9 Mineral Transformations during Ashing of Selected Low-Rank Coals S. K . Falcone and H. H. Schobert
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
Energy Research Center, University of North Dakota, University Station, Grand Forks, ND 58202
Inorganic species are present within low-rank coals as ion-exchangeable cations, as coordination complexes, and as discrete minerals. Variations in the inorganic associations of cations affects their relative reactivity and the processes associated with their formation of high temperature minerals. Twelve coals representing the Northern Great Plains and Gulf Coast were ashed 125°C, 750°C, and 1000°C in an oxidizing atmosphere. Each sample was then analyzed for its mineral composition by x-ray diffraction. In addition, model mixtures simulating raw coal mineralogies and organically-bound calcium and sodium were heated to 750°C and 1000°C for comparison to actual coal ashes. The processes responsible for most of the reactions identified were oxidation, dehydration, sulfur fixation, solid-state interactions and vaporization. In addition, i t was determined that organically-bound cations, specifically calcium and sodium, were more reactive than cations bound in mineral form in producing new mineral species with pre-existing minerals.
I n o r g a n i c s p e c i e s a r e i n c o r p o r a t e d i n l o w - r a n k c o a l s i n many w a y s : as i o n - e x c h a n g e a b l e c a t i o n s , a s c o o r d i n a t i o n c o m p l e x e s , and as a diverse array of discrete minerals. I n some c a s e s a n e l e m e n t w i l l be p r e s e n t i n m o r e t h a n o n e f o r m ; p o t a s s i u m , f o r e x a m p l e , o c c u r s both as an e x c h a n g e a b l e cation and i n a s s o c i a t i o n with clay minerals. The v a r i a t i o n i n a s s o c i a t i o n o f i n o r g a n i c s among t h e m u l t i p l e modes o f o c c u r r e n c e r e s u l t s i n a v e r y c o m p l e x s e r i e s o f reactions and mineral transformations when low-rank coals are ashed. In l o w - r a n k c o a l u t i l i z a t i o n p r o c e s s e s t h e b e h a v i o r o f t h e inorganic components c a n be a t l e a s t as important t o e f f e c t i v e
0097-6156/ 86/ 0301 -0114S06.00/ 0 § 1986 American Chemical Society
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
9.
FALCONE A N D SCHOBERT
Mineral
Transformations
during
115
Ashing
o p e r a t i o n as t h e b e h a v i o r o f t h e c a r b o n a c e o u s p o r t i o n o f t h e c o a l . The d e t e r m i n a t i o n o f t h e e x t e n t o f t h e c h a n g e s i n b u l k c o m p o s i t i o n and i n m i n e r a l p h a s e s d u r i n g c o n t r o l l e d l a b o r a t o r y a s h i n g i s v e r y i m p o r t a n t i n d e v e l o p i n g an u n d e r s t a n d i n g o f ash b e h a v i o r d u r i n g c o a l p r o c e s s i n g and how s u c h c h a n g e s a r e r e l a t e d t o p r o c e s s c o n d i t i o n s . In t h e p a s t , m i n e r a l o g i c a l d e t e r m i n a t i o n s u s i n g ash formed a t t h e s t a n d a r d t e m p e r a t u r e o f 750°C i d e n t i f i e d m i n e r a l s w h i c h w e r e n o t o r i g i n a l l y p r e s e n t i n t h e raw c o a l but which were a r t i f a c t s o f t h e ashing procedure. T h i s was d u e t o t h e a l t e r a t i o n o f m i n e r a l s by oxidation, d e h y d r a t i o n and o t h e r p r o c e s s e s a t h i g h t e m p e r a t u r e s . R e c e n t s t u d i e s by M i l l e r e t a l QJ, F r a z e r and B e l c h e r ( 2 J , and O'Gorman and W a l k e r (_3) h a v e c o n c e n t r a t e d on r e l a t i n g raw coal m i n e r a l o g y t o a s h m i n e r a l o g y o f ash g e n e r a t e d a t low t e m p e r a t u r e s . Low-temperature ashing (LTA) theoretically would enable one to obtain the true mineralogical composition of a coal since little mineral a l t e r a t i o n occurs at t y p i c a l LTA t e m p e r a t u r e s o f 125 C. Mitchell and G l u s k o t e r (£) e x p a n d e d t h i s c o n c e p t t o s t u d y low t o h i g h t e m p e r a t u r e m i n e r a l t r a n s f o r m a t i o n s i n ash o f s u b b i t u m i n o u s and bituminous coals. W i t h f e w e x c e p t i o n s , t h e a p p l i c a t i o n o f LTA i n ash mineralogy studies has been primarily associated with s u b b i t u m i n o u s and b i t u m i n o u s c