Subscriber access provided by ECU Libraries
Note
Metal-Free, Visible-Light Promoted Decarboxylative Radical Cyclization of Vinyl Azides with N-Acyloxyphthalimides Jun-Cheng Yang, Jia-Yu Zhang, Jin-Jiang Zhang, Xin-Hua Duan, and Li-Na Guo J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 04 Jan 2018 Downloaded from http://pubs.acs.org on January 4, 2018
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Metal-Free, Visible-Light Promoted Decarboxylative Radical Cyclization of Vinyl Azides with N-Acyloxyphthalimides Jun-Cheng Yang, Jia-Yu Zhang, Jin-Jiang Zhang, Xin-Hua Duan, and Li-Na Guo* Department of Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China. R1 O + R
R1
O
N3 R
2
N
Eosin Y (2 mol %) O
N
TMEDA, DMF 15 W CFL, rt, 24h
O
abundant feedstocks
R R
2
25 examples, 32-80% yield s
mild conditions
metal-free
ABSTRACT A visible-light mediated decarboxylative cyclization of N-Acyloxylphthalimides with vinyl azides has been developed under metal-free conditions. This protocol features mild conditions, broad substrate scope and excellent functional group tolerance, thus providing a facile and efficient access to substituted phenanthridines. Control experiments revealed that the reaction proceeded via a radical process. Phenanthridines are an important class of alkaloids, which exihibit remarkable biological activities and optoelectronic properties.1a-d Thus, many efforts have been devoted to develop efficient methods for the synthesis of this motifs.1 In this field, the radical cyclization involving an iminyl radical has been established as an efficient strategy to construction of phenanthridine skeleton.1e-f,2,3 For instance, the direct intramolecular cyclization of the biaryloxime derivatives has been developed to accessing the phenanthridine framework by different research groups.2 Besides acyl oximes, Chiba, Studer and Yu et al. have successfully exploited vinyl azides as iminyl
radical
precursors
to
achieve
these
aza-heterocyles
via
an
intermolecular
addition/intramolecular cyclization process.3a-c In this aspect, our group disclosed an efficient copper-catalyzed radical cyclization of vinyl azides with benzylic Csp3-H bonds via dual C-H
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 24
functionalization process.3d Despite these important advances, most of the current protocols still suffer several drawbacks, such as use of stoichiometric amounts of external oxidant, an additional transition-metal catalyst and harsh conditions. Thus, the development of more facile and mild methods for the synthesis of phenanthridine derivatives is still desirable. N-Acyloxyphthalimides, derived from alkyl carboxylic acids and N-hydroxyphthalimides (NHPI), are important and useful building blocks in organic synthesis.4-8 In early 1990s, Okada discovered first that redox-active NHP esters could undergo decarboxylative cross-coupling with electron-deficient
alkenes
through
visible-light
photocatalysis.4a
Since
then,
several
visible-light-mediated decarboxylative cross-couplings of the redox-active NHP esters have been developed.4b-n In this aspect, our group described a visible-light-induced decarboxylative coupling of NHP esters with α,β-unsaturated carboxylic acids, which provided an efficent route to substituted alkenes via a dual decarboxylation process.5 Recently, the group of Baran has succesfully revealed a series of Ni-catalyzed decarboxylative cross-coupling of redox-active esters with organic zinc reagents.6 In addition, the Ni-catalyzed decarboxylative cross-coupling of redox-active esters with organic hilides have also been reported.7 Very recently, Baran, Li and Aggarwal et al have represented the decarboxylative borylation of redox-active esters, respectively.8 Although the redox-active NHP esters have already well-exploited as efficient alkylating sources in Csp3-C and Csp3-heteroatom bonds formations. However, as C-centered radical precursors, their applications in cyclization reaction, especially under metal-free conditions, are less reported.4g,9 Herein, we discribe a metal free, visible-light promoted cyclization of vinyl azides with N-Acyloxyphthalimides for the synthesis of 6-alkylated phenanthridines. Compared with existing catalytic methods,3 this decarboxylative cyclization
ACS Paragon Plus Environment
Page 3 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
protocol takes advantages of using easily available starting materials, mild reaction conditions, and avoiding the use of oxidants and metals. Initially, the reaction was carried out by treatment of vinyl azide 1a with redox-active ester 2a in the presence of 1 mol% fac-Ir(ppy)3 in 3 mL of NMP at room temperature under visible-light irradiation.5 To our delight, the desired product 3a was isolated in 48% yield along with 15% of 6-methylphenanthridine 5a as byproduct after 24 h (Table 1, entry 1). To enhance the reaction efficiency, other visible-light photoredox catalysts were then examined (for details, see SI). It was found that using organic dye Eosin Y10 (2 mol%) instead of Ir-complex as catalyst also resulted in 33% yield of 3a (entry 2). In view of its inexpensive and easily available merits, we chose Eosin Y as the photoredox catalyst to further optimize the reaction conditions. Extensive screening of solvents revealed that the reaction in DMF led to the best yield (entries 3-8). To scavenge the byproduct of 6-methylphenanthridine, several organic and inorganic bases were tested as an additive (entries 9-14). Satisfactorily, base facilitated the reaction and only trace amount of 6-methylphenanthridine
was
detected
in
these
cases
(entries
9-14).
TMEDA
(Tetramethylethylenediamine) was proven to be the best additive to provide product 3a in 75% yield (entry 11). Furthermore, decreasing the catalyst loading to 1 mol% or increasing it to 5 mol% both resulted in comparable yields (entries 15 and 16). No reaction occurred without CFL irradiation (entry 17). Under green or blue LEDs irradiation, similar yields of 3a were obtained (entries 18 and 19). When the reaction time was shortened to 8 hours, the product 3a was isolated in only 43% yield due to low conversion (entry 20). Furthermore, increasing or decreasing amount of TMEDA did not further improve the yield of 3a (entries 21 and 22). Control experiment disclosed that 30% yield of 3a was still obtained in the absence of photocatalyst, implying that
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 24
direct photolysis of 1a accounts partly for the formation of 3a (entries 23 and 24).11 Without photocatalyst, increasing the amount of TMEDA to 2.5 equiv did not obviously affect the yield of 3a (entry 24). Finally, no product was observed without photocatalyst and base (entry 25). Table 1. Optimization of the Reaction Conditionsa O N3
N
O +
O
N O
1a
N
photocatalyst solvent, base visible light, rt, 24h
Me
2a
3a
5a
entry
photocatalyst (mol %)
base (equiv)
solvent
yield of 3a (%)b
yield of 5a (%)c
1
fac-Ir(ppy)3 (1)
-
NMP
48
15
2
Eosin Y (2)
-
NMP
33
13
3
Eosin Y (2)
-
DMF
47
12
4
Eosin Y (2)
-
acetone
28
10
5
Eosin Y (2)
-
CH3CN
trace
0
6
Eosin Y (2)
-
1,4-dioxane
14
6
7
Eosin Y (2)
-
DCE
0
0
8
Eosin Y (2)
-
toluene
0
0
9
Eosin Y (2)
Et3N (1.5)
DMF
68
trace
10
Eosin Y (2)
i-Pr2EtN (1.5)
DMF
51
5
11
Eosin Y (2)
TMEDA (1.5)
DMF
75
trace
12
Eosin Y (2)
DBACO (1.5)
DMF
64
trace
13
Eosin Y (2)
Na2HPO4 (1.5)
DMF
41
10
14
Eosin Y (2)
Cs2CO3 (1.5)
DMF
63
trace
15
Eosin Y (1)
TMEDA (1.5)
DMF
72
trace
16
Eosin Y (5)
TMEDA (1.5)
DMF
70
trace
17
Eosin Y (2)
TMEDA (1.5)
DMF
n.r.d,e
0
18
a
Eosin Y (2)
TMEDA (1.5)
DMF
f
trace
g
72
19
Eosin Y (2)
TMEDA (1.5)
DMF
70
trace
20
Eosin Y (2)
TMEDA (1.5)
DMF
43h
trace
21
Eosin Y (2)
TMEDA (1.0)
DMF
69
trace
22
Eosin Y (2)
TMEDA (2.0)
DMF
73
trace
23
-
TMEDA (1.5)
DMF
30
trace
24
-
TMEDA (2.5)
DMF
28
trace
25
-
-
DMF
0
0
Reaction conditions: Photocatalyst (1-5 mol%), 1a (0.3 mmol, 1 equiv), 2a (0.6 mmol, 2.0 equiv), solvent (3
mL), room temperature, 15 W CFL, 24 h. bYield of isolated product. cYield of 6-methylphenanthridine dWithout CFL irradiation. en.r. = no reaction. funder green LEDs. gunder blue LEDs (λ = 468 nm). hreaction time = 8 h.
