Ming-Phos-Catalyzed Asymmetric Intermolecular [3 + 2

Nov 30, 2016 - ACS Catal. , 2017, 7 (1), pp 210–214 ... The products were obtained in up to 98% yield with up to >20:1 d.r. and 99% ee. ..... 15, H/...
1 downloads 0 Views 369KB Size
Subscriber access provided by AUSTRALIAN NATIONAL UNIV

Letter

Copper(I)/Ming-Phos-Catalyzed Asymmetric Intermolecular [3+2] Cycloaddition of Azomethine Ylides with #-Trifluoromethyl #, #-Unsaturated Esters Bing Xu, Zhan-Ming Zhang, Shan Xu, Bing Liu, Yuanjing Xiao, and Junliang Zhang ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.6b03015 • Publication Date (Web): 30 Nov 2016 Downloaded from http://pubs.acs.org on November 30, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Catalysis is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

Copper(I)/Ming-Phos-Catalyzed Asymmetric Intermolecular [3+2] Cycloaddition of Azomethine Ylides with α-Trifluoromethyl α, βUnsaturated Esters Bing Xu,‡ Zhan-Ming Zhang,‡ Shan Xu, Bing Liu, Yuanjing Xiao and Junliang Zhang* Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China ABSTRACT: The employment of α-trifluoromethyl α,β-unsaturated esters as dipolarophiles pose considerable challenge due to expeditious defluorination and intrinsic steric hindrance. The present work provides an efficient access to valuable pyrrolidines bearing a trifluoromethylated allcarbon quaternary stereocenter through copper/M7catalyzed asymmetric dipolar cycloaddition of αtrifluoromethyl α,β-unsaturated esters with azomethine ylides. The products were obtained in up to 98% yield with up to > 20:1 d.r. and 99% ee. A broad substrate scope, good functional group tolerance, high stereoselectivity, as well as diverse synthetically valuable transformations of the products make this approach highly attractive. KEYWORDS: Copper, Azomethine ylides, Ming-Phos, Dipolar cycloaddition, All-carbon quaternary stereocenter.

The transition metal-catalyzed asymmetric 1,3-dipolar [3+2]-cycloaddition of azomethine ylides with electrondeficient alkenes is one of the most powerful and straightforward synthetic tools for the construction of optically active highly substituted pyrrolidines,1-3 which are widely observed in an array of biologically active natural products, pharmaceuticals and catalysts.4 However, the synthesis of highly substituted pyrrolidines with one allcarbon quaternary stereocenter5 at 3 or 4-position poses considerable challenge, due to the requisite use of α,β- or β,β-disubstituted unsaturated compounds with intrinsic low reactivity. As a result, only a handful of examples have been developed to date. In 2010, Waldmann and coworkers applied 2-oxoindolin-3-yidene in asymmetric 1,3dipolar [3+2]-cycloaddition of azomethine ylides to achieve chiral pyrrolidines with one all-carbon quaternary spiro-stereocenter at C4 position.6a Other α,βdisubstituted unsaturated compounds such as nitroalkenes, (E)-3-benzylidene chroman-4-ones, N-tosyl-3nitroindoles and so on as dipolarophiles have been subsequently explored by Waldmann, Wang, Arai (Scheme 1a).6 However, readily available α-trifluoromethyl α,βunsaturated compounds have not been developed as dipolarophiles so far, despite that the desired pyrrolidine products bearing one trifluoromethylated all-carbon quaternary stereocenter, a subunit frequently found in pharmaceuticals and agrochemicals (Figure 1).7 Herein, we reported our efforts to the first copper-catalyzed asym-

metric [3+2] cycloaddition of azomethine ylides with αtrifluo

Figure 1. Pharmaceutical and agrochemical featuring pyrrolidine bearing one trifluoromethylated all-carbon quaternary stereocenter. -romethyl α,β-unsaturated esters, which provides an efficient, reliable and atom-economic strategy for the efficient construction of valuable highly substituted pyrroledines featuring one trifluoromethylated all-carbon quaternary stereocenter with other three tertiary stereocenters in a highly stereoselective manner. During the course of our study the enantioselective copper-catalyzed [3+2] cycloaddition reaction of azome-

ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Scheme 1. Asymmetric [3+2]-cycloadditions of azomethine ylides with α,β β - or β,β β-disubstituted unsaturated compounds.