o a l s { $ ) . In f a c t , M i l l e r e t a l (J.) a n d F r a z e r a n d B e l c h e r {2) s t a t e t h a t L T A may b e u n s u i t a b l e for obtaining the o r i g i n a l mineralogy in l i g n i t e s without appropriate pretreatment. This problem is due t o t h e h i g h o r g a n i c oxygen content with associated inorganic exchangeable cations characteristic of lignites. The presence of organically-bonded inorganics d r a s t i c a l l y increases the ashing time, thereby increasing t h e c h a n c e s o f m i n e r a l a l t e r a t i o n by o x i d a t i o n . In a d d i t i o n , t h e r e l e a s e o f o r g a n i c a l l y - b o u n d c a t i o n s and o r g a n i c s u l f u r i n c o n t a c t w i t h m i n e r a l m a t t e r can a l t e r t h e o r i g i n a l c o a l m i n e r a l o g y w i t h an extended period of low-temperature ashing. W
The purpose of this study was to identify mineral transformations occurring d u r i n g l o w and h i g h t e m p e r a t u r e ashing (125°, 750°, and 1 0 0 0 C ) of low-rank coals and t o examine the processes responsible f o r the mineral transformations. Twelve lowrank c o a l s were s e l e c t e d from t h e n o r t h e r n G r e a t P l a i n s and G u l f Coast. Nine North Dakota l i g n i t e s , two G u l f Coast (Texas and Alabama) lignites, and one s u b b i t u m i n o u s c o a l from Montana were studied (Table I ) . In a d d i t i o n , model m i x t u r e s o f i n o r g a n i c compounds simulating those inorganics c h a r a c t e r i s t i c a l l y found i n low-rank c o a l s were a l s o h e a t e d t o 750° a n d 1000°C. M i n e r a l s used i n t h e model m i x t u r e s t u d i e s i n c l u d e d c a l c i t e , k a o l i n i t e , q u a r t z and p y r i t e . C a l c i u m and s o d i u m a c e t a t e s w e r e u s e d t o s i m u l a t e o r g a n i c a l l y - b o u n d c a l c i u m and sodium. Sodium s u l f a t e was also used as a s o d i u m and sulfur source. Two-, threeand four-component systems were examined varying the molar r a t i o s of the c o n s t i t u e n t s . In t h i s m a n n e r t h e interaction of minerals and o r g a n i c a l l y - b o u n d inorganics can be traced during the heating process. Of p a r t i c u l a r i n t e r e s t was t h e s i m u l a t i o n of high temperature processes responsible for forming f e l d s p a t h i c a l u m i n o s i l i c a t e s c h a r a c t e r i s t i c o f m i n e r a l s f o r m e d when ashing low-rank c o a l s . The model s y s t e m s d i s c u s s e d a r e p r e s e n t e d i n Table I I . W
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 1.06 0.86 1.09 2.86 0.71 1.11 3.58 0.56
Choctaw, Alabama McLean C o . , N o r t h D a k o t a Bowman C o . , N o r t h D a k o t a Bowman C o . , N o r t h D a k o t a
Mercer C o . , North Dakota P i k e County, Alabama A t a s c o s a C o . , Texas McHenry C o . , N o r t h D a k o t a
Al
0.49 0.66 1.06 0.33
0.49 0.50 0.73 0.87
1.61 0.54 0.29 0.44
Fe
Raw
0.68 0.36 0.47 0.26
1.87 0.48 0.25 0.39
2.58 1.02 0.52 0.89
+ + +
+ +
1.56 1.77 1.20 0.98
0.84 2.60 2.28 1.74
0.37 1.57 1.81 1.70
specified.
0.97 0.11 ND 0.11
0.56 0.91 0.38 0.59
0.08 1.18 0.67 0.94
Mg*
Ca
Coals
(Percent)+
of
C o n c e n t r a t i o n s m e a s u r e d by x - r a y f l u o r e s c e n c e ( X R F ) u n l e s s o t h e r w i s e A11 coals are l i g n i t e s except f o r Absaloka subbituminous. A b s a l o k a c o a l a n a l y s i s c o m p l e t e l y b y NAA. • C o n c e n t r a t i o n s m e a s u r e d by n e u t r o n a c t i v a t i o n a n a l y s e s ( N A A ) . NA ( N o t A v a i l a b l e ) ND ( N o t D e t e c t e d )
I n d i a n Head Pike San M i g u e l Velva
Blue Red
+ + +
Choctaw Falkirk Gascoyne Gascoyne
Si 3.5 0.90 0.35 0.66
Locality
B i g Horn C o . , Montana Mercer C o . , North Dakota Mercer C o . , North Dakota O l i v e r C o . , North Dakota
Name
and M i n o r E l e m e n t s
Inorganic Analyses
Absaloka B e u l a h Low S o d i u m B e u l a h High Sodium Center
Coal
I.
Major
Table
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
0.62 NA 0.60 0.09
0.09 0.01 0.27 0.13
0.33 0.14 0.46 0.40
Na*
0.44 2.28 1.88 NA
2.50 0.55 0.93 1.12
3.92 2.01 0.75 0.65
0.12 0.10 0.35 0.05
0.10 0.15 0.14 0.13
0.12 0.09 ND 0.08
Ti
0.04 0.65 0.08 0.02
0.04 0.04 0.05 0.12
0.06 0.05 0.06 0.32
Ba*
0.05 NA NA 0.03
ND 0.02 0.13 0.06
0.03 0.02 0.04 0.04
9.