ACS Paragon Plus Environment
Page 5 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Scheme 1. Scope of redox-active esters. O
N3
O + R
O
2
N
3
N
N
3c, 62%
3b, 75%
N
R
DMF, TMEDA 15 W CFL, rt, 24h
O 1a
N
Eosin Y (2 mol %)
N
N
Boc
N
3e, 47%
3d, 69%
N
N
N
Boc
N
N
Ts
N Boc 3f, 58%
3g, 69%
3i, 72%
3h, 54%
F N
O
N
F
N
N
Me
Et Bu
Me
3k, 65%
3j, 62%
Cl
N
3l, 52%
N
3m, 63%
N
O
O
3n, 54%
3o, 79%
Cl 3p, 32%
With the optimized reaction conditions in hand (Table 1, entry 11), the substrate scope of this transformation was investigated. Firstly, we evaluated the scope of redox-active esters with vinyl azide 1a. As shown in Scheme 1, a series of redox-active NHP esters derived from structurally diverse 3o, 2o and 1o aliphatic carboxylic acids showed good reactivities and furnished the 6-substituted phenanthridines 3b-3p in moderate to good yields. The tertiary alkyl NHP esters were efficient substrates to afford the desired products 3b-3e in 47-75% yields. Notably, the secondary alkyl NHP esters containing heteroatoms (O or N) on the aliphatic ring were also amenable to the reaction conditions, providing the desired products 3f-3j in moderate to good yields. Furthermore, the protecting groups -Boc and -Ts on the N tether could survive well under the reaction conditions (3h and 3i). In addition to the tertiary and secondary NHP esters, the
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 24
reaction of primary esters 2n-2p also proceeded smoothly to give the corresponding phenanthridines in reasonable yields. Particularly, the primary esters 2n and 2o derived from aryloxy acetic acids showed better reaction efficiency, producing the desired products 3n and 3o in 54% and 79% yield, respectively.
Scheme 2. Scope of the vinyl azides. O
R1
R1
O
N3
O
+ R2
Ts
N
DMF, TMEDA 15 W CFL, rt, 24h
O
N
1
N
Eosin Y (2 mol %)
4 Br
Cl
N
N
Ts
N
4a, 78%
Ts
R2
2i
F
N
N
Ts
4b, 68%
CN
N
N
Ts N
N
Ts
4d, 47%
4c, 63%
CH3
N
N
Ts
F
N
N
Ts
N
N
Ts
N
N
Ts
Cl 4e, 53%
4f, 72%
R 80% 4g, R = F, 4h, R = OMe, 68%
4i, 67%
Subsequently, we turned our attention to examine the scope of vinyl azides 1 with 2i (Scheme 2). A variety of biarylvinylazides 1 with p-substituted electron-donating or -withdrawing groups led to the desired products in moderate to good yields (4a-f). Particularly noteworthy is that functional groups such as fluoro, chloro, bromo, and cyano groups were well tolerated in this reaction. Satisfactorily, the sterically hindered ortho-substituted vinyl azide 1f was also good substrate, giving the desired product 4f in 72% yield. Furthermore, biarylvinylazides bearing a fluoro or a methoxy substituent on the other aromatic ring also worked well in the reaction, and gave the corresponding products 4g and 4h in 80% and 68% yields, respectively. In addition, the chloro substituted biarylvinylazide 1i also reacted well with 2i to give the desired product 4i in 67% yield.
ACS Paragon Plus Environment
Page 7 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
To shed light on the mechanism of this process, several control experiments were conducted carefully (Scheme 3). When the radical scavengers such as TEMPO and BHT were added, the reaction of 1a and 2i were suppressed significantly, respectively. Fortunately, the alkyl-TEMPO adduct 6a was isolated in 20% yield when TEMPO was added (eq 1). Furthermore, the reaction of NHP ester 2q derived from cyclopropyl acetic acid, a radical clock substrate with vinyl azide 1a, led to the only ring opening product 3q in 13% yield (eq 3). These results indicated that a radical pathway might be involved in this reaction. Additionally, in the absence of 2a, vinyl azides 1a could lead to trace amounts of 6-methylphenanthridine3a along with 17% of 2H-azirine 7a under the standard conditions (eq 4). Moreover, the treatment of 2H-azirine 7a generated by decomposing of 1a with 2i didn’t afford any product of 3i (eq 5). This result suggested that 2H-azirine was not the key intermediate in this cyclization reaction. To get a better understanding of the mechanism, the quenching experiments were then performed (for details, see Supporting Information). The Stern-Volmer studies indicated that quenching of Eosin Y was performed by NHP ester 2a rather than vinyl azide 1a or TMEDA (Figure 1), suggesting that the reaction should proceed through an oxidative quenching pathway. Moreover, the electron-donor acceptor (EDA) complex was not observed by NMR or UV vis spectroscopy. We speculated that the main role of TMEDA is probably to active the Eosin Y photocatalyst.11 Furthermore, quantum yield measurements of this reaction has been conducted, and the quantum yield (14.9, λ = 468 nm) indicated that radical chain propagation mechanism was also involved in this transformation (for details, see the Supporting Information). Based on the above investigations and previous reports,3 a possible mechanism is proposed for this reaction (Scheme 4). Photoexcitation of Eosin Y by visible light affords the excited Eosin Y*.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 24
Scheme 3. Investigation of the Reaction Mechanism. O N3 N O
+
N Ts 2i
O N O N Ts
standard conditions BHT (1 equiv)
N +
N
Ts (1)
O 6a, 20%
N
N
Ts
(2) 3i, 16%
2i
O
N3
Ts
O
O 1a
N
3i, 8%
N3 +
N
O
O 1a
standard conditions TEMPO (1 equiv)
standard conditions
O + O
N
(3)
N O
1a
3q, 13%
2q
N3
standard conditions
N
N
+
(4)
Me
1a
5a, trace
7a, 17%
O N +
standard conditions
N O
N
N
Ts (5)
N Ts O
O 7a
2i
3i, 0%
Figure 1. Fluorescence quenching of Eosin Y by 1a, NHP ester 2a and TMEDA.
