e leaves h a v e so f a r f a i l e d ( 8 0 ) . an increase
i n membrane
lipids may
have
(77).
l i p i d s w i t h hardiness on
of
A l s o , w h a t effect
h a r d i n e s s is n o t
yet
understood. I t is k n o w n t h a t h a r d y p l a n t cells e x h i b i t i n c r e a s e d p e r m e a b i l i t y to water
(12,81,82,83).
differences
I n some cases,
i n chloroplasts
r e p o r t e d (15,84,85).
cytological
and
of h a r d y a n d n o n h a r d y
ultrastructural
leaves
have
been
T h e s e observations r e q u i r e i n t e r p r e t a t i o n .
B y means of s u i t a b l e m e m b r a n e - a c t i v e a d d i t i v e s , w e h a v e a t t e m p t e d to m o d i f y the s t r u c t u r e of i s o l a t e d t h y l a k o i d s a n d t h e r e b y i n c r e a s e m e m b r a n e p e r m e a b i l i t y . C h a n g e s i n resistance of t h e m e m b r a n e s to f r e e z i n g w e r e t h e n d e t e r m i n e d . F i g u r e 11 shows t h e effect of s o d i u m c a p r y l a t e o n t h e p e r m e a b i l i t y of t h y l a k o i d s to protons. p o u n d , i l l u m i n a t i o n causes
I n t h e absence of t h e
com-
p r o t o n transfer across the t h y l a k o i d s a n d
a c i d i f i c a t i o n of t h e i n t r a t h y l a k o i d space.
A
fluorescent
u s e d to m o n i t o r f o r m a t i o n of t h e p r o t o n g r a d i e n t ( 8 6 ) .
weak amine was W h e n the light
w a s t u r n e d off, p r o t o n s m o v e d s l o w l y b a c k across t h e t h y l a k o i d m e m b r a n e . T r a n s p o r t f o l l o w e d first-order k i n e t i c s . I n t h e presence of c a p r y l a t e
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
184
PROTEINS A T
LOW
TEMPERATURES
5 AJM 9-aminoacridine
ι
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
ο c
,
mM Na-caprylate
,
20
1 min
Figure 11. Formation of a trans-thyhkoid proton gradient by intact chloro plasts as indicated by the quenching of 9-aminoacridine fluorescence (86, 87), and a subsequent efflux of protons from the thylakoids on darkening. Note accelerated proton efflux in the presence of sodium caprylate. Conditions: Intact spinach chloroplasts were suspended in isotonic sorbitol buffer (20 μg chloro phyll ml' ) and illuminated with saturating red light in the presence of 0.5 mM methyhiologen as electron acceptor. 1
o r other s e m i p o l a r c o m p o u n d s
of s u i t a b l e s t r u c t u r e a n d c o n c e n t r a t i o n ,
p r o t o n p u m p i n g s t i l l p r o d u c e d l a r g e p r o t o n g r a d i e n t s i n the l i g h t .
How
ever, w h e n t h e l i g h t w a s t u r n e d off, p r o t o n s l e a k e d o u t c o n s i d e r a b l y faster t h a n t h e y d i d i n t h e absence
of p h e n y l p y r u v a t e . T h e a v a i l a b l e
d a t a suggest t h a t salts h a v i n g a n a n i o n t h a t c a n b i n d to c a t i o n i c m e m b r a n e sites a n d exert h y d r o p h o b i c effects w i l l increase the p r o t o n c o n d u c t i v i t y of t h y l a k o i d s . L i g h t s c a t t e r i n g m e a s u r e m e n t s i n d i c a t e t h a t the p e r m e a b i l i t y to sugars a n d other c o m p o u n d s is also i n c r e a s e d
(51).
F i g u r e 12 shows p r e s e r v a t i o n of m e m b r a n e f u n c t i o n d u r i n g f r e e z i n g of
thylakoids i n the presence
of
different c o n c e n t r a t i o n s
of
sodium
c a p r y l a t e o r s o d i u m p h e n y l p y r u v a t e . O t h e r solutes p r e s e n t i n t h e system
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER
E T AL.
Membrane
Damage
and
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
τ
185
Protection ρ
Figure 12. Preservation of thylakoid function after freezing for 3 hours at —25°C in the presence of different concentrations of sodium phenylpyruvate (O) or sodium caprylate (Φ). Other solutes added to the thylakoid suspension before freezing were, 100 mM NaCl and 120 mM sucrose in the caprylate ex periment and 100 mM NaCl and 150 mM sorbitol in the phenylpyruvate experi ment. were sorbitol and N a C l .