F A L C O N E A N D SCHOBERT
Mineral
Transformations
during
Ashing
117
Experimental
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
T h e m i n e r a l m a t t e r c o m p o s i t i o n o f e a c h c o a l s a m p l e was d e t e r m i n e d d i r e c t l y b y X - r a y d i f f r a c t i o n (XRD) o f l o w t e m p e r a t u r e a s h ( L T A ) . A L F E M o d e l 5 0 4 f o u r - c h a m b e r o x y g e n p l a s m a l o w t e m p e r a t u r e a s h e r was used. The a s h i n g p r o c e d u r e s u s e d w e r e m o d i f i e d f r o m M i l l e r a n d G i v e n s * t e c h n i q u e {§) f o r l o w t e m p e r a t u r e a s h i n g o f s u b b i t u m i n o u s and b i t u m i n o u s c o a l s . One s e t o f s a m p l e s was i o n - e x c h a n g e d i n 1M ammonium a c e t a t e a t 70°C f o r 2 4 h o u r s a n d f r e e z e - d r i e d p r i o r t o low temperature ashing. T h i s p r o c e d u r e was r e p e a t e d t w i c e t o e n s u r e removal o f i o n - e x c h a n g e a b l e c a t i o n s . A n o t h e r , b u t u n t r e a t e d , sample s e t was a l s o a s h e d . P r e l i m i n a r y c o m p a r i s o n o f sample s e t s showed the exchanged samples t o have lower ashing time and identical mineralogy except f o r t h e presence of b a s s a n i t e i n non-exchanged samples. T h i s d i f f e r e n c e w i l l be d i s c u s s e d l a t e r . The L T A o p e r a t i n g p r o c e d u r e s u s e d w e r e a s f o l l o w s : a radio frequency power of approximately 150W a n d a n o x y g e n flow of 1 0 0 c c / m i n a t 2 p s i were m a i n t a i n e d a l o n g w i t h a chamber p r e s s u r e o f 1mm H g . Samples were s t i r r e d once e v e r y two hours d u r i n g t h e f i r s t e i g h t hours and e v e r y e i g h t hours d u r i n g t h e r e m a i n i n g a s h i n g t i m e . Samples were also ashed at 750 C i n accordance with ASTM p r o c e d u r e D3174-73 ( 2 ) and w i l l be r e f e r r e d t o a s ASTM s a m p l e s . S a m p l e s w e r e t h e n a s h e d a t 1000°C f o l l o w i n g t h e same p r o c e d u r e f o r 750°C c o a l a s h i n g a n d w i l l be r e f e r r e d t o a s ΗΤΑ ( h i g h t e m p e r a t u r e ash) samples. M i n e r a l s and o t h e r i n o r g a n i c s used i n model s y s t e m s A t h r o u g h J w e r e g r o u n d t o - 6 0 mesh t o m a t c h t h e p a r t i c l e s i z e o f t h e c o a l s u s e d for ashing. Samples were r a p i d l y heated t o 7 5 0 C and h e l d f o r two hours at temperature. Half o f t h e s a m p l e was r e m o v e d a n d a i r quenched. T h e r e m a i n i n g p o r t i o n o f t h e s a m p l e was r e t u r n e d t o t h e f u r n a c e a n d h e a t e d t o 1000°C, h e l d f o r t w o h o u r s , a n d t h e n a i r quenched. M i n e r a l o g i c a l c o m p o s i t i o n o f a s h s a m p l e s a n d m o d e l s y s t e m s was d e t e r m i n e d b y XRD. X - r a y f l u o r e s c e n c e ( X R F ) a n a l y s i s was a l s o u s e d f o r bulk elemental analysis of the ash. Raw c o a l a n a l y s i s was performed b y XRF a n d n e u t r o n activation (NAA). XRF e l e m e n t a l a n a l y s e s o f raw c o a l samples a r e l i s t e d i n T a b l e I . The n e u t r o n activation analyses were performed at North Carolina State University. e
W
R e s u l t s and D i s c u s s i o n M i n e r a l o g i c a l phases formed a t d i f f e r e n t temperatures f o r each coal sample a r e summarized i n T a b l e III. The m a j o r m i n e r a l phases detected b y XRD i n L T A s a m p l e s are quartz, pyrite, bassanite, k a o l i n i t e and p l a g i o c l a s e . The p r o c e s s e s r e s p o n s i b l e f o r s u b s e q u e n t mineral transformations include oxidation, vaporization, sulfur fixation, dehydration and solid-state interactions. The t e m p e r a t u r e s a t w h i c h s p e c i f i c t r a n s f o r m a t i o n s o c c u r a r e a s s i g n e d on t h e b a s i s o f p r e v i o u s e x p e r i m e n t a l work by M i t c h e l l a n d G l u s k o t e r ( 4 ) a n d p u b l i s h e d c h e m i c a l d a t a i n t h e Handbook o f C h e m i s t r y and P h y s i c s (S). In a d d i t i o n t o m i n e r a I - m i n e r a I interactions it is b e l i e v e d t h a t r e a c t i o n s b e t w e e n m i n e r a l s and e x c h a n g e a b l e cations occur (j)).
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2
2
2
3
2
5
5
2
2
+
4
4
4
2
3
2
C a ( C H 0 ) + NaC H 0 + K a o l i n i t e (Al Si 0 (0H) )
2
3
5
2
E.
2
2
2
3
NaC H 0 + K a o l i n i t e (Al Si 0 (0H) )
2
2
D.
2
Ca ( C H 0 ) 2 Kaolinite (Al Si 0 (0H) )
3
2
P y r i t e (FeS )
C.
2
C a l c i t e (CaC0 ) + P y r i t e (FeS )
3
B.
2
Ca ( C H 0 ) 2
A.
+
Compound Mixtures
Table I I .
1:1:1
1:1
1:1
1:2
1000
750
1000
750
1000
750
1000
750 3
2
4
7
4
2
3
3
4
2
2
7
4
Nepheline (NaAlSi0 ) + Gehlenite (Ca Al Si0 )
Carnegieite (NaAlSi0 )
4
Nepheline (NaAISi0 )
Amorphous + Carnegieite (NaAlSi0 )
2
3
4
4
3
Gehlenite ( C a A l S i 0 J
Amorphous + CaO
2
4
3
4
Anhydrite (CaS0 ) + C a l c i t e (CaC0 ) + Hematite ( F e 0 ) Anhydrite (CaS0 ) + Hematite ( F e 0 ) + Magnetite ( F e 0 ) + CaO
2
3
Anhydrite (CaS0 ) + Magnetite ( F e 0 J + Hematite ( F e 0 )
2
1000
4
Anhydrite (CaS0 ) + Magnetite ( F e 0 )
750
2:1
Analyzed Minerals
Temp.