thine ylides with β-CF3 β,β-disubstituted enones (Scheme 1b)6m, we wondered whether the more challenging α-CF3 α,β-unsaturated esters could be as the dipolarophiles for the dipolar [3+2] cycloaddition of azomethine ylides, if success, the valuable highly substituted pyrrolidines with one trifluoromethylated all-carbon quaternary stereocenter at C4 position would be easily accessed. However, this hypothesis may pose more considerable challenges than the enantioselective copper-catalyzed [3+2] cycloaddition reaction of azomethine ylides with β-CF3 β,βdisubstituted enones: 1) the competing readily β-F elimination of the carbanion intermediate of α-CF3 esters to give β,β-difluoro-α,β-unsaturated esters.8-9 For example, Fuchikam8d and Kitazume8e have independently demonstrated that α-CF3 α,β-unsaturated acids or esters easily undergo SN2’-type substitution with nucleophiles such as lithium aluminum hydride, Grignard reagent, butyllithium and so on via a tandem nucleophilic addition and β-F

Page 2 of 7

elimination (Scheme 1c). Recently, our group also observed the defluorination products through tandem SN2’and SNV-type substitution reactions of α-CF3 α,βunsaturated esters with bisnucleophiles such as 1,3dicarbonyl compounds and N-tosylated 2aminomalonates;8g 2) the intrinsic steric hindrance would slow down the cyclization of a-CF3 carbanion intermediate3a, 6b, 10 and increase the risk of β-F elimination (Scheme 1d); 3) theoretically, up to 16 stereoisomers and 16 regioisomers might be formed, thus, the control of the product distribution will be beset with difficulties; 4) the construction of contiguous four chiral stereocenters, especially with one trifluotromethylated all-carbon quaternary stereocenter in one step remains extremely challenging.11 We hypothesized that a bifunctional chiral ligand bearing a hydrogen-bond donor , upon the binding of the enolization of the carbanion intermediate of α-CF3 esters to the ligand via hydrogen bond interaction (Scheme 1d, path b), may inhibit β-F elimination and promote the cyclization of a-CF3 carbanion intermediate (Scheme 1d, path a). More importantly, the spatial relationship between the carbanion of α-CF3 esters and the chiral ligand via hydrogen bond interaction should be confined by the chiral backbone of the ligand, thereby providing a more favorable setting for achieving excellent diastereo- and enantioselectivity.

Figure 2. The screening chiral ligands. To examine the above hypothesis, α-CF3 unsaturated ester 1a and azomethine ylide 2a were selected as the model substrates. A series of commercially available chiral ligands such as (R)-BINAP, (S)-TF-BiphamPhos, (R)MOP, (R,S)-O-PINAP, (S,S)-iPr-FOXAP, (S,R)-PPFA, Binol-derived phosphoramidite, and chiral oxazoline ligands and our recently developed chiral Ming-Phos M1-M7 (Figure 2, Table S1) were examined. Among them, both (S,S)-iPr-FOXAP and (R,Rs)-M7 could deliver 3aa in high yields with excellent ees and >20:1 diastereoselectivity. With more than 10 grams of (R,Rs)-M7 in our hand, which

ACS Paragon Plus Environment

Page 3 of 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

could be easily prepared in good yields and in large scale from inexpensive commercially materials in two steps via simple operation,6m, 12 we chose (R,Rs)-M7 as the chiral ligand for further screening. Subsequently, a number of copper(I) salts such as Cu(CH3CN)4PF6, Cu(CH3CN)4NTf2 and Cu(CH3CN)4ClO4 were tested with the use of (R,Rs)M7 as the chiral ligand, delivering better diastereoselectivity but lower enantioselectivity (Table S2, entries 2‒4). At the same time, other metal salts were examined, such as AgOTf, Cu(OTf)2, Cu(OAc)2 and CuCl2, but only trace amount of product could be detected (Table S2, entries 5‒ 8). Other solvents, such as TBME, Et2O, Acetone, Toluene and iPr2O could not give better result (Table S2, entries 9‒ 13).