Oxidative quenching of Eosin Y* by single-electron transfer (SET) to NHP ester 1a generates the radical anion I along with Eosin Y·+. Fragmentation of CO2 from I gives the phthalimide anion and the corresponding alkyl radical II, 4,5 which adds to the C=C bond of 2a furnishing the iminyl
ACS Paragon Plus Environment
Page 9 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
radical III by extrusion of N2. Subsequently, the iminyl radical III undergoes an intramolecular cyclization to produce radical intermediate IV,3 which is oxidized by Eosin Y·+ to give the corresponding carbocation V and regenerate the photocatalyst. Finally, deprotonation of intermediate V, delivers the desired product 3a. Alternatively, a radical chain propagation mechanism should be involved in this reaction, wherein oxidation of radical intermediate IV by NHP ester 1a led to the desired product 3a.11
Scheme 4. The proposed mechanism.
In summary, we have developed a simple and efficient visible-light induced decarboxylative cyclization of redox-active esters with vinyl azides. A variety of 1o, 2o and 3o alkyl NHP esters performed well in this tandem radical addition/cyclization process to afford substituted phenanthridines in moderate to good yields. The significant advantages of this protocol are avoiding the use of external oxidant and metal catalyst, as well as under very mild conditions.
EXPERIMENTAL SECTION General Methods. All reactions were carried out in oven-dried Schlenk tubes filled with nitrogen. Column chromatography was carried out on silica gel. 1H NMR and
13
C NMR spectra
were recorded on 400 M spectrometer in solvents as indicated. Chemical shift are reported in ppm
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
with the solvent resonance as internal standard (CDCl3: 1H-NMR: δ = 7.26; 13C-NMR: δ = 77.0). IR spectra were recorded on a spectrometer and only major peaks are reported in cm-1. HRMS were obtained on a Q-TOF micro spectrometer. All of vinyl azides 1 were synthesized according to the literature, and the NMR spectra were in full accordance with the data in the literature.3a All of N-acyloxyphthalimides 2 were synthesized according to the literature, and the NMR spectra were in full accordance with the data in the literature.6a All of the commercially available compounds were used without further purification. General Procedure for the Cyclization of Vinyl Azides with N-acyloxyphthalimides A 10 mL oven-dried Schlenk-tube equipped with a magnetic sir bar was charged with vinyl azides 1 (0.3 mmol, 1.0 equiv), NHP ester 2 (0.6 mmol, 2.0 equiv), and Eosin Y (4.15 mg, 2 mol%). Then, the tube was evacuated and backfilled with nitrogen (three times). After that, 3 mL of DMF followed by TMEDA (0.45 mmol, 1.5 equiv) were added by syringe under nitrogen. The reaction was then stirred vigorously and irradiated with a 15 W compact fluorescent light (CFL) bulb at room temperature for 24 h. The mixture was diluted with EtOAc and transferred to a separatory funnel. The organic phase was washed successively with H2O and brine, dried over Na2SO4, and evaporated under reduced pressure. The resulting residue was purified with chromatography column on silica gel (gradient eluent of EtOAc/petroleum ether: 1/50 to 1/3) to afford the corresponding products 3 or 4 in yields listed in Scheme 2 and Scheme 3. 6-(Cyclohexylmethyl)phenanthridine (3a): (known compound)3d Yellow oil (75%, 61.9 mg); Rf 0.3 (EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.63 (d, J = 8.4 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.2 Hz, 1H), 7.74-7.66 (m, 2H), 7.61 (td, J = 8.0, 0.8 Hz, 1H), 3.26 (d, J = 7.2 Hz, 2H), 2.02 (m, 1H), 1.75-1.64
ACS Paragon Plus Environment
Page 10 of 24
Page 11 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(m, 5H), 1.20-1.19 (m, 5H); 13C NMR (100 MHz, CDCl3): δ = 161.4, 143.6, 132.8, 130.1, 129.6, 128.5, 127.1, 126.6, 126.2, 125.7, 123.5, 122.3, 121.8, 43.6, 38.7, 33.6, 26.3 ppm; HRMS (ESI) calcd for C20H22N [M+H]+ 276.1747, found 276.1746. 6-((Adamantan-1-yl)methyl)phenanthridine (3b): White solid (75%, 73.6 mg), mp = 112-114 o
C; Rf 0.3 (EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.65 (d, J = 8.0 Hz,
1H), 8.56 (d, J = 7.6 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H), 8.16 (dd, J = 8.4, 0.8 Hz, 1H), 7.82 (td, J = 8.0, 0.8 Hz, 1H), 7.75-7.61 (m, 3H), 3.22 (s, 2H), 1.92 (s, 3H), 1.71-1.55 (m, 12H); 13C NMR (100 MHz, CDCl3): δ = 159.9, 143.4, 132.6, 130.0, 129.8, 128.4, 127.7, 126.9, 126.7, 126.2, 123.4, 122.2, 121.8, 48.7, 43.3, 36.8, 35.4, 28.8 ppm; IR (KBr): υmax 3072, 2901, 2846, 1612, 1570, 1450, 1357 cm-1; HRMS (ESI) calcd for C24H26N [M+H]+ 328.2060, found 328.2067. 6-(2,2-Dimethylbutyl)phenanthridine
(3c):
Colorless
oil
(62%,
48.9
mg);
Rf
0.37
(EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.65 (d, J = 8.4 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.34 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.2 Hz, 1H), 7.74-7.60 (m, 3H), 3.32 (s, 2H), 1.51 (q, J = 7.6 Hz, 2H), 1.00-0.97 (m, 9H); 13C NMR (100 MHz, CDCl3): δ = 160.8, 143.5, 132.7, 130.0, 129.8, 128.4, 127.4, 126.8, 126.2, 123.4, 122.3, 121.8, 45.1, 35.9, 35.8, 27.0, 8.7 ppm; IR (KBr): υmax 2961, 1612, 1571, 1461, 1361 cm-1; HRMS (ESI) calcd for C19H22N [M+H]+ 264.1747, found 264.1743. 6-Neopentylphenanthridine (3d): (known compound)12a Colorless oil (69%, 51.5 mg); Rf 0.3 (EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.65 (d, J = 8.4 Hz, 1H), 8.56 (dd, J = 8.0, 0.8 Hz, 1H), 8.34 (d, J = 8.4 Hz, 1H), 8.15 (dd, J = 8.4, 0.8 Hz, 1H), 7.82 (td, J = 8.4, 1.2 Hz, 1H), 7.75-7.61 (m, 3H), 3.34 (s, 2H), 1.09 (s, 9H);
13
C NMR (100 MHz, CDCl3): δ =
160.8, 143.4, 132.7, 130.0, 129.7, 128.5, 127.5, 126.8, 126.6, 126.2, 123.4, 122.3, 121.8, 47.0,
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
33.4, 30.5 ppm; IR (KBr): υmax 2956, 1612, 1581, 1462, 1362, 1232 cm-1; HRMS (ESI) calcd for C18H20N [M+H]+ 250.1590, found 250.1587. 6-((1-Methylcyclohexyl)methyl)phenanthridine (3e): Colorless oil (47%, 40.8 mg); Rf 0.3 (EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.64 (d, J = 8.4 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.36 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.81 (t, J = 8.4 Hz, 1H), 7.74-7.60 (m, 3H), 3.34 (s, 2H), 1.60-1.41 (m, 10H), 1.01 (s, 3H); 13C NMR (100 MHz, CDCl3): δ = 160.6, 143.4, 132.7, 129.9, 129.8, 128.4, 127.6, 126.9, 126.7, 126.2, 123.4, 122.2, 121.8, 46.9, 38.4, 36.0, 26.3, 24.8, 22.2 ppm; IR (KBr): υmax 2925, 1611, 1571, 1459, 1362 cm-1; HRMS (ESI) calcd for C21H24N [M+H]+ 290.1903, found 290.1896. Tert-butyl 3-(phenanthridin-6-ylmethyl)azetidine-1-carboxylate (3f): White solid (58%, 60.6 mg), mp = 125-127 oC; Rf 0.21 (EtOAc/petroleum ether = 1:5); 1H NMR (400 MHz, CDCl3): δ = 8.62 (d, J = 8.4 Hz, 1H), 8.52 (d, J = 8.0 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.88 (t, J = 8.0 Hz, 1H), 7.72-7.67 (m, 2H), 7.62 (td, J = 8.0, 1.2 Hz, 1H), 4.22 (t, J = 8.4 Hz, 2H), 3.84 (d, J = 8.4 Hz, 1H), 3.83 (d, J = 8.4 Hz, 1H), 3.64 (d, J = 6.4 Hz, 2H), 3.44-3.33 (m, 1H), 1.45 (s, 9H); 13C NMR (100 MHz, CDCl3): δ = 158.6, 156.4, 143.5, 132.6, 130.3, 129.9, 128.5, 127.3, 126.5, 1235.5, 125.3, 123.5, 122.5, 121.9, 79.1, 55.5, 54.2, 39.4, 28.4, 24.7 ppm; IR (KBr): υmax 2973, 1702, 1612, 1585, 1400, 1257, 1137 cm-1; HRMS (ESI) calcd for C22H25N2O2 [M+H]+ 349.1911, found 349.1905. Tert-butyl 2-(phenanthridin-6-ylmethyl)pyrrolidine-1-carboxylate (3g): White solid (a mixture of enantiomers, total 69%, 74.9 mg); Rf 0.26 (EtOAc/petroleum ether = 1:5); 1H NMR (400 MHz, CDCl3): δ = 8.79 (d, J = 7.6 Hz, 0.5H), 8.64-8.60 (m, 1H), 8.54 (d, J = 8.0 Hz, 1H), 8.48 (d, J = 8.4 Hz, 0.5H), 8.12 (d, J = 8.0 Hz, 1H), 7.85-7.59 (m, 4H), 7.62 (td, J = 8.0, 1.2 Hz,
ACS Paragon Plus Environment
Page 12 of 24
Page 13 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
1H), 4.48-4.43 (m, 1H), 4.19 (dd, J = 12.8, 2.8 Hz, 0.5H), 3.98 (dd, J = 12.8, 4.0 Hz, 0.5H), 3.54-3.29 (m, 3H), 3.16-3.05 (m, 1H), 2.06-2.02 (m, 2H), 1.86-1.66 (m, 2H), 1.53 (s, 4.5H), 1.50 (s, 4.5H); 13C NMR (100 MHz, CDCl3): δ = 159.8, 159.4, 154.7, 154.5, 143.8, 132.8, 132.7, 130.4, 129.7, 128.6, 128.3, 127.8, 127.4, 127.1, 126.6, 126.5, 126.3, 125.7, 125.6, 123.8, 123.6, 122.4, 122.0, 121.9, 79.7, 79.0, 57.0, 56.8, 46.8, 46.4, 41.1, 40.5, 29.9, 28.8, 28.6, 23.5, 22.6 ppm; IR (KBr): υmax 2974, 1686, 1612, 1584, 1478, 1449, 1396, 1365, 1170, 1119 cm-1; HRMS (ESI) calcd for C23H27N2O2 [M+H]+ 363.2067, found 363.2079. Tert-butyl 4-(phenanthridin-6-ylmethyl)piperidine-1-carboxylate (3h): Yellow solid (54%, 60.9 mg), mp = 128-130 oC; Rf 0.24 (EtOAc/petroleum ether = 1:5); 1H NMR (400 MHz, CDCl3): δ = 8.64 (d, J = 8.4 Hz, 1H), 8.54 (d, J = 8.4 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.83 (t, J = 8.0 Hz, 1H), 7.73-7.67 (m, 2H), 7.62 (d, J = 7.6 Hz, 1H), 4.09 (br s, 2H), 3.29 (br s, 2H), 2.66 (t, J = 12.4 Hz, 2H), 2.27-2.18 (m, 1H), 1.72-1.69 (m, 2H), 1.45-1.37 (m, 11H); 13C NMR (100 MHz, CDCl3): δ = 160.3, 154.8, 143.5, 132.8, 130.3, 129.6, 128.6, 127.2, 126.4, 126.2, 125.6, 123.5, 122.5, 121.9, 79.2, 44.0, 42.2, 36.6, 32.4, 28.4 ppm; IR (KBr): υmax 2927, 1687, 1612, 1584, 1422, 1245, 1167 cm-1; HRMS (ESI) calcd for C24H29N2O2 [M+H]+ 377.2224, found 377.2220. 6-((1-Tosylpiperidin-4-yl)methyl)phenanthridine (3i): White solid (72%, 92.9 mg), mp = 183-185 oC; Rf 0.36 (EtOAc/petroleum ether = 1:2); 1H NMR (400 MHz, CDCl3): δ = 8.61 (d, J = 8.0 Hz, 1H), 8.51 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 7.2 Hz, 1H), 7.71-7.59 (m, 5H), 7.27 (d, J = 8.0 Hz, 2H), 3.76 (d, J = 11.6 Hz, 2H), 3.25 (d, J = 7.2 Hz, 2H), 2.39 (s, 3H), 2.21 (td, J = 8.0, 1.6 Hz, 2H), 2.06-1.99 (m, 1H), 1.80 (d, J = 11.6 Hz, 2H), 1.57 (qd, J = 12.0, 7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ = 159.7, 143.4, 143.3, 132.8,