Molar Ratios
3
Dehydration; i n t e r s t i t i a l i n f i l l i n g i n reordered k a o l i n i t e s t r u c t u r e I n t e r s t i t i t a l i n f i l l i n g of Ca i n reordered c l a y s t r u c t u r e ; s t r u c t u r a l transformation of sodium a l u m i n o s i l i c a t e
Dehydration; I n t e r s t i t i a l i n f i l l i n g i n reordered k a o l i n i t e s t r u c t u r e
I n t e r s t i t i a l i n f i l l i n g i n reordered Kaolinite structure
Dehydration, o x i d a t i o n
Oxidation; Decomposition fo CaC0
Oxidation; P y r i t i c s u l f u r f i x a t i o n
Oxidation
Oxidation; P y r i t i c s u l f u r f i x a t i o n
Processes
Synthetic Compound Mixtures and Transformations That Occur During Heating
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
ζ ο
Χ
>
73
H m
25
r
>
73
ζ
m
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
4
2
2
2
2
3
4
2
2
2
2
2
2
2
3
2
2
2
3
2
2
3
5
2
5
2
2
2
4
4
4
2
3
2
2
K a o l i n i t e ( A l S i 0 5 ( 0 H ) ) + Quartz ( S i 0 ) + Na C H 0 + Ca ( C H 0 ) + P y r i t e (FeS )
5
J.
2
Kaolinite ( A l S i 0 ( 0 H ) ) + NaC H 0 + C a ( C H 0 \ + P y r i t e (FeS )
2
I.
3
Kaolinite (Al Si 0 (0H) ) + Na S0 + C a ( C H 0 )
4
5
H.
2
2
Na S0 + K a o l i n i t e ( A l S i 0 ( 0 H ) )
2
C a l c i t e (CaC0 ) + K a o l i n i t e (Al Si 0 (0H)4)
G.
F.
1:2:1:1:1
1:1:1:1
1:1:1
1:1
2.5:1
1000
750
1000
750
1000
750 4
7
6
8
2
4
4
2
2
2
3
6
3
2
8
3
7
4
4
8
4
4
4
4
4
1 - 2
3
1 - 2
4
Quartz ( S i 0 ) + Anhydrite (CaS0 ) + Hauyne ( N a , C a ) _ ( A l S i 0 ) ( S 0 ) + Hematite ( F e 0 ) + Magnetite ( F e 0 )
2
2
2
Quartz ( S i 0 ) + Anhydrite (CaS0 ) + Hematite ( F e 0 )
3
6
3
1
2
Hauyne ( N a , C a ) _ ( A l S i 0 ) ( S 0 ) + Magnetite ( F e 0 ) + Magnetite ( F e 0 ) + Anhydrite (CaS0 ) + Gehlenite ( C a A l S i 0 )
2
4
2
Magnetite ( F e 0 ) + Anhydrite (CaS0 )
4
4
Gehlenite ( C a A l S i 0 ) + Nepheline (NaAlSi0 ) + Hauyne ( N a , C a ) _ (A1S10 ) ( S 0 j .
2
Na S0 + Amorphous
4
Nepheline (NaAlSi0 )
1000
4
NaS0 + Amorphous
7
750
2
Gehlenite ( C a A I S i 0 ) + CaO + M u l l i t e 2
3
C a l c i t e (CaC0 ) + Amorphous Phase
1000
750
infilling
infilling
Oxidation
Interstitial
substitution
Dehydration; o x i d a t i o n , s u l f u r f i x a t i o n
I n t e r s t i t i a l i n f i l l i n g i n reordered k a o l i n i t e s t r u c t u r e ; Oxidation
Dehydration; O x i d a t i o n , P y r i t i c sulfur fixation
Interstitial
Dehydration
Interstitial
Dehydration
Dehydration and c o l l a p s e of k a o l i n i t e structure I n t e r s t i t i a l i n f i l l i n g in reordered k a o l i n i t e structure
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
120
M I N E R A L M A T T E R A N D A S H IN C O A L
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
Table
III.
Mineralogical
Composition
Samp!e Absal oka
LTA ( 125°C)+ Quartz Pyrite Kaolinite Plagioclase Bassanite
ASTM (750°C) ΗΤΑ (1000°C) Anhydrite Quartz Magnetite Anhydrite Hematite Hematite Quartz Melilite Plagioclase Nepheline
Beulah-Low
Quartz Pyrite Kaolinite Bassanite
Quartz Hematite Magnetite Anhydrite
Anhydrite Pyroxene Magnetite Hauyne Hematite Quartz
Quartz Bassanite Kaolinite Pyrite
Anhydrite Hematite Magnetite Quartz Melilite Hauyne
Anhydrite Melilite Magnetite Hematite Hauyne Quartz Corundum
Center
Quartz Bassanite Pyrite Kaolinite
Anhydrite Hematite Quartz
Anhydrite Hauyne Pyroxene Melilite Hematite Quartz
Choctaw
Quartz Pyrite Kaolinite Bassanite PI a g i o c l a s e
Anhydrite Quartz Hematite Magnetite Plagioclase Pyroxene
Anhydrite Hematite Quartz Magnetite PI a g i o c l a s
Falkirk
Quartz Kaolinite Pyrite
Anhydrite Quartz Hematite Magnetite Melilite (trace)
Anhydrite Quartz Melilite Hematite Magnetite Hauyne
Gascoyne B l u e High Sodium
Quartz Kaolinite Pyrite Calcite Sodium S u l f a t e (trace)
Anhydrite Quartz Hematite Magnetite Nosean Melilite
Anhydrite Melilite Hauyne Quartz
Beulah-High
•Minerals
Sodium
Sodium
listed
in decreasing order
o f peak
intensities
and
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
9.