Entry

Dr

Table 2. Exploration of dipolarophile scope.a

Yield [%][c]

Ee [%]

Yield [%][c]

Ee [%]

20:1

84

95

>20:1

94

91

R1/R2

(‒)-3

1

Ph/H (1a)

(‒)-3ad

2

4-FC6H4/H (1b)

(‒)-3bd

3

4-ClC6H4/H (1c)

(‒)-3cd

>20:1

96

91

4

4-BrC6H4/H (1d)

(‒)-3dd

>20:1

88

90

5

4-CNC6H4/H (1e)

(‒)-3ed

14:1

71

91

6

4-NO2C6H4/H (1f)

(‒)-3fd

12:1

70

94

7

4-CF3C6H4/H (1g)

(‒)-3gd

>20:1

81

92

8

4-CH3OC6H4/H (1h)

(‒)-3hd

18:1

77

92

9

4-PhC6H4/H (1i)

(‒)-3id

>20:1

94

92

Entry

Table 1. Exploration of azomethine ylide scope.a

[b]

(Table 1, entries 13 and 14). Gratifyingly, the styrylsubstituted 2o was also applicable for this asymmetric cycloaddition and pyrrolidine 3ao in 76% yield with >20:1 d.r. and 80% ee.

Dr[b]

R

(‒)-3

1

4-CH3OC6H4 (2a)

(‒)-3aa

20:1

94

96

10

2-BrC6H4/H (1j)

(‒)-3jd

>20:1

93

99

2

4-FC6H4 (2b)

(‒)-3ab

>20:1

87

92

11

3-BrC6H4/H (1k)

(‒)-3kd

>20:1

87

92

3

4-ClC6H4 (2c)

(‒)-3ac

19:1

93

91

12

2-Naphthyl/H (1l)

(‒)-3ld

>20:1

85

92

4

4-BrC6H4 (2d)

(‒)-3ad

20:1

84

95

13[d]

2-thienyl/H (1m)

(‒)-3md

>20:1

93

94

5

4-CNC6H4 (2e)

(‒)-3ae

>20:1

75

90

14[e]

styryl/H (1n)

(‒)-3nd

>20:1

76

94

6

4-CF3C6H4 (2f)

(‒)-3af

>20:1

94

94

15[f]

H/Ph (1o)

(‒)-3oa

>20:1

44

0

7

4-CH3C6H4 (2g)

(‒)-3ag

17:1

82

92

8

4-PhC6H4 (2h)

(‒)-3ah

18:1

80

94

9

Ph (2i)

(‒)-3ai

18:1

82

90

10[d]

2-CH3C6H4 (2j)

(‒)-3aj

>20:1

92

96

11[e]

3-CH3C6H4 (2k)

(‒)-3ak

>20:1

82

96

12

3-BrC6H4 (2l)

(‒)-3al

>20:1

84

90

13

2-Naphthyl (2m)

(‒)-3am

>20:1

98

94

14[e]

2-thienyl (2n)

(‒)-3an

>20:1

77

94

15

styryl (2o)

(‒)-3ao

>20:1

76

80

a

Unless otherwise noted, all reactions were carried out with 0.2 mmol of 1a, 0.4 mmol of 2, 5 mol% of catalyst ([Cu]/M7 ) in 4.0 mL THF at -60 oC for 4-12 h. b The diastereomeric ratio was determined by 1H, 19F NMR analysis of the crude products. c Isolated yield. d (S,R)-PPFA as the chiral ligand. e Use (S,S)-iPr-FOXAP as the chiral ligand.

With the optimal reaction conditions in hand, we next examined the scope by variation of the azomethine yield component 2 (Table 1). Not only electron-donating but also electron-withdrawing groups on the othro-, meta- and para-positions of aryl moiety of azomethine ylides were compatible (Table 1, entries 1-12) and the desired products 3aa‒3al were produced in 75-94% yields with 90‒96% ees and up to >20:1 d.r.. Moreover, the 2-naphthyl and 2-thienyl derived azomethine ylides 2m and 2n also worked well, delivering the corresponding pyrrolidines 3am and 3an in 98% yield, 94% ee and 77% yield, 94% ee

a

Unless otherwise noted, all reactions were carried out with 0.2 mmol of 1, 0.4 mmol of 2d, 5 mol% of catalyst ([Cu] /M7 ) in 4.0 mL THF at -60 oC for 4-12 h. b The diastereomeric ratio was determined by 1H, 19F NMR analysis of the crude products. c Isolated yield. d Use (S,S)- iPr-FOXAP as the chiral ligand. e Use (S,R)-PPFA as the chiral ligand. e The substrate 2a was used.