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
132.7, 130.3, 129.5, 129.4, 128.5, 127.6, 127.2, 126.4, 125.9, 125.4, 123.4, 122.4, 121.8, 46.3, 41.4, 35.3, 31.6, 21.4 ppm; IR (KBr): υmax 2920, 2850, 1573, 1459, 1333, 1161 cm-1; HRMS (ESI) calcd for C26H27N2O2S [M+H]+ 431.1788, found 431.1789. 6-((Tetrahydro-2H-pyran-4-yl)methyl)phenanthridine (3j): Colorless oil (62%, 51.5 mg); Rf 0.16 (EtOAc/petroleum ether = 1:5); 1H NMR (400 MHz, CDCl3): δ = 8.64 (d, J = 8.0 Hz, 1H), 8.54 (d, J = 8.0 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H), 8.13 (dd, J = 8.4, 0.8 Hz, 1H), 7.83 (td, J = 8.4, 1.2 Hz, 1H), 7.74-7.68 (m, 2H), 7.62 (td, J = 8.4, 1.2 Hz, 1H), 3.95 (dd, J = 12.0, 2.8 Hz, 2H), 3.36 (td, J = 11.6, 2.4 Hz, 2H), 3.31 (d, J = 7.2 Hz, 2H), 2.37-2.26 (m, 1H), 1.67-1.53 (m, 4H); 13C NMR (100 MHz, CDCl3): δ = 160.2, 143.5, 132.8, 130.3, 129.6, 128.6, 127.2, 126.4, 126.2, 125.6, 123.5, 122.5, 121.9, 68.0, 42.6, 35.6, 33.3 ppm; IR (KBr): υmax 2921, 2841, 1578, 1445, 1362 cm-1; HRMS (ESI) calcd for C19H20NO [M+H]+ 278.1539, found 278.1552. 6-((4,4-Difluorocyclohexyl)methyl)phenanthridine (3k): Colorless oil (65%, 60.6 mg); Rf 0.2 (EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.65 (d, J = 8.0 Hz, 1H), 8.55 (d, J = 8.0 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.84 (t, J = 8.0 Hz, 1H), 7.75-7.68 (m, 2H), 7.63 (t, J = 8.0 Hz, 1H), 3.31 (d, J = 7.2 Hz, 2H), 2.22-2.05 (m, 3H), 1.87-1.83 (m, 2H), 1.79-1.50 (m, 4H); 13C NMR (100 MHz, CDCl3): δ = 160.4, 143.5, 132.8, 130.3, 129.6, 128.6, 127.3, 126.4, 126.1, 125.5, 123.6 (dd, J = 238.3, 240.5 Hz), 123.5, 122.5, 121.9, 41.3 (d, J = 2.2 Hz), 36.1, 33.4 (dd, J = 22.5, 22.4 Hz), 29.2 (d, J = 9.5 Hz) ppm; IR (KBr): υmax 2932, 2860, 1612, 1584, 1448, 1358, 1112 cm-1; HRMS (ESI) calcd for C20H20F2N [M+H]+ 312.1558, found 312.1556. 6-Isobutylphenanthridine (3l): (known compound)12b Colorless oil (52%, 36.7 mg); Rf 0.3 (EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.64 (d, J = 8.4 Hz, 1H), 8.54
ACS Paragon Plus Environment
Page 14 of 24
Page 15 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(dd, J = 8.0, 0.8 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.15 (dd, J = 8.0, 0.8 Hz, 1H), 7.82 (td, J = 8.4, 1.2 Hz, 1H), 7.74-7.66 (m, 2H), 7.62 (td, J = 8.4, 1.2 Hz, 1H), 3.26 (d, J = 7.2 Hz, 2H), 2.45-2.33 (m, 1H), 1.05 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ = 161.6, 143.7, 132.8, 130.2, 129.6, 128.5, 127.1, 126.5, 126.2, 125.6, 123.5, 122.4, 121.9, 44.9, 29.2, 22.9 ppm; IR (KBr): υmax 2922, 1611, 1571, 1526, 1461, 1360 cm-1; HRMS (ESI) calcd for C17H18N [M+H]+ 236.1434, found 236.1429. 6-(2-Ethylhexyl)phenanthridine (3m): Colorless oil (63%, 55.0 mg); Rf 0.3 (EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.65 (d, J = 8.0 Hz, 1H), 8.55 (dd, J = 8.0, 0.8 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.13 (dd, J = 8.0, 0.8 Hz, 1H), 7.83 (td, J = 8.4, 1.2 Hz, 1H), 7.74-7.67 (m, 2H), 7.62 (td, J = 8.4, 1.6 Hz, 1H), 3.35-3.26 (m, 2H), 2.13-2.06 (m, 1H), 1.49-1.38 (m, 5H), 1.29-1.23 (m, 3H), 0.93 (t, J = 7.6 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ = 161.8, 143.7, 132.9, 130.1, 129.7, 128.5, 127.1, 126.4, 126.2, 125.6, 123.5, 122.4, 121.8, 40.8, 39.6, 32.9, 28.8, 26.1, 23.1, 14.1, 10.9 ppm; IR (KBr): υmax 2925, 1584, 1574, 1460, 1377, 1362 cm-1; HRMS (ESI) calcd for C21H26N [M+H]+ 292.2060, found 292.2051. 6-(2-(4-Chlorophenoxy)ethyl)phenanthridine (3n): White solid (54%, 51.7 mg), mp = 152-154 o
C; Rf 0.2 (EtOAc/petroleum ether = 1:10); 1H NMR (400 MHz, CDCl3): δ = 8.67 (d, J = 8.4 Hz,
1H), 8.57 (d, J = 8.4 Hz, 1H), 8.33 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.88-7.85 (m, 1H), 7.75-7.63 (m, 3H), 7.22 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 9.2 Hz, 2H), 4.65 (t, J = 7.2 Hz, 2H), 3.86 (t, J = 7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ = 158.2, 157.5, 143.6, 132.8, 130.5, 129.7, 129.3, 128.7, 127.4, 126.7, 126.1, 125.6, 125.5, 123.7, 122.5, 122.0, 115.9, 67.1, 34.9 ppm; IR (KBr): υmax 1588, 1492, 1244, 1096, 1018 cm-1; HRMS (ESI) calcd for C21H17ClNO [M+H]+ 334.0993, found 334.0995.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
6-(2-Phenoxyethyl)phenanthridine (3o): White solid (79%, 67.6 mg), mp = 140-142 oC; Rf 0.2 (EtOAc/petroleum ether = 1:10); 1H NMR (400 MHz, CDCl3): δ = 8.66 (d, J = 8.4 Hz, 1H), 8.56 (d, J = 8.0 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.86 (t, J = 8.0 Hz, 1H), 7.75-7.63 (m, 3H), 7.29 (t, J = 8.4 Hz, 2H), 6.98-6.93 (m, 3H), 4.68 (t, J = 7.2 Hz, 2H), 3.88 (t, J = 7.2 Hz, 2H);
13
C NMR (100 MHz, CDCl3): δ = 158.8, 158.5, 143.6, 132.8, 130.5, 129.7, 129.4,