of
F A L C O N E A N D SCHOBERT
Mineral
Ash Samples Determined
b y XRD*
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
Sample
LTA
Transformations
( 125°C)
during
Ashing
121
ΗΤΑ (1000°C)
ASTM (750°C)
Gascoyne RedLow S o d i u m
Quartz Kaolinite Pyrite
Quartz Anhydrite Hematite Magnetite
Quartz Anhydrite Pyroxene Hematite Hauyne
I n d i a n HeadHigh Sodium
Quartz Pyrite Kaolinite Bassanite
Anhydrite Quartz Hematite Nosean Melilite Hauyne Sodium S u l f a t e
Melilite Hematite Anhydrite Hauyne Magnetite Pyroxene
Λ
Pike
Quartz Pyrite Kaolinite
Anhydrite Quartz Pyrite
Anhydrite Hematite Melilite Anorthite Quartz
San M i g u e l
Zeolite (Heulandite) Quartz Kaolinite Pyrite Bassanite PIagioclase
Zeolite Anhydrite Hematite Quartz Plagioclase (Anorthite) Melilite
Plagioclase (Anorthite) Hematite Quartz Magnetite Anhydrite
Velva
Quartz Kaolinite Pyrite Bassanite
Anhydrite Quartz CaO
Anhydrite Gehlenite Quartz Hauyne
occurrence.
Peak
identification
not
conclusive.
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
122
M I N E R A L M A T T E R A N D A S H IN C O A L
P y r i t e ( F e S ) i s p r e s e n t i n a l l LTA s a m p l e s . While M i l l e r et al Q) stated that pyrite may be oxidized with increased low t e m p e r a t u r e a s h i n g t i m e i n l i g n i t e s no e v i d e n c e o f o x i d i z e d f o r m s o f i r o n was s e e n b y X R D . T h i s may b e a t t r i b u t e d t o t h e p r e t r e a t m e n t o f s a m p l e s w i t h ammonium a c e t a t e , t h e r e b y r e d u c i n g a s h i n g t i m e s a s much a s 50%. I n ASTM s a m p l e s p y r i t e i s o x i d i z e d t o h e m a t i t e ^ 2 0 3 ) a n d magnetite (FeoO^. A c c o r d i n g t o M i l l e r and G l u s k o t e r ( 4 ) , p y r i t e oxidizes a t 500°C. With t h e o x i d a t i o n of pyrite to iron oxide r a t h e r than iron s u l f a t e , p y r i t i c s u l f u r i s released. The f o r m a t i o n of sodium and c a l c i u m sulfates detected in ASTM ash can be associated with the release of t h i s p y r i t i c sulfur or organic sulfur and t h e i r i n t e r a c t i o n w i t h c a r b o n a t e s a s w e l l as w i t h organicallybound c a l c i u m and s o d i u m .
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
2
I n t h e m o d e l m i x t u r e s t u d i e s c a l c i u m a c e t a t e was o b s e r v e d t o r e a c t w i t h p y r i t e a t 750° a n d 1 0 0 0 ° C t o g e n e r a t e a n h y d r i t e XRD p e a k s of g r e a t e r i n t e n s i t y than those observed f o r the system of c a l c i t e r e a c t i n g w i t h p y r i t e ( T a b l e I I , Systems A and B ) . Sulfur fixation by c a l c i u m released from c a l c i u m acetate by p y r i t i c s u l f u r was greater than in the c a l c i t e case probably due t o t h e similar t e n p e r a t u r e s a t w h i c h c a l c i u m a c e t a t e decomposes and p y r i t e o x i d i z e s (400° t o 5 0 0 ° C ) . C a l c i t e , on t h e o t h e r h a n d , does n o t decompose until h i g h e r t e m p e r a t u r e s (900°C); t h e r e f o r e t h e c a l c i u m necessary t o form a n h y d r i t e i s not as r e a d i l y a v a i l a b l e . Most o f t h e S O 2 f o r m e d b y o x i d a t i o n o f p y r i t e w o u l d be l o s t t o t h e a t m o s p h e r e b y t h e time c a l c i t e decomposes. Bassanite (CaS04.1/2H20) is present in some of the sample LTAs. While bassanite may f o r m f r o m t h e d e h y d r a t i o n of gypsum (CaS04.2H20) during t h e LTA p r o c e d u r e no s i g n i f i c a n t gypsm was detected in the orignal coal m i n e r a l o g y o f t h e samples studied. Therefore, hemihydrated calcium s u l f a t e (bassanite) formed a t low temperature may b e d u e t o the fixation of organic sulfur by o r g a n i c a l l y - b o u n d c a l c i u m c a t i o n s n o t c o m p l e t e l y r e m o v e d by t h e i o n e x c h a n g e p r o c e d u r e (JLL_10). In t h i s c a s e , b a s s a n i t e i s s i m p l y an a r t i f a c t of the low temperature ashing procedure. This phenomenon i s t y p i c a l o f c o a l s h a v i n g abundant a l k a l i c a t i o n s a s s o c i a t e d w i t h c a r b o x y l g r o u p s (_6). At such low temperatures i t i s u n l i k e l y t h a t calcite would react with organic sulfur to form C a S U 4 l / 2 H 0 . Continued increases in ashing temperature results in complete d e h y d r a t i o n o f b a s s a n i t e t o a n h y d r i t e (CaSO/i) a t 400°C. Anhydrite i s a m a j o r m i n e r a l p h a s e i n ASTM a n d ΗΤΑ s a m p l e s . e
2
Kaolinite ( A l 2 ">2°5(° )4) P t only in LTA samples. K a o l i n i t e d e h y d r a t i o n o c c u r s a p p r o x i m a t e l y f r o m 400° t o 525°C ( 4 J . With removal of water by d e h y d r a t i o n , the k a o l i n i t e structure collapses, retaining some d e g r e e o f o r d e r a n d f o r m i n g m e t a k a o l i n . No m e t a k a o l i n was d e t e c t e d b y XRD i n ASTM s a m p l e s , p e r h a p s d u e t o i t s poorly defined c r y s t a l l i n e structure. However, i t i s b e l i e v e d t h a t t h e b a s i c k a o l i n i t e components a r e p r e s e n t i n an amorphous f o r m i n ASTM a s h . With i n c r e a s i n g temperature t h e c o l l a p s e d kaolinite s t r u c t u r e forms corundum ( Ύ - Α Ι 2 Ο 3 ) . While m u l l i t e (3Al?03.2Si02) and c r i s t o b a l i t e ( S i 0 ) have been r e p o r t e d t o f o r m f r o m w e l l - o r d e r e d k a o l i n i t e s i n b i t u m i n o u s c o a l s a t 1 0 0 0 ° C ( 4 J n e i t h e r were o b s e r v e d i n ΗΤΑ s a m p l e s . According t o Grim Q _ l ) , t h e absence of m u l l i t e suggests that the original kaolinitic structure was poorly defined. I t h a s a l s o b e e n s u g g e s t e d b y G r i m (11) t h a t t h e p r e s e n c e S
H
i
s
r
e
s
e
n
2
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
9.