T h e i r m o l a r r a t i o w a s k e p t constant at a l e v e l
p r o d u c i n g c o n s i d e r a b l e i n a c t i v a t i o n d u r i n g f r e e z i n g to
— 25 ° C i n the
absence of p h e n y l p y r u v a t e or c a p r y l a t e . W h e n p h e n y l p y r u v a t e o r c a p r y l a t e w a s a d d e d at a v e r y l o w c o n c e n t r a t i o n , a significant increase w a s o b s e r v e d i n the resistance of t h e m e m b r a n e s t o f r e e z i n g . P r o t e c t i o n w a s o p t i m a l i n the presence
of 2 m M c a p r y l a t e o r 4 m M p h e n y l p y r u v a t e .
F u r t h e r increases i n c o n c e n t r a t i o n first d e c r e a s e d p r o t e c t i o n a n d
finally
l e d to c o m p l e t e m e m b r a n e i n a c t i v a t i o n d u r i n g f r e e z i n g . W h e n t h e i n i t i a l c o n c e n t r a t i o n of s o r b i t o l a n d N a C l w a s h i g h e r t h a n t h a t u s e d f o r t h e experiment
of
F i g u r e 12, a c o r r e s p o n d i n g l y
higher concentration
of
s o d i u m p h e n y l p y r u v a t e or c a p r y l a t e w a s necessary to a c h i e v e m a x i m u m protection d u r i n g freezing.
Thus, depending on concentration, p h e n y l -
p y r u v a t e , a n d c a p r y l a t e a c t e d either as cryoprotectants o r as solutes.
cryotoxic
S u i t a b l e controls e s t a b l i s h e d t h a t c r y o p r o t e c t i o n b y these
p o u n d s w a s not b a s e d o n c o l l i g a t i v e a c t i o n .
com
F o r instance, the sorbitol
c o n c e n t r a t i o n h a d t o b e r a i s e d b y a b o u t 50 m M t o get t h e same p r o t e c t i o n that was produced b y 3 m M phenylpyruvate. F u r t h e r m o r e , p r o t e c t i o n is n o t h i g h l y specific, since i s o l e u c i n e a n d s o d i u m d e c e n y l s u c c i n a t e p r o t e c t e d t h e m e m b r a n e s to essentially t h e same extent as c a p r y l a t e o r p h e n y l p y r u v a t e . H o w e v e r , m e m b r a n e p r o t e c t i o n i n the presence of p h e n y l p y r u v a t e is d e p e n d e n t o n the c o m p o s i t i o n of t h e
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
186
PROTEINS
m e d i u m i n w h i c h the thylakoids are suspended.
A TL O W TEMPERATURES
Protection has been
o b s e r v e d i n solutions c o n t a i n i n g b a l a n c e d concentrations o f N a C l a n d e i t h e r s o r b i t o l ,s u c r o s e , t h r e o n i n e ,o r s o d i u m s u c c i n a t e (51, 68). T h e p e r m e a b i l i t y o f t h y l a k o i d s t o these c o m p o u n d s
is low. Phenylpyruvate
fails t o increase m e m b r a n e p r o t e c t i o n i n solutions c o n t a i n i n g N a C l a n d glycerol or methanol. T h e latter compounds penetrate thylakoids r a p i d l y . T h e s e d a t a suggest t h a t t h e i n c r e a s e d p r o t e c t i o n seen i n the p r e s e n c e o f l o w concentrations o f s e m i p o l a r s o l u t e s ,s u c h as s o d i u m p h e n y l p y r u v a t e , of n o r m a l l y n o n p e n e t r a t i n g c r y o p r o t e c t a n t s t o t h e i n s i d e o f t h e m e m b r a n e s
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
w h e r e p r o t e c t i o n is also r e q u i r e d . N a t u r a l l y ,t h e m a n i p u l a t i o n o f m e m b r a n e p e r m e a b i l i t y is a dangerous m a t t e r ,since m e m b r a n e f u n c t i o n is i n t i m a t e l y r e l a t e d t o m e m b r a n e p e r m e ability.