Next, we examined the scope with respect to the α-CF3 α,β-unsaturated ester component 1 by reaction with 2d under the optimal reaction conditions, and the representative results are shown in Table 2. Esters 1b‒1k bearing either electron-rich or deficient aryl group could afford the desired products 3bd‒3kd in 70‒96% yields, up to >20:1 d.r., and 90‒99% ees (Table 2, entries 1‒11). The βnaphthyl-substituted 1l could also deliver the single diastereomer (> 20:1 d.r.) 3ld in 85% yield with 92% ee (Table 2, entry 12). Moreover, the 2-thienyl-derived 1m was also applicable to this transformation, producing the corresponding product 3md with 94% ee and >20:1 d.r. value (Table 2, entry 13). Notably, the diene 1n was also comptible and the reaction proceeded in high regio-, diastereo- and enantioselectivity (Table 2, entry 14). Then, ethyl (E)-3-phenyl-2-(trifluoromethyl)acrylate 1o was also examined, but only the racemic product 3oa was obtained in moderate yield (Table 2, entry 15). The structure and absolute configuration of the cycloadduct 3fd was determined by X-ray crystallographic analysis.

ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

This reaction is amenable to a gram-scale synthesis of the highly substituted pyrrolidines without loss of the efficiency and selectivity, as exemplified with 3ad (Scheme 2). The multi-functionality prensent in product provides many opportunities for derivatization. Firstly, the ester group at the 2-postion of 3ad was easily selectively hydrolyzed in presence of LiOH, leading to the highly substituted proline 4 in 93% yield. The ester group at the 2-position could be selectively reduced to the corresponding alcohol 5 in 89% yield. Moreover, the oxidation of 3ad with DDQ could produce the highly substituted 2-pyrroline 6 in 94% yield. Treatment of 3ad with different equivalents of m-CPBA delivered the Nhydroxyl pyrrolidine 7 and nitrone 8 in 75% and 85% yields, respectively. Of note, for all of these transformations, the chirality information is not affected at all and all enantioenriched products are obtained. Scheme 2. Synthetic Transformations of 3ad.

Page 4 of 7

with lower yield and much low enantioselectivity (Condition B) than the result from the corresponding precursor M7 with free N-H bond (Condition A). Based on the above result, it is not hard to conclude that the free N-H bond contribute significantly to the enhancement of the enantioselectivity and reactivity. Moreover, M7 with free N-H bond maybe stabilize the enol ion via hydrogen bond interaction, thereby effective inhibit β-F elimination. In summary, we have demonstrated for the first time that α-CF3, α,β-unsaturated esters can serve as dipolarophiles in asymmetric [3+2]-cycloaddition reaction with azomethine ylide under the catalysis of M7/copper complexes. This method provides an efficient, reliable and atom-economic strategy for the excellent diastereoand enantioselectivity construction of valuable highly substituted pyrrolidines featuring one trifluoromethylated all-carbon quaternary stereocenter with contiguous other three tertiary stereocenters. Moreover, the broad substrate scope, ease scale-up, the easily made ligand in large scale, and the versatile tansformations of the [3+2] cycloadducts make this reaction practical and highly attractive. Further studies including mechanism, synthetic application of this effcient transformation and the employment of the chiral catalyst to other reactions are currently in progress.

ASSOCIATED CONTENT Accession codes: The X-ray crystal structure information is available at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 1500207 (-)-3fd. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif Supporting Information: Experimental procedures, spectroscopic data for the sub-strates and products (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION Scheme 3. The performance of N-methylated (R, Rs)N-Me-M7.

Corresponding Author [email protected]

Author Contributions ‡These authors contributed equally.

Notes The authors declare no competing financial interests.

ACKNOWLEDGMENT We gratefully acknowledge the funding support of NSFC (21425205, 21672067), 973 Program (2015CB856600), and the Program of Eastern Scholar at Shanghai Institutions of Higher Learning.