Mineral
FALCONE A N D SCHOBERT
during
123
Ashing
of impurities i n the form of a l k a l i ions, such as i n lignites, r e t a r d s t h e development o f m u l l i t e s and C r i s t o b a l i t e . The m e c h a n i s m f o r t h i s i s not f u l l y u n d e r s t o o d . The c o l l a p s e d k a o l i n i t i c s t r u c t u r e a c t s as a s o u r c e o r framework for several different a l u m i n o s i l i c a t e c o m p l e x e s f o r m e d i n ΗΤΑ a s h samples. Common minerals found are as follows: anorthite (CaAl Si 0 ), pyroxenes (Ca,Na)(Mg,Fe,Al)(Si,A1) 0 ), melitites (Na,Ca)2(Mg,Fe,Al)(Si,Al) 07, hauyne (Na,Ca) o(AISi0 J(S0 )ι , nosean (NasAl Si 0 4S04) and n e p h e l i n e ( ( N a , K ) A I S i 0 ) . A t IOOCrC aluminosilicate minerals form from solid-state reactions of k a o l i n i t i c m a t e r i a l with c a t i o n s d e r i v e d from c a r b o n a t e s , o x i d e s , o r sulfates. Interstitial i n - f i l l i n g of a l k a l i cations occurs within t h e d e h y d r a t e d k a o l i n i t e s t r u c t u r e w i t h i n c r e a s i n g t e m p e r a t u r e due to thermal expansion and reordering of the collapsed clay structure. I n some c o a l s , p a r t i c u l a r l y t h o s e h i g h i n s o d i u m , t h e s e a l u m i n o - s i l i c a t e s a r e a l s o s e e n i n ASTM s a m p l e s . In t h e model s y s t e m s C t h r o u g h I ( T a b l e I I ) d i f f e r e n t s o u r c e s o f c a l c i u m and sodium were m i x e d w i t h c l a y ( k a o l i n i t e ) and h e a t e d t o observe t h e i r r o l e i n forming the a l u m i n o s i l i c a t e s t y p i c a l of ash fouling deposits. In s y s t e m s C a n d D c a l c i u m a c e t a t e and s o d i u m a c e t a t e were mixed w i t h k a o l i n i t e i n equal molar r a t i o s . X-ray d i f f r a c t o m e t e r p a t t e r n s showed t h a t b o t h s y s t e m s w e r e , f o r t h e most p a r t , a m o r p h o u s a t 750°C. However, i n s y s t e m Ε where sodium and c a l c i u m a c e t a t e w e r e p r e s e n t i n e q u a l m o l a r r a t i o s c a r n e g i e t i t e was f o r m e d a t 750°C. Carnegietite i s a polymorph of n e p h e l i n e . In c a r n e g i e t i t e t h e sodium c a t i o n i s t e t r a h e d r a l l y c o o r d i n a t e d whereas i n n e p h e l i n e t h e sodium c a t i o n i s o c t a h e d r a l l y c o o r d i n a t e d . 2
2
8
2
2
6
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
Transformations
6
2
6
6
4
4
2
4
At temperatures greater than 900°C the formation of new aluminosilicates would be anticipated with the reordering of c o l l a p s e d c l a y s t r u c t u r e s and i n f i l l i n g o f i n t e r s t i t i a l v o i d s p a c e s by c a t i o n s . In s y s t e m s C a n d D n e p h e l i n e and g e h l e n i t e were formed r e s p e c t i v e l y a t 1000°C. In s y s t e m Ε b o t h n e p h e l i n e and g e h l e n i t e w e r e f o r m e d a t 1000°C s h o w i n g no d e t e c t a b l e m u t u a l i n t e r s t i t i a l void filling of calcium and sodium within t h e same aluminosilicate structures. To e s t a b l i s h t h a t t h e r e s u l t s o b s e r v e d w i t h t h e 1:1 c a l c i urn:sodium ratios were not artifacts of a stoichiometric l i m i t a t i o n o f r e a c t a n t s t h e m o l a r r a t i o s o f c a l c i u m t o sodium were v a r i e d f r o m 1:4 t o 4 : 1 i n a n a t t e m p t t o s a t u r a t e t h e s y s t e m w i t h respect to calcium or sodium. X-ray d i f f r a c t o m e t e r patterns of v a r i o u s r a t i o c o m b i n a t i o n s showed t h a t s o d i u m and c a l c i u m c o n t i n u e d t o f i l l v o i d s i n t h e same m a n n e r a s w i t h a 1:1 r a t i o . The f a c t t h a t s o d i u m and c a l c i u m do n o t m u t u a l l y i n f i l l v o i d o f s p e c i f i c m i n e r a l s reflects the preferred oxide coordination behavior of t h e two cations, which in turn i s determined by t h e i r respective ionic charges and r a d i i . Calcium prefers tetrahedral coordination, so t h a t i n general the r e a c t i o n of calcium ions with k a o l i n i t e would result in a gehlenite structure, in which the calcium is tetrahedral ly coordinated. On t h e o t h e r hand, sodium favors octahedral coordination, thus forming nepheline structures with sodium i n octahedral site. In system F c a l c i t e was u s e d as a c a l c i u m source f o r the f o r m a t i o n o f g e h l e n i t e . The r e a c t i o n d i d n o t p r o c e e d a s c o m p l e t e l y as w i t h c a l c i u m a c e t a t e , as i n f e r r e d from two o b s e r v a t i o n s : 1) some of the calcium remained as c a l c i u m o x i d e upon d e c o m p o s i t i o n of