M a n i p u l a t i o n t h a t goes t o o f a r c a n e a s i l y cause
membrane
d a m a g e , as occurs i n t h e p r e s e n c e o f i n c r e a s e d c o n c e n t r a t i o n s o f c a p r y l a t e a n d p h e n y l p y r u v a t e ( F i g u r e 1 2 ) . H i g h c o n c e n t r a t i o n s o f these p o u n d s also cause r a p i d m e m b r a n e i n a c t i v a t i o n a t 0 ° C .
com
S t i l l ,manipula
t i o n o f m e m b r a n e p e r m e a b i l i t y as a means o f i n c r e a s i n g resistance t o f r e e z i n g appears p o s s i b l e i n p r a c t i c e . F o r e x a m p l e ,K u i p e r (88) r e p o r t e d t h a t s o d i u m d e c e n y l s u c c i n a t e i n c r e a s e d frost h a r d i n e s s i n p l a n t s . T h a t other w o r k e r s h a v e f a i l e d t o observe p r o t e c t i o n against f r e e z i n g d a m a g e b y d e c e n y l s u c c i n a t e a n d i n s t e a d h a v e r e p o r t e d i n c r e a s e d d a m a g e (89, 90) is n o t s u r p r i s i n g i n v i e w o f the p o t e n t i a l m e m b r a n e t o x i c i t y o f c o m p o u n d s capable of altering membrane structure.
Acknowledgment W e are g r a t e f u l t o M r s . U . B e h r e n d f o r c o m p e t e n t t e c h n i c a l assistance a n d to Prof. O . F e n n e m a a n d t w o u n k n o w n reviewers for critical a n d helpful comments.
O r i g i n a l r e s e a r c h r e p o r t e d i n this p a p e r w a s s u p
ported b y the Deutsche Forschungsgemeinschaft.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8.
Lovelock,J. E. Biochim. Biophys. Acta 1953, 10,414-426. Lovelock,J. E . Proc. R. Soc. Med. 1954,47,60-65. Jagendorf,A. T.; Avron,M. J. Biol. Chem. 1958, 231,377-290. Duane,W.; Krogmann,D. W. Biochim. Biophys. Acta 1963,71, 195-196. Heber,U.; Santarius,K. A. Plant Physiol. 1964, 39,712-719. Santarius,Κ. Α.; Heber,U. Cryobiology 1970,7,71-78. Santarius,K. A. Biochim. Biophys. Acta 1973, 291,35-50. Porter,V. S.; Denning,N. P.; Wright,R. C.; Scott,Ε. M. J. Biol. Chem. 1953,205,883-891. 9. Araki,T. Cryobiology 1977, 14, 144-150. 10. Farrant,J. Nature 1965,205,1284-1287. 11. Souzu,H. Arch. Biochem. Biophys. 1967, 120,344-351.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
8.
HUBER ET AL.
Membrane Damage and Protection
187
12. Levitt,J. "Responses of Plants to Environmental Stresses"; Academic: New York,1972. 13. Meryman,H. T.; Williams,R. J.; Douglas,M. S. J. Cryobiology 1977, 14, 287-302. 14. Heber,U.; Santarius,K. A. "Temperature and Life"; Precht,H.,Christophersen,J.,Hensel,H. Larcher,W.,Eds.; Springer: Berlin,1973,pp 232-263. 15. Steponkus,P. L.; Garber,M. P.; Myers,S. P.; Lineberger,R. D. Cryo biology 1977, 14,303-321. 16. Asahina,E. In "Cellular Injury and Resistance in Freezing Organisms"; Asahina,E.,Ed.; Low Temp. Sci.,Ser. Β (Teion Kagaku,Seibutsu-Hen) 1967, II, 211-229. 17. Mazur,P. Fed. Proc. Am. Soc. Exp. Biol. 1965,24, 175-182. 18. Mazur,P. Science 1970, 168,939-949. 