In order to gain insight of the function of the N-H bond in (R, Rs)-M7, further control experiments were carried out by using the N-methylated M7 as the chiral ligand (Scheme 3). With the use of the (R, Rs)-N-Me-M7 as the chiral ligand, cycloadduct 3ad could be still furnished but

REFERENCES (1) For recent reviews about 1,3-dipolar cycloadditions of azomethine ylides, see: (a) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247−12275. (b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887−2902. (c) Alvarez-Corral, M.; Munoz-Dorado, M.;

ACS Paragon Plus Environment

Page 5 of 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

Rodrıguez-Garcıa, I. Chem. Rev. 2008, 108, 3174−3198. (d) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132−3148. (e) Engels, B.; Christl, M. Angew. Chem. Int. Ed. 2009, 48, 7968−7970. (f) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784−6794. (g) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703−4832. (h) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2011, 50, 8492−8509. (i) Maroto, E. E.; Izquierdo, M.; Reboredo, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res. 2014, 47, 2660−2670. (j) Hashimoto, T.; Maruoka, K. Chem. Rev., 2015, 115, 5366−5412. (k) Nájera, C.; Sansano, J. M. J. Organomet. Chem. 2014, 771, 78−92. (l) Kissane, M.; Maguire, A. R. Chem. Soc. Rev., 2010, 39, 845−883. (m) Adrio, J.; Carretero, J. C. Chem. Commun., 2014, 50, 12434−12446. (2) For selected leading examples of asymmetric [3+2] cycloaddition reactions of azomethines, for metal-catalytic ones without formation of all-carbon quaternary stereocenter, see: (a) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400−13401. (b) Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174−10175. (c) Knöpfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, M. E. Angew. Chem. Int. Ed. 2004, 43, 5971−5973. (d) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394−16395. (e) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem. Int. Ed. 2006, 45, 1979−1983. (f) Zeng, W.; Chen, G.W.; Zhou, Y.-G.; Li, Y.-X. J. Am. Chem. Soc. 2007, 129, 750−751. (g) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364−5365. (h) Nájera, C.; Retamosa, M. D. G.; Sansano, J. M. Angew. Chem. Int. Ed. 2008, 47, 6055−6058. (i) Yamashita, Y.; Guo, X.-X.; Takashita, R.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 3262−3263. (j) Kim, H. Y.; Li, J.-Y.; Kim, S.; Oh, K. J. Am. Chem. Soc. 2011, 133, 20750−20753. (k) Yamashita, Y.; Imaizumi, T.; Kobayashi, S. Angew. Chem. Int. Ed. 2011, 50, 4893−4896. (l) Potowski, M.; Schürmann, M.; Preut, H.; Antonchick, A. P.; Waldmann, H. Nat. Chem. Biol. 2012, 8, 428−430. (m) Bai, X.-F.; Song, T.; Xu, Z.; Xia, C.-G.; Huang, W.-S.; Xu, L.-W. Angew. Chem. Int. Ed. 2015, 54, 5255−5259. (n) Xu, H.; Golz, C.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2016, 55, 7761−7765. (3) For selected leading examples of asymmetric non-[3+2] cycloaddition of azomethine ylides, see: (a) Xue, Z.-Y.; Li, Q.-H.; Tao, H.-Y.; Wang, C.-J. J. Am. Chem. Soc. 2011, 133, 11757−11765. (b) Potowski, M.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2012, 51, 9512−9516. (c) He, Z.-L.; Teng, H.-L.; Wang, C.-J. Angew. Chem. Int. Ed. 2013, 52, 2934−2938. (d) Tong, M.-C.; Chen, X.; Tao, H.-Y.; Wang, C.-J. Angew. Chem. Int. Ed. 2013, 52, 12377−12380. (e) Guo, H.; Liu, H.; Zhu, F.-L.; Na, R.; Jiang, H.; Wu, Y.; Zhang, L.; Li, Z.; Yu, H.; Wang, B.; Xiao, Y.; Hu, X.-P.; Wang, M. Angew. Chem. Int. Ed. 2013, 52, 12641−12645. (f) Teng, H.-L.; Yao, L.; Wang, C.-J. J. Am. Chem. Soc. 2014, 136, 4075−4080. (g) Li, Q.-H.; Wei, L. J. Am. Chem. Soc. 2014, 136, 8685−8692. (h) Liu, H.; Wu, Y.; Zhao, Y.; Li, Z.; Zhang, L.; Yang, W.; Jiang, H.; Jing, C.; Yu, H.; Wang, B.; Xiao, Y.; Guo, H. J. Am. Chem. Soc. 2014, 136, 2625−2629. (4) For recent reviews and selected examples about the application of pyrrolidines in the natural products and biologically molecules, see: (a) Harwood, L. M.; Vickers, R. J. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A.; Pearson, W. Eds.; Wiley & Sons: New York, 2002, 59, 169−252. (b) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machan, T.; Tang, M. Synlett, 2004, 2670−2680. (c) Cheng, Y.; Huang, Z.-T.; Wang, M.X. Curr. Org. Chem. 2004, 4, 325−351. (d) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139−165. (e) Enders, D.; Thiebes, C. Pure Appl. Chem. 2011, 73, 573−578. For the application of organic catalysts: (f) Zhang, S.; Wang, W. In Privileged Chiral Ligands and Catalysts; Zhou, Q.-L. Ed.; Wiley-VCH: Weinheim, 2011, 409−439.