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
124
M I N E R A L M A T T E R A N D A S H IN C O A L
calcite a t 900°C, a n d 2 ) m u l l i t e , a p o o r l y c r y s t a l l i n e f o r m o f d e h y d r a t e d r e o r d e r e d k a o l i n i t e , was s t i l l p r e s e n t a t 1000°C i n t h e presence of calcium oxide. I n s y s t e m s G a n d H , s o d i u m s u l f a t e was u s e d a s a s o d i u m s o u r c e mixed w i t h k a o l i n i t e and c a l c i u m a c e t a t e . Sodium s u l f a t e m e l t s a t a p p r o x i m a t e l y 884°C. Therefore, a t 750°C n o i n t e r a c t i o n between k a o l i n i t e a n d s o d i u m s u l f a t e was s e e n ( s y s t e m s G a n d H ) . In system G n e p h e l i n e was f o r m e d a t 1000°C, w i t h n o n e o f t h e s u l f u r r e l e a s e d f r o m t h e s o d i u m s u l f a t e i n v o l v e d i n t h e f o r m a t i o n o f a n y new h i g h temperature minerals. However, i n system H a d d i t i o n a l feldspathoids ( i . e . , g e h l e n i t e and hauyne) o t h e r t h a n n e p h e l i n e were f o r m e d . In this case, s u l f u r was i n v o l v e d i n forming new h i g h temperature minerals. System I was comprised of calcium and sodium acetates, k a o l i n i t e , and p y r i t e t o see i f s u l f u r - c o n t a i n i n g aluminosilicates w o u l d be f o r m e d . A s e x p e c t e d , a n h y d r i t e ( C a S O ^ w a s f o r m e d by p y r i t i c s u l f u r f i x a t i o n by c a l c i u m . A t 1000°C n o t o n l y d i d t h e a n h y d r i t e p e r s i s t but a s u l f u r c o n t a i n i n g a l u m i n o s i l i c a t e , hauyne, was f o r m e d i n a d d i t i o n t o g e h l e n i t e . In systems A through I the major aluminosilicate minerals produced were s i l i c a - d e f i c i e n t . However, i n s y s t e m s J where s i l i c a was p r o v i d e d i n excess i n t h e form of q u a r t z t h e system still produced only feldspathoids containing only two-thirds a s much s i l i c a as t h e i r s i l i c a - r i c h c o u n t e r p a r t s ( i . e . a l k a l i feldspars). In a d d i t i o n , t h e q u a r t z p e a k s i n s y s t e m J were n o t s u b s t a n t i a l l y reduced a t higher temperatures. These two f a c t s s u g g e s t t h a t S i 0 i n t h e f o r m o f q u a r t z i s i n a c t i v e u p t o a n d a t 1000°C. This idea i s s u p p o r t e d by t h e f a c t t h a t q u a r t z peaks a r e a l s o q u i t e e v i d e n t i n d i f f r a c t o m e t e r p a t t e r n s o f a s h s a m p l e s g e n e r a t e d b e t w e e n 750°C a n d 1000°C. It appears that temperatures i n excess o f 1000°C a r e required f o r quartz to contribute to the formation of s i l i c a - r i c h minerals. XRD f a i l e d t o d e t e c t c a l c i t e i n L T A s a m p l e s p o s s i b l y d u e t o i t s e x t r a c t i o n by ammonium a c e t a t e s o l u t i o n o r b e c a u s e t h e a m o u n t s o f c a l c i t e were below d e t e c t i o n l i m i t s ( ^ 5 % ) . F o r t h e most part, c a l c i u m i s s u p p l i e d t o t h e s y s t e m b y gypsum a n d o r g a n i c a l l y - b o u n d calcium. C a l c i u m , whether i n t h e form o f b a s s a n i t e , c a l c i t e , o r c a t i o n s i n LTA s a m p l e s , f o r m s a n h y d r i t e i n ASTM s a m p l e s . I n ΗΤΑ samples c a l c i u m r e a c t s p r i m a r i l y with dehydrated k a o l i n i t e forming aluminosilicates. Figure 1 displays a typical X-ray diffractometer pattern s e q u e n c e f r o m L T A , A S T M , a n d ΗΤΑ s a m p l e s o f t h e B e u l a h H i g h S o d i u m lignite. Major peaks a r e i d e n t i f i e d a c c o r d i n g t o t h e m i n e r a l phases present. Mineral transformations at higher temperatures are c h a r a c t e r i z e d by t h e f o r m a t i o n o f numerous f e l d s p a t h o i d s . When comparing several of these d i f f r a c t o m e t e r patterns t h e r e i s little difference among L T A s a m p l e s f r o m d i f f e r e n t c o a l s ; on t h e o t h e r h a n d , t h e v a r i o u s ASTM a n d ΗΤΑ a s h s a m p l e s a r e q u i t e d i f f e r e n t . By c o m p a r i n g t h e m i n e r a l o g i c a l d i f f e r e n c e s i n t h e a s h e s t o t h e raw c o a l elemental compositions, it c a n be seen t h a t samples containing h i g h e r amounts o f sodium t e n d t o form a l u m i n o - s i 1 i c a t e s a t lower temperatures (750°C) t h a n s a m p l e s h i g h in calcium. High-sodium c o a l s such as B e u l a h H i g h Sodium and G a s c o y n e B l u e d e v e l o p complex silicates i n ASTM s a m p l e s a n d a r e p r o n e t o f o r m i n g a s h f o u l i n g 2
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
9.