19. Mazur,P.; Leibo,S. P.; Chu,Ε. Η. J. A. Exp. Cell Res. 1972,71,345-355. 20. Santarius,Κ. Α.; Heber,U. Planta 1967,73,109-137. 21. Santarius,K. A. Plant Physiol. 1971, 48,156-162. 22. Heber,U.; Ernst,R. In "Cellular Injury and Resistance in Freezing Orga nisms"; Asahina,E.,Ed.; Low Temp. Sci.,Ser. Β (Teion Kagaku,Sei butsu-Hen) 1967,II,63-77. 23. Heber,U.; Tyankova,L.; Santarius,K. A. Biochim. Biophys. Acta 1971, 241,578-592. 24. Santarius,K. A. Planta 1969,89,23-46. 25. Farrant,J.; Woolgar,A. E. In "The Frozen Cell"; Wolstenholf,G. E . W., O'Connor,Μ.,Eds.; J. & A. Churchill: London,1970; pp 97-119. 26. Ryrie,I. J. Jagendorf,A. T. J. Biol. Chem. 1971, 246,582-588. 27. Clendenning,K. A. In "Encyclopedia of Plant Physiology"; Ruhland,W., Ed.; Springer: Heidelberg,1960; Vol. V, 1,pp 736-772. 28. Heber,U.; Tyankova,L.; Santarius,K. A. Biochim. Biophys. Acta 1973, 291, 23-37. 29. Heber, U. Cryobiology 1968,5,188-201. 30. Heber,U.; Kempfle,M. Z. Naturforsch. Teil Β 1970,25b,834-842. 31. Volger,H. G.; Heber,U. Biochim. Biophys. Acta 1975,412,335-349. 32. Santarius,Κ. Α.; Ernst,R. Planta 1967,73,91-108. 33. Santarius,K. A. Planta 1973, 113,105-114. 34. Santarius,Κ. Α.; Heber,U. (1972) Proc. Colloq. on the Winter Hardiness of Cereals,Agric. Res. Inst.,Hungarian Academy of Science,Martonvasar,pp 7-29. 35. Lovelock,J. E. Biochim. Biophys. Acta 1953, 11,28-36. 36. Rostand,J. C.R. Acad. Sci. 1946,234,2301-2312. 37. Polge,C.; Smith,Α.; Parkes,A. S. Nature (London) 1949, 164,666. 38. Meryman,Η. T. Nature (London) 1968,218,333-336. 39. Neumann,J.; Jagendorf,A. T. Arch. Biochem. Biophys. 1964,107, 109119. 40. Mitchell,P. Biol. Rev. 1966,41,445-502. 41. Heber,U. Plant Physiol. 1967,42, 1343-1350. 42. Garber,Μ. P.; Steponkus,P. L. Plant Physiol. 1976,57,673-680. 43. Packer,L.; Crofts,A. R. In "Current Topics in Bioenergetics"; Sanadi, D. R.,Ed.; Academic: New York,1967; Vol. 2,pp 24-64. 44. Crofts,A. R.; Deamer,D. W.; Packer,L. Biochim. Biophys. Acta 1967, 131,97-118. 45. Deamer,D. W.; Packer,L. Biochim. Biophys. Acta 1969, 172,539-545. 46. Karlish,S. J. D.; Shavit,N.; Avron,Μ. Eur. J. Biochem. 1969,9, 291-298. 47. Deamer,D. W.; Crofts,A. R.; Packer,L. Biochim. Biophys. Acta 1967, 13,81-96. 48. Volger,H. G.; Heber,U.; Berzborn,R. J. Biochim. Biophys. Acta 1978, 511,455-469. ;
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
188
PROTEINS AT LOW TEMPERATURES
49. Vanderkooi,G. Ann. N.Y. Acad. Sci. 1972,195,6-15. 50. Kamenietzky,Α.; Nelson,N. Plant Physiol. 1975,55, 282-287. 51. Overbeck,V.,Diplomarbeit,University of Düsseldorf,Library no. 415/233 586 (1974). 52. Uribe,E. G.; Jagendorf,A. T. Arch. Biochem. Biophys. 1968,128, 351359. 53. Lien,S.; Berzborn ,R. J.; Racker,E. J. Biol. Chem. 1972,247,3520-3524. 54. Avron,M. Biochim. Biophys. Acta 1963,77,699-702. 55. Strotmann,H.; Hesse,H.; Edelmann,K. Biochim. Biophys. Acta 1973, 314,202-210. 56. Howell,S. H.; Moudrianakis,Ε. N. Proc. Nat. Acad. Sci. USA. 1967,58, 1261-1268. 