128.6, 127.4, 126.6, 126.2, 125.6, 123.7, 122.4, 121.9, 120.7, 114.6, 66.7, 35.2 ppm; IR (KBr): υmax 1585, 1495, 1245, 1031 cm-1; HRMS (ESI) calcd for C21H18NO [M+H]+ 300.1383, found 300.1389. 6-(4-Chlorophenethyl)phenanthridine (3p): (known compound)3d Yellow oil (32%, 30.4 mg); Rf 0.2 (EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.66 (d, J = 8.4 Hz, 1H), 8.56 (dd, J = 8.0, 0.8 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 8.15 (dd, J = 8.0, 0.8 Hz, 1H), 7.84 (td, J = 8.0, 1.2 Hz, 1H), 7.76-7.63 (m, 3H), 7.31-7.26 (m, 4H), 3.67-3.63 (m, 2H), 3.30-3.25 (m, 2H); 13
C NMR (100 MHz, CDCl3): δ = 160.4, 143.6, 140.4, 132.9, 131.7, 130.4, 129.9, 129.6, 128.6,
128.5, 127.3, 126.5, 125.8, 125.1, 123.6, 122.6, 121.9, 37.5, 34.0 ppm. HRMS (ESI) calcd for C21H17ClN [M+H]+ 318.1044, found 318.1043. 6-(Pent-4-en-1-yl)phenanthridine (3q): Colorless oil (13%); Rf 0.23 (EtOAc/petroleum ether = 1:20); 1H NMR (400 MHz, CDCl3): δ = 8.65 (d, J = 8.4 Hz, 1H), 8.55 (dd, J = 8.0, 0.8 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.12 (dd, J = 8.0, 0.8 Hz, 1H), 7.86-7.82 (m, 1H), 7.74-7.68 (m, 2H), 7.65-7.60 (m, 1H), 5.98-5.88 (m, 1H), 5.12-5.07 (m, 1H), 5.04-5.01 (m, 1H), 3.41-3.37 (m, 2H), 2.30 (q, J = 7.2 Hz, 2H), 2.08-2.01 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 162.1, 143.7, 138.4, 132.9, 130.3, 129.6, 128.6, 127.2, 126.3, 125.2, 123.6, 122.5, 121.9, 115.1, 35.7, 33.9, 28.6 ppm; IR (KBr): υmax 2923, 1584, 1466, 1458, 1363, 1090, 1020, 799, 757, 724 cm-1; HRMS (ESI) calcd
ACS Paragon Plus Environment
Page 16 of 24
Page 17 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
for C18H18N [M+H]+ 248.1434, found 248.1427. 3-Fluoro-6-((1-tosylpiperidin-4-yl)methyl)phenanthridine (4a): White solid (78%, 104.8 mg), mp = 204-206 oC; Rf 0.4 (EtOAc/petroleum ether = 1:3); 1H NMR (400 MHz, CDCl3): δ = 8.56 (d, J = 8.4 Hz, 1H), 8.50 (dd, J = 8.8, 5.6 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.83 (t, J = 7.2 Hz, 1H), 7.70 (dd, J = 10.0, 2.4 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.38 (td, J = 8.4, 2.4 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 3.78 (d, J = 12.0 Hz, 2H), 3.26 (d, J = 7.2 Hz, 2H), 2.42 (s, 3H), 2.24 (td, J = 12.0, 2.0 Hz, 2H), 2.10-2.02 (m, 1H), 1.81 (d, J = 11.6 Hz, 2H), 1.62-1.52 (m, 2H);
13
C NMR (100 MHz, CDCl3): δ = 162.6 (JC-F = 246.4 Hz), 161.3, 144.8 (JC-F = 11.5 Hz),
143.4, 133.1, 132.6, 130.8, 129.5, 127.7, 127.1, 126.1, 125.1, 123.8 (JC-F = 9.5 Hz), 122.3, 120.2, 115.5 (JC-F = 23.6 Hz), 114.1 (JC-F = 20.4 Hz), 46.4, 41.4, 35.3, 31.7, 21.5 ppm; IR (KBr): υmax 2914, 1583, 1485, 1333, 1160, 931, 727 cm-1; HRMS (ESI) calcd for C26H26FN2O2S [M+H]+ 449.1694, found 449.1696. 3-Chloro-6-((1-tosylpiperidin-4-yl)methyl)phenanthridine (4b): White solid (68%, 94.7 mg), mp = 218-220 oC; Rf 0.4 (EtOAc/petroleum ether = 1:3); 1H NMR (400 MHz, CDCl3): δ = 8.55 (d, J = 8.4 Hz, 1H), 8.43 (dd, J = 8.8, 3.6 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.05 (s, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.56 (dd, J = 8.8, 2.4 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 3.78 (d, J = 11.6 Hz, 2H), 3.24 (d, J = 6.8 Hz, 2H), 2.41 (s, 3H), 2.24 (td, J = 11.6, 1.6 Hz, 2H), 2.14-2.09 (m, 1H), 1.82 (d, J = 12.4 Hz, 2H), 1.61-1.51 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 161.1, 144.2, 143.4, 134.2, 133.0, 132.4,130.8, 129.5, 128.8, 127.7, 127.6, 127.0, 126.1, 125.4, 123.3, 122.4, 122.0, 46.4, 41.3, 35.1, 31.7, 21.5 ppm; IR (KBr): υmax 2920, 1593, 1446, 1330, 1157, 939, 722 cm-1; HRMS (ESI) calcd for C26H26ClN2O2S [M+H]+ 465.1398, found 465.1400.
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
3-Bromo-6-((1-tosylpiperidin-4-yl)methyl)phenanthridine (4c): White solid (63%, 90.0 mg), mp = 221-223 oC; Rf 0.4 (EtOAc/petroleum ether = 1:3); 1H NMR (400 MHz, CDCl3): δ = 8.58 (d, J = 8.0 Hz, 1H), 8.38 (d, J = 8.8 Hz, 1H), 8.23 (d, J = 2.0 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.84 (td, J = 8.4, 1.2 Hz, 1H), 7.72-7.67 (m, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.78 (d, J = 11.6 Hz, 2H), 3.25 (d, J = 7.2 Hz, 2H), 2.42 (s, 3H), 2.24 (td, J = 12.0, 2.4 Hz, 2H), 2.12-2.04 (m, 1H), 1.82 (d, J = 11.2 Hz, 2H), 1.62-1.51 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 161.1, 144.5, 143.4, 133.0, 132.4, 132.1, 130.8, 129.6, 129.5, 127.7, 126.1, 125.5, 123.5, 122.4, 122.3, 46.4, 41.3, 35.1, 31.7, 21.5 ppm; IR (KBr): υmax 2920, 1597, 1447, 1331, 1159, 940, 721 cm-1; HRMS (ESI) calcd for C26H26BrN2O2S [M+H]+ 509.0893, found 509.0907. 6-((1-Tosylpiperidin-4-yl)methyl)phenanthridine-3-carbonitrile (4d): White solid (47%, 90.0 mg), mp = 215-217 oC; Rf 0.14 (EtOAc/petroleum ether = 1:3); 1H NMR (400 MHz, CDCl3): δ = 8.63 (d, J = 8.0 Hz, 1H), 8.60 (d, J = 8.4 Hz, 1H), 8.38 (d, J = 1.2 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.91 (t, J = 7.2 Hz, 1H), 7.81-7.77 (m, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.79 (d, J = 11.6 Hz, 2H), 3.28 (d, J = 6.8 Hz, 2H), 2.42 (s, 3H), 2.26 (td, J = 12.0, 2.0 Hz, 2H), 2.17-2.08 (m, 1H), 1.84 (d, J = 11.6 Hz, 2H), 1.62-1.52 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 162.0, 143.4, 142.8, 134.7, 133.0, 131.7, 131.2, 129.6, 129.1, 128.0, 127.7, 126.8, 126.4, 126.2, 123.3, 123.0, 118.7, 111.8, 46.4, 41.3, 34.8, 31.7, 21.5 ppm; IR (KBr): υmax 2226, 1634, 1401, 1165, 728 cm-1; HRMS (ESI) calcd for C27H26N3O2S [M+H]+ 456.1740, found 456.1734. 3-Methyl-6-((1-tosylpiperidin-4-yl)methyl)phenanthridine (4e): White solid (53%, 70.6 mg), mp = 184-186 oC; Rf 0.4 (EtOAc/petroleum ether = 1:3); 1H NMR (400 MHz, CDCl3): δ = 8.59 (d, J = 8.0 Hz, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.86 (s, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.45 (dd, J = 8.0, 1.2 Hz, 1H), 7.29 (d, J =