(5) For reviews of catalytic asymmetric construction of allcarbon quaternary stereocenters, see: (a) Corey, E. J.; GuzmanPerez, A. Angew. Chem., Int. Ed. 1998, 37, 388−401. (b) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363−5367. (c) Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005, 347, 1473−1482. (d) Trost, B. M.; Jiang, C. Synthesis 2006, 369−396. (e) Hawner, C.; Alexakis, A. Chem. Commun. 2010, 46, 7295−7306. (f) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593−4623. (g) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247−7290. (6) For synthesis of pyrrolidines with an all-carbon quaternary stereocenter, via [3+2]-cycloaddition with α, β-disubstituted unsaturated compounds, for metal-catalytic ones, see: (a) Antonchick, A. P.; Gerding-Reimers, C.; Catarinella, M.; Schürmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Nature Chem. 2010, 2, 735−740. (b) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338−5339. (c) Teng, H.-L.; Huang, H.; Tao, H.-Y.; Wang, C.-J. Chem. Commun. 2011, 47, 5494−5496. (d) Teng, T.-L.; He, Z.-L.; Wang, C.-J. Chem. Commun. 2011, 47, 9600−9602. (e) Liu, T.-L.; Xue, Z.-Y.; Tao, H.Y.; Wang, C.-J. Org. Biomol. Chem. 2011, 9, 1980−1986. (f) Liu, T.L.; He, Z.-L.; Li, Q.-H.; Tao,H.-Y.; Wang, C.-J. Adv. Synth. Catal. 2011, 353, 1713−1719. (g) Awata, A.; Arai, T. Chem. Eur. J. 2012, 18, 8278−8282. (h) Li, Q.-H.; Liu, T.-L.; Wei, L.; Zhou, X.; Tao, H.-Y.; Wang, C.-J. Chem. Commun. 2013, 49, 9642−9644. (i) Narayan, R.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2013, 52, 12892−12896. (j) Tao, H.-Y.; He, Z.-L.; Yang, Y.; Wang, C.-J. RSC Adv. 2014, 4, 16899−16905. (k) Awata, A.; Arai, T. Angew. Chem. Int. Ed. 2014, 53, 10462−10465. (l) Arai, T.; Ogawa, H.; Awata, A.; Sato, M.; Watabe, M.; Yamanaka, M. Angew. Chem. Int. Ed. 2015, 54, 1595−1599. (m) via [3+2]cycloaddition with β, β-disubstituted unsaturated enones, Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Zhang, J. Angew. Chem. Int. Ed. 2016, 55, 6324−6328. (7) (a) Fukui, H.; Shibata, T.; Naito, T.; Nakano, J.; Maejima, T.; Senda, H.; Iwatani, W.; Tatsumi, Y.; Suda, M.; Arika, T. Bioorg. Med. Chem. Lett., 1998, 8, 2833−2838. (b) Cooper, A.; Deng, Y.; Shipps JR., G. W.; Shih, N.-Y.; Zhu, H.; Sun, R.; Kelly, J. M.; Doll, R.; Nan, Y.; Wang, T.; Desai, J.; J-S Wang, J.; Dong, Y.; Madison, V.; Xiao, L.; Hruza, A. W.; Siddiqui, M. A.; Samatar, A. A.; Paliwal, S.; Tsui, H.-C.; Celebi, A. A.; Wu, Y.; Boga, S. B. US 20070191604, 2007. (c) Or, Y. S.; Wang, C.; Long, J.; Ying, L.; Qiu, Y.-L. US 20090053175, 2009. (d) Bendels, S.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M.; Schaffter, E.; Schulz-Gasch, T. WO 2014086806, 2014. (e) Nakai, T.; Moore, J.; Perl, N. R.; Mermerian, A.; Im, C.-Y. J.; Lee, T. W.-H; Hudson, C.; Rennie, G. R.; Jia, J.; Renhowe, P. A.; Barden, T. C.; Yu, X.; Sheppeck, J. E.; Iyer, K.; Jung, J. WO 2014144100, 2014. (f) Mihara, J.; Hatazawa, M.; Yamazaki, D.; Sasaki, N.; Murata, T.; Shimojo, E.; Ichihara, T.; Ataka, M.; Shibuya, K.; Görgens, U. WO 2011080211, 2011. (g) Sheehan, S. M. K.; Vaillancourt, V. A. WO 2014038489, 2014. (h) Follmann, M.; Stasch, J.-P.; Redlich, G.; Lang, D. WO 2014131741, 2014. (i) Follmann, M.; Stasch, J.-P.; Redlich, G.; Lang, D.; Vakalopoulos, A.; Wunder, F.; Tersteegen, A. WO 2014131760, 2014. (8) For recent reviews and selected examples about fluoride elimination of the carbanion intermediate of α-CF3 compounds, see: (a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119−2183. (b) Chelucci, G. Chem. Rev. 2012, 112, 1344−1462. (c) Weaver, J.; Senaweera, S. Tetrahedron, 2014, 70, 7413−7428. (d) Fuchikami, T.; Shibata, Y.; Suzuki, Y. Tetrahedron Lett. 1986, 27, 3173−3176. (e) Kitazume, T.; Ohnogi, T.; Miyauchi, H.; Yamazaki, T. J. Org. Chem. 1989, 54, 5630−5632. (f) Bégué, J.-P.; Bonnet-Delpon, D.; Rock, M. H. J. Chem. Soc., Perkin Trans. 1, 1996, 1409−1413. (g) Yang, J.; Zhou, X.; Zeng, Y.; Huang, C.; Xiao, Y.; Zhang, J. Chem. Commun., 2016, 52, 4922−4925.