Mineral
FALCONE AND SCHOBERT
Transformations
during
125
Ashing
LTA 1-125 C)
υ
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
—1
I—
ASTM I750°CI I
Me
Ha
10 ΗΤΑ I1000°C1
86-
**** 30
10
50
40
°2Θ KEY:
Q
Quartz
Β
Bassanite
Ρ
Η
Hematite
M
Magnetite
Me
Pyrite
A
Melilite
Ha Hauyne
Anhydrite
Κ
Kaolinite
F i g u r e 1. X - r a y d i f f r a c t o g r a m s o f L T A , ASTM a n d ΗΤΑ s a m p l e s o f Beulah high sodium c o a l .
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
126
M I N E R A L MATTER A N D A S H IN C O A L
deposits. M e l i l i t e s , hauyne, n e p h e l i n e , nosean and pyroxenes a r e t y p i c a l o f s u c h a l u m i n o s i l i c a t e s i n t h e ASTM a n d ΗΤΑ a s h s a m p l e s . T h e s e a r e m i n e r a l s commonly f o u n d i n t h e f o u l i n g d e p o s i t s o f most lignites.
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
C o n c l u d i n g Remarks The o b s e r v a t i o n s presented i n t h i s study r e f l e c t t h e p r e l i m i n a r y r e s u l t s o f an i n v e s t i g a t i o n o f t h e m i n e r a l t r a n s f o r m a t i o n s seen i n the high temperature combustion o f low-rank c o a l s . The m i n e r a l o g i e s of t h e raw c o a l s studied do n o t v a r y a g r e a t deal. Quartz, k a o l i n i t e , p y r i t e , and b a s s a n i t e a r e found i n abundance i n each LTA sample. G r e a t e r d i f f e r e n c e s between samples a r e apparent a t h i g h e r t e m p e r a t u r e s , where complex a l u m i n o s i l i c a t e s p r e d o m i n a t e . This i s a r e f l e c t i o n o f d i f f e r e n c e s n o t s o much i n o r i g i n a l m i n e r a l m a t t e r b u t in the total inorganic composition of the coal. Specifically, the presence o f exchangeable a l k a l i c a t i o n s accounts f o r d i f f e r e n c e s i n a s h i n g b e h a v i o r between c o a l samples (9J. Both t h e type of t h e c a t i o n s ( s p e c i f i c a l l y , sodium o r c a l c i u m ) and t h e amounts o f e a c h type incorporated i n the coal are important i n determining the m i n e r a l p h a s e s f o r m e d i n t h e ΗΤΑ a s h . The p r o c e s s e s r e s p o n s i b l e f o r most o f t h e r e a c t i o n s identified are oxidation, dehydration, sulfur fixation, solid-state interactions and v a p o r i z a t i o n . Isolating specific reactions o c c u r r i n g i n a m u l t i - c o m p o n e n t s y s t e m i s d i f f i c u l t ; t h e u s e o f model s y s t e m s was h e l p f u l i n t r a c i n g m i n e r a l t r a n s f o r m a t i o n s . Additional work planned in this area includes research on n o n - e q u i l i b r i u m systems and e x p e r i m e n t s i n r e d u c i n g atmospheres. Acknowledgments The authors wish t o thank Diane Rindt f o r her help i n x-ray d i f f r a c t i o n a n a l y s i s and Steve Braun f o r h i s a s s i s t a n c e i n p r e p a r i n g ΗΤΑ a s h s a m p l e s . T h i s work was p e r f o r m e d u n d e r a U . S . D e p a r t m e n t o f E n e r g y C o o p e r a t i v e DOE s u p p o r t A g r e e m e n t N o . D E - F C 2 1 - 8 3 F E 6 0 1 8 1 .
Literature Cited 1. 2. 3. 4. 5. 6.
7. 8.
Miller, R.N.; Yarzab, R.F.: and Given, Peter. Fuel 1979, 58, 4. Frazer, F.W.; and Belcher, C.B. Fuel 1973, 52,41. O'Gorman, J . V . : and Walker, P.L. Fuel 1973, 52,71. Mitchell, R.S.; and Gluskoter, H.J. Fuel 1976, 55,90. Gluskoter, J . J . Fuel 1965, 44, 285. Miller, R.N.; and Given, Peter. 'A Geochemical Study of the Inorganic Constituents in Some Low-Rank Coals' Technical Report, Pennsylvania State University to the U.S. Department of Energy, Rep. FE-2494-TR-1, 1978. Annual Book of American Society of Testing Materials Standards 1979, Part 26: Gaseous Fuels; Coal and Coke; Atmospheric Analysis. Handbook of Chemistry and Physics 54th edition, Chemical Rubber Company, 1973.
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
9.
FALCONE AND SCHOBERT
9. 10. 11.
Mineral Transformations during Ashing
127
Morgan, M.E.; Jenkins, R.G.; and Walker, P.L. J r . Fuel 1981, 60, 189. Painter, P.C.; Coleman, M.M.: Jenkins, R.G.; and Walker, P.L. Jr. Fuel 1978, 57, 125. Grim, R.E. Clay Mineralogy, McGraw-Hill, New York, 1968, Chapter 9.
Downloaded by RUTGERS UNIV on January 2, 2018 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch009
RECEIVED June 13, 1985
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.