ACS Paragon Plus Environment
Page 18 of 24
Page 19 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
8.4 Hz, 2H), 3.76 (d, J = 11.6 Hz, 2H), 3.25 (d, J = 7.2 Hz, 2H), 2.57 (s, 3H), 2.41 (s, 3H), 2.22 (td, J = 12.0, 2.4 Hz, 2H), 2.08-1.99 (m, 1H), 1.80 (d, J = 11.6 Hz, 2H), 1.62-1.52 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 159.8, 143.6, 143.3, 138.8, 133.1, 132.9, 130.3, 129.5, 129.2, 128.2, 127.7, 126.8, 126.0, 125.2, 122.3, 121.7, 121.1, 46.4, 41.5, 35.5, 31.7, 21.5 ppm; IR (KBr): υmax 2914, 1587, 1445, 1334, 1160, 931, 730 cm-1; HRMS (ESI) calcd for C27H29N2O2S [M+H]+ 445.1944, found 445.1940. 1-Fluoro-6-((1-tosylpiperidin-4-yl)methyl)phenanthridine (4f): White solid (72%, 96.8 mg), mp = 201-203 oC; Rf 0.4 (EtOAc/petroleum ether = 1:3); 1H NMR (400 MHz, CDCl3): δ = 9.03 (dd, J = 8.4, 2.4 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.84 (t, J = 8.0 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 7.64-7.58 (m, 3H), 7.35-7.28 (m, 3H), 3.78 (d, J = 11.6 Hz, 2H), 3.26 (d, J = 7.2 Hz, 2H), 2.40 (s, 3H), 2.23 (td, J = 12.0, 2.0 Hz, 2H), 2.10-2.01 (m, 1H), 1.81 (d, J = 11.6 Hz, 2H), 1.62-1.52 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 160.8, 160.3 (JC-F = 253.1 Hz), 145.4 (JC-F = 2.7 Hz), 143.3, 133.0, 130.9 (JC-F = 1.8 Hz), 130.8 (JC-F = 5.0 Hz), 129.5, 128.0 (JC-F = 10.8 Hz), 127.7, 127.6, 127.4, 125.8, 125.7, 125.6 (JC-F = 3.2 Hz), 113.3 (JC-F = 8.7 Hz), 112.9 (JC-F = 24.0 Hz), 46.4, 41.5, 35.1, 31.7, 21.5 ppm; IR (KBr): υmax 2918, 1587, 1445, 1335, 1262, 1162, 813 cm-1; HRMS (ESI) calcd for C26H26FN2O2S [M+H]+ 449.1694, found 449.1703. 8-Fluoro-6-((1-tosylpiperidin-4-yl)methyl)phenanthridine (4g): White solid (80%, 107.5 mg), mp = 191-193 oC; Rf 0.4 (EtOAc/petroleum ether = 1:3); 1H NMR (400 MHz, CDCl3): δ = 8.57 (dd, J = 9.2, 5.6 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 1.2 Hz, 1H), 7.73-7.65 (m, 2H), 7.62-7.58 (m, 3H), 7.53 (td, J = 8.8, 2.4 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 3.77 (d, J = 11.6 Hz, 2H), 3.16 (d, J = 7.2 Hz, 2H), 2.39 (s, 3H), 2.25-2.20 (m, 2H), 2.04-2.00 (m, 1H), 1.80 (d, J = 12.0 Hz, 2H), 1.60-1.52 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 161.2 (JC-F = 246.7 Hz), 158.7 (JC-F
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
= 3.8 Hz), 143.3, 143.0, 132.9, 129.6, 129.5, 129.4 (JC-F = 1.8 Hz), 128.4, 127.6, 126.8, 126.6 (JC-F = 7.4 Hz), 125.0 (JC-F = 8.4 Hz), 122.9, 121.6, 119.4 (JC-F = 23.5 Hz), 110.4 (JC-F = 21.2 Hz), 46.3, 41.4, 34.9, 31.5, 21.4 ppm; IR (KBr): υmax 2918, 1574, 1533, 1476, 1334, 1162, 931, 725 cm-1; HRMS (ESI) calcd for C26H25FN2NaO2S [M+Na]+ 471.1513, found 471.1520. 8-Methoxy-6-((1-tosylpiperidin-4-yl)methyl)phenanthridine (4h): White solid (68%, 93.8 mg), mp = 180-182 oC; Rf 0.18 (EtOAc/petroleum ether = 1:3); 1H NMR (400 MHz, CDCl3): δ = 8.52 (d, J = 8.8 Hz, 1H), 8.42 (dd, J = 8.0, 1.2 Hz, 1H), 8.02 (dd, J = 8.0, 1.2 Hz, 1H), 7.65-7.56 (m, 4H), 7.46-7.42 (m, 2H), 7.28 (d, J = 8.4 Hz, 2H), 3.96 (s, 3H), 3.77 (d, J = 11.6 Hz, 2H), 3.20 (d, J = 7.2 Hz, 2H), 2.40 (s, 3H), 2.23 (td, J = 12.0, 2.0 Hz, 2H), 2.10-2.03 (m, 1H), 1.83 (d, J = 12.8 Hz, 2H), 1.62-1.52 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 158.8, 158.5, 143.3, 142.6, 132.9, 129.5, 129.4, 127.6, 127.5, 127.0, 126.8, 126.5, 124.2, 123.5, 121.4, 120.2, 106.6, 55.5, 46.4, 41.4, 35.1, 31.7, 21.4 ppm; IR (KBr): υmax2920, 1726, 1618, 1535, 1337, 1163, 1045, 933, 727cm-1; HRMS (ESI) calcd for C27H29N2O3S [M+H]+ 461.1893, found 461.1894. 9-Chloro-6-((1-tosylpiperidin-4-yl)methyl)phenanthridine (4i): White solid (67%, 93.3 mg), mp = 206-208 oC; Rf 0.4 (EtOAc/petroleum ether = 1:3); 1H NMR (400 MHz, CDCl3): δ = 8.57 (s, 1H), 8.43 (d, J = 8.0 Hz, 1H), 8.10-8.04 (m, 2H), 7.72 (dd, J = 8.0, 1.2 Hz, 1H), 7.65-7.59 (m, 4H), 7.29 (d, J = 8.0 Hz, 2H), 3.77 (d, J = 11.6 Hz, 2H), 3.23 (d, J = 7.2 Hz, 2H), 2.41 (s, 3H), 2.23 (td, J = 12.0, 2.0 Hz, 2H), 2.05-1.99 (m, 1H), 1.80 (d, J = 12.8 Hz, 2H), 1.61-1.52 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 159.3, 143.9, 143.4, 136.9, 134.2, 133.0, 129.7, 129.5, 129.3, 127.9, 127.7, 127.6, 126.8, 123.8, 122.5, 122.2, 122.0, 46.4, 41.4, 35.4, 31.7, 21.5 ppm; IR (KBr): υmax 2920, 1582, 1335, 1162, 1095, 935, 724 cm-1; HRMS (ESI) calcd for C26H26ClN2O2S [M+H]+ 465.1398, found 465.1394.