57. Berzborn,J. Z. Naturforsch.,Teil Β 1968,23, 1096-1104. 58. Berzborn,R. J. Z. Naturforsch.,Teil Β 1969, 24,436-446. 59. Racker,E.; Hauska,G. Α.; Lien,S.; Berzborn,R. J.; Nelson,N. Proc. Int. Congr. Photosynth. Res.,2nd,1971 1972,2, 1097-1113. 60. Trebst,A. Annu. Rev. Plant Physiol. 1974, 25,423-458. 61. Hofmeister,F. Arch. Exp. Pathol. Pharmacol. 1888, 24,247-262. 62. Abernethy,J. L. J. Chem. Educ. 1967, 33,177-180. 63. Ibid.,1967,44,364-370. 64. Larsen,J. W.; Magid,L. J. J. Am. Chem. Soc. 1974,96,5774-5782. 65. Taylar,R. P.; Kuntz,I. D. J. Am. Chem. Soc. 1972,94,7963-7965. 66. Heber,U.; Kirk,M. R. Gimmler,H.; Schäfer,G. Planta 1974, 120,31-46. 67. Heber,U.,unpublished data. 68. Heber,U.; Santarius,K. A. In"Waterand Plant Life"; Lange,Ο.L.,Kappen,L.,Schulze,E . - D . ,Eds.; Ecol. Stud. 1976, 19,253-267. 69. Micronescu,S.; Simpson,J. F. Cryobiology 1975, 12,581-589. 70. Heber,U. In "The Frozen Cell"; Wolstenholme,G. E . W., O'Connor, M., Eds.; Churchill: London,1970; pp 175-188. 71. Lovelock,J. E. Biochem. J. 1954,56,265-270. 72. Zade-Oppen,Α. M. M. Experientia 1970,26,1087-1088. 73. Woolgar,A. E. Cryobiology 1974, 11,44-51. 74. Tumanov,I. I.; Trunova,T. I. Fiziol. Rast. 1963, 10,176-182. 75. Tumanov,I. I.; Trunova,T. I.; Smirnova,Ν. Α.; Zvereva,G. N. Fiziol. Rast. 1975,23, 132-138. 76. Williams,R. J.; Meryman,Η. T. Plant Physiol. 1970,45,752-755. 77. Siminovitch,D.; Singh,J.; de la Roche,I. A. Cryobiology 1975,12, 144153. 79. de Silva,N. S.; Weinberger,P.; Kates,M.; de la Roche,I. A. Can. J. Bot. 1975,53,1899-1905. 79. Willemot,C.; Hope,H. J.; Williams,R. J.; Michaud,R. Cryobiology 1977, 14,87-93. 80. Crichley,C. Doctoral Thesis,University of Düsseldorf,1977. 81. McKenzie,J. S.; Weiser,T.; Stadelmann,E. J.; Burke,M. J. Plant Physiol. 1974,54,173-176. 82. Kacperska-Palacz,Α.; Dugokecka,E.; Breitenwald,T.; Wcislinska,B. Biol. Plant. 1977, 19,10-17. 83. Kacperska-Palacz,Α.; Jasinska,M.; Sobczyk,Ε. Α.; Wcislinska,B. Biol. Plant. 1977, 19, 18-26. 84. Rochat,E.; Therrien,H. P. Can. J. Bot. 1975,53,536-543. 85. Garber,M. P.; Steponkus,P. L. Plant Physiol. 1976,57,673-680. 86. Schuldiner,S.; Rottenberg,H.; Avron,M. Eur. J. Biochem. 1972,25, 64-70. 87. Tillberg,J.; Giersch,C.; Heber,U. Biochim. Biophys. Acta 1977,461, 31-47. 88. Kuiper,P. J. C. Science 1964, 146,544-546. ;
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
HUBER ET AL.
Membrane Damage and Protection
189
89. Newman, E.; Cramer, P. Plant Physiol. 1966, 41, 606-609. 90. Green, D. G.; Ferguson, W. S.; Warder, F. G. Plant Physiol. 1970, 45, 1-3. 91. Heber, U.; Purczeld, P. In Photosynthesis 1977"; Hall, D. O., Coombs, J., Goodwin, T. W., Eds.; Proc. Int. Congr. Photosynth., 4th; The Biochemical Society: London, 1978; pp 107-118. 92. Mazur, P.; Miller, R. H . Cryobiology 1976, 13, 523-536.
Downloaded by UNIV OF LIVERPOOL on March 7, 2017 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch008
RECEIVED June 16, 1978.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.