ACS Paragon Plus Environment

ACS Catalysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(9) For recent reviews and selected examples about α-CF3 carbanion synthons, see: (a) Mikami, K.; Itoh, Y. Chem. Rec. 2006, 6, 1−11. (b) Uneyama, K.; Katagiri, T.; Amii, H. Acc. Chem. Res. 2008, 41, 817−829. (c) Itoh, Y.; Yamanaka, M.; Mikami, K. J. Am. Chem. Soc. 2004, 126, 13174−13175. (d) Franck, X.; Seon-Meniel, B.; Figadère, B. Angew. Chem. Int. Ed. 2006, 45, 5174−5176. (e) Wang, D.; Deng, H.-P.; Wei, Y.; Xu, Q.; Shi, M. Eur. J. Org. Chem. 2013, 401−406. (f) Yin, L.; Brewitz, L.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2014, 136, 17958−17961. (g) Brewitz, L.; Arteaga, F. A.; Yin, L.; Alagiri, K.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2015, 137, 15929−15939. (10) (a) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 13321−13332. (b) HernándezToribio, J.; Arrayás, R. G.; Carretero, J. C. Chem. Eur. J. 2011, 17, 6334−6337.

Page 6 of 7

(11) For the construction of trifluotromethylated all-carbon quaternary stereocenter, (a) Kawai, H.; Okusu, S.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Angew. Chem. Int. Ed. 2012, 51, 4959−4962. (b) Kawai, H.; Yuan, Z.; Kitayama, T.; Tokunaga, E.; Shibata, N. Angew. Chem. Int. Ed. 2013, 52, 5575−5579. (c) Chen, Q.; Wang, G.; Jiang, X.; Xu, Z.; Lin, L.; Wang, R. Org. Lett. 2014, 16, 1394−1397. (d) Deng, Q.-H.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2012, 134, 10769−10772. For transition metalcatalyzed: (e) Gao, J.-R.; Wu, H.; Xiang, B.; Yu, W.-B.; Han, L.; Jia, Y.-X. J. Am. Chem. Soc. 2013, 135, 2983−2986. (f) Tsuchida, K.; Senda, Y.; Nakajima, K.; and Nishibayashi, Y. Angew. Chem. Int. Ed. 2016, 55, 9728−9732. (12) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X.-L.; Zhang, J. Angew. Chem. Int. Ed. 2014, 53, 4350−4354.

ACS Paragon Plus Environment

Page 7 of 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Catalysis

Insert Table of Contents artwork here

ACS Paragon Plus Environment

7