ACS Paragon Plus Environment
Page 20 of 24
Page 21 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
6-Methylphenanthridine (5a): (known compound)12c 1H NMR (400 MHz, CDCl3): δ = 8.64 (d, J = 8.0 Hz, 1H), 8.55 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.88-7.83 (m, 1H), 7.74-7.69 (m, 2H), 7.65-7.61 (m, 1H), 3.06 (s, 3H); 13C NMR (100 MHz, CDCl3): δ = 143.4, 133.3, 129.5, 127.7, 78.4, 59.7, 44.9, 40.1, 34.3, 31.1, 21.5, 20.1,17.1 ppm. 2,2,6,6-Tetramethyl-1-[1-(toluene-4-sulfonyl)-piperidin-4-yloxy]-piperidine (6a): (known compound)5a 1H NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 3.63-3.53 (m, 3H), 2.45-2.39 (m, 5H), 2.05-2.01 (m, 2H), 1.69-1.52 (m, 3H), 1.42-1.41 (d, J = 4.0 Hz, 4H), 1.30 (m, 1H), 1.04 (s, 12H); 13C NMR (100 MHz, CDCl3): δ = 158.9, 143.7, 132.6, 130.5, 129.4, 128.6, 127.3, 126.6, 126.3, 125.9, 123.8, 122.3, 121.9, 23.4 ppm. 3-([1,1'-Biphenyl]-2-yl)-2H-azirine (7a): Colorless oil; Rf 0.35 (EtOAc/petroleum ether = 1:20); 1
H NMR (400 MHz, CDCl3): δ = 8.03 (d, J = 7.6 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.57-7.51 (m,
2H), 7.42 (s, 3H), 7.37 (s, 1H), 1.50 (s, 2H); 13C NMR (100 MHz, CDCl3): δ = 166.1, 143.8, 138.6, 132.4, 130.7, 130.3, 129.7, 127.9, 127.7, 123.3, 21.8 ppm; IR (KBr): υmax 3035, 2974, 1738, 1595, 1475, 1461, 1450 1434, 1260, 1074, 1046, 996, 801, 776, 739, 699 cm-1; HRMS (ESI) calcd for C14H12N [M+H]+ 194.0964, found 194.0963. ASSOCIATED CONTENT Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc. XXXXX 1
H and 13C spectra of all new compounds; the primary mechanistic studies of the reactions.
AUTHOR INFORMATION Corresponding Author
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
*E-mail:
[email protected] ORCID Li-Na Guo: 0000-0002-9789-6952 ACKNOWLEDGMENTS Financial support from Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JZ002), National Natural Science Foundation of China (No. 21602168) and the Fundamental Research Funds of the Central Universities (No. zrzd2017001, xjj2016056 and 2015qngz17) are greatly appreciated. REFERENCE (1) (a) Kock, I.; Heber, D.; Weide, Ma.; Wolschendorf, U.; Clement, B. J. Med. Chem. 2005, 48, 2772. (b) Bernardo, P. H.; Wan, K. F.; Sivaraman, T.; Xu, J.; Moore, F. K.; Hung, A. W.; Mok, H. Y. K.; Yu, V. C.; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699. (c) Stojkovic, M. R.; Marczi, S.; Obrovac, L. G.; Piantanida, I. Eur. J. Med. Chem. 2010, 45, 3281. (d) Naidu, K. M.; Nagesh, H. N.; Singh, M.; Sriram, D.; Yogeeswari, P.; Chandra Sekhar, K. V. G. Eur. J. Med. Chem. 2015, 92, 415. For some reviews concerning phenanthridines synthesis see: (e) Tumir, L.-M.; Stojković, M. R.; Piantanida, I. Beilstein J. Org. Chem. 2014, 10, 2930. (f) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505. (2) (a) Walton, J. C. Acc. Chem. Res. 2014, 47, 1406. (b) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2008, 73, 5558. (c) McBurney, R. T.; Slawin, A. M. Z.; Smart, L. A.; Yu, Y.; Walton, J. C. Chem. Commun. 2011, 47, 7974. (d) Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem. Int. Ed. 2015, 54, 4055. (e) An, X.-D.; Yu, S. Org. Lett. 2015, 17, 2692. (3) (a) Wang, Y.-F.; Lonca, G. H.; Le Runigo, M.; Chiba, S. Org. Lett. 2014, 16, 4272. (b) Mackay,
ACS Paragon Plus Environment
Page 22 of 24
Page 23 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
E. G.; Studer, A. Chem. Eur. J. 2016, 22, 13455. (c) Sun, X.; Yu, S. Chem. Commun. 2016, 52, 10898. (d) Yang, J.-C.; Zhang J.-J.; Guo, L.-N. Org. Biomol. Chem. 2016, 14, 9806. (e) Tang, J.; Sivaguru, P.; Ning, Y.; Zanoni, G.; Bi, X. Org. Lett. 2017, 19, 4026. (f) Jin, Y.; Jiang, M.; Wang, H.; Fu, H. Sci. Rep. 2016, 6, 20068. (4) For selected examples, see: (a) Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401. (b) Schnermann, M. J.; Overman, L. E. Angew. Chem. Int. Ed. 2012, 51, 9576. (c) Pratsch, G.; Lackner, G. L.; Overman, L. E. J. Org. Chem. 2015, 80, 6025. (d) Hu, C.; Chen, Y. Org. Chem. Front. 2015, 2, 1352. (e) Schwarz, J.; König, B. Green Chem. 2016, 18, 4743. (f) Jin, Y.; Yang, H.; Fu, H. Chem. Commun. 2016, 52, 12909. (g) Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907. (h) Tlahuext-Aca, A.; Garza-Sanchez, R. A.; Glorius, F. Angew. Chem. Int. Ed. 2017, 56, 3708. (5) (a) Zhang, J.-J.; Yang, J.-C.; Guo, L.-N.; Duan, X.-H. Chem. Eur. J. 2017, 23, 10259. (b) Recently, a very similar work was reported by Xu and co-workers, see: Xu, K.; Tan, Z.; Zhang, H.; Liu, J.; Zhang, S.; Wang, Z. Chem. Commun. 2017, 53, 10719. (6) (a) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174. (b) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801. (c) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature 2017, 545, 213. (7) (a) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J.; J. Am. Chem. Soc. 2016, 138,
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
5016. (b) Suzuki, N.; Hofstra, J. L.; Poremba, K. E.; Reisman, S. E. Org. Lett. 2017, 19, 2150. (8) (a) Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.; Yu, A.W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S. Science 2017, 356, 1045. (b) Hu, D.; Wang, L.; Li, P. Org. Lett. 2017, 19, 2770. (c) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283. (9) Tang, Q.; Liu, X.; Liu, S.; Xie, H.; Liu, W.; Zeng, J.; Cheng, P. RSC Adv. 2015, 5, 89009. (10) For recent reviews concerning application of organic dyes as photocatalyst, see: (a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355. (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. (c) Arias-Rotondo, D. M.; McCusker, J. K. Chem. Soc. Rev. 2016, 45, 5803. (d) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433. (11) For some elegant studies concerning mechanism of photocatalytic reactions, see: (a) Majek, M.; Filace, F.; Wangelin, A. J. Beilstein J. Org. Chem. 2014, 10, 981. (b) Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426. Although the exact role of TMEDA remains unclear at present. According to the UV/vis studies and the previous studies (Refs. 3 and 11), we believed that TMEDA probably served as an activator in this reaction. Eosin Y could be converted into the active species (the monoanionic or dianionic forms) by TMEDA via an acid-base equilibration process. Thus, stoichiometric amount of TMEDA is helpful to improve the yield. For the detailed UV/vis studies on the reaction mixture of TMEDA with photocatalyst, see the SI, Figure S8 and Figure S9. (12) (a) Liang, Z.; Ju, L.; Xie, Y.; Huang, L.; Zhang, Y. Chem. - Eur. J. 2012, 18, 15816. (b) Buu-Hoï, N. P.; Jaquignon, P.; Long, C. T. J. Chem. Soc. 1957, 505. (c) Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem. Int. Ed. 2009, 48, 572.
ACS Paragon Plus Environment
Page 24 of 24