31 Siloxane-Modified Polyarylene Carbonates HAROLD ROSENBERG, TSU-TZU TSAI, BORIS D. NAHLOVSKY, and CSABA A. KOVACS 1
Nonmetallic Materials Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, O H 45433
Polycarbonates and, in particular, the polycarbonate derived from bisphenol A, are useful as transparent and impact-resistant structural plastics (1). However, further modification of the arylene carbonate backbone by incorporation of siloxane segments has been of interest and has been investigated by a number of workers during the last decade. The main objective of such modification has been to decrease the glass-transition temperature of the polycarbonate and thereby obtain transparent elastomeric polymers. Such macromolecules are hybrids between arylene carbonate and siloxane polymers. Two main types of hybrid arylene carbonate-siloxane polymers were obtained in these investigations: (a) block copolymers with backbones comprised of arylene carbonate and siloxane blocks, and (b) alternating homopolymers, I, the backbones of which consisted of regularly alternating siloxanylene and arylene carbonate segments. While the length of the
blocks in the block copolymers investigated varied within the given copolymer and usually contained several tens or hundreds 1
Current address: Research Laboratory, Kodak Park Division, Eastman Kodak Company, Rochester, NY 14650. This chapter not subject to U.S. copyright. Published 1980 American Chemical Society
458
MODIFICATION OF POLYMERS
o f S i a n d 0 atoms ( i . e . , a s p o l y s i l o x a n e m o i e t i e s ) , t h e l e n g t h o f t h e s i l o x a n y l e n e segments i n t h e a l t e r n a t i n g homopolymers o f i n t e r e s t , I , i s much s h o r t e r (χ = 0 - 3 ) . Due t o t h e d i f f e r e n t s t r u c t u r e o f the backbone i n the a r y l e n e carbonate-siloxane b l o c k copolymers and a l t e r n a t i n g homopolymers, I , b o t h t y p e s o f p o l y m e r s w o u l d be e x p e c t e d t o e x h i b i t somewhat d i f f e r e n t p h y s i c a l and c h e m i c a l p r o p e r t i e s . The m a j o r i t y o f t h o s e i n v o l v e d i n r e s e a r c h on s i l o x a n e m o d i f i e d p o l y ( a r y l e n e c a r b o n a t e s ) have chosen t o s y n t h e s i z e c o polymers o f a r y l e n e c a r b o n a t e s and p o l y s i l o x a n e s (2-17). V a r i o u s p r o p e r t i e s (3,4,5,15,16,18-32) a s w e l l a s t h e m o r p h o l o g y (3_,18_ 19_,23^,35) o f s u c h c o p o l y m e r s were i n v e s t i g a t e d i n g r e a t detail. S y n t h e s i s o f these b l o c k copolymers , w h i l e complex, i s p o t e n t i a l l y n o t c o s t l y s i n c e m a t e r i a l s a n d methods u s e d i n t h e m a n u f a c t u r i n g o f p o l y s i l o x a n e s and p o l y c a r b o n a t e s c a n be used. The p r o p e r t i e s o f t h e a r y l e n e c a r b o n a t e - s i l o x a n e b l o c k c o p o l y m e r s s y n t h e s i z e d vary from those o f elastomers t o tough p l a s t i c s , depending on t h e l e n g t h and r e l a t i v e c o n c e n t r a t i o n o f both b l o c k s i n s u c h c o p o l y m e r s . The i m p r o v e d m e c h a n i c a l s t r e n g t h o f t h e s e c o p o l y m e r s was a t t r i b u t e d * t o f o r m a t i o n o f m i c r o d o m a i n s c o n t a i n i n g a r y l e n e c a r b o n a t e b l o c k s which a c t a s v i r t u a l c r o s s l i n k s and f i l l e r p a r t i c l e s (19). Arylene carbonate-siloxane block copoly mers a r e t h u s c o n s i d e r e d p o t e n t i a l l y u s e f u l a s t o u g h e l a s t o m e r i c s h e e t s a n d membranes ( 1 5 , 3 4 , 3 5 ) . However, most c o p o l y m e r s o f t h i s t y p e c o n t a i n h y d r o l y t i c a l l y - u n s t a b l e Si-O-C l i n k a g e s . M o r e o v e r , t h e r m a l s t a b i l i t y o f t h e s e c o p o l y m e r s does n o t e x c e e d the thermal s t a b i l i t y o f p o l y s i l o x a n e s s i n c e thermal degradation o f the polymer backbone c a n o c c u r by c h a i n s c i s s i o n o f t h e s i l o x a n e blocks l e a d i n g t o formation o f low-molecular weight c y c l i c decomposition products. T o - d a t e , o n l y s c a n t r e p o r t s h a v e b e e n p u b l i s h e d on a t t e m p t e d s y n t h e s i s o f a l t e r n a t i n g homopolymers o f t h e t y p e I (36,37,38,39, 4 0 ) , a n d no w e l l - c h a r a c t e r i z e d h i g h m o l e c u l a r w e i g h t p o l y m e r s o f the type I are reported i n t h e l i t e r a t u r e . P r e p a r a t i o n o f such p o l y m e r s r e q u i r e s i n i t i a l l y t h e s y n t h e s i s o f new .and more c o m p l e x monomers. I t a p p e a r e d t h a t a number o f o b s t a c l e s h a d t o be overcome t o p e r m i t s y n t h e s i s o f t h e monomers a n d t h e i r p o l y m e r i zation. Our e f f o r t s t o overcome s u c h o b s t a c l e s a n d m o d i f y a r o m a t i c p o l y c a r b o n a t e s b y i n c o r p o r a t i o n o f s i l o x a n y l e n e segments a r e d e s c r i b e d h e r e i n . I t was t h e o b j e c t i v e o f t h i s i n v e s t i g a t i o n t o m o d i f y t h e b a c k b o n e o f a r o m a t i c p o l y c a r b o n a t e s i n t h i s manner so a s t o l o w e r t h e g l a s s - t r a n s i t i o n t e m p e r a t u r e ( T ) a n d o b t a i n polymers with elastomeric p r o p e r t i e s while r e t a i n i n g d e s i r e d thermal s t a b i l i t y and t r a n s p a r e n c y . To a c h i e v e t h i s g o a l , i t was c o n s i d e r e d e s s e n t i a l t o s y n t h e s i z e a number o f p o l y m e r s o f the type I i n order t o d e r i v e s t r u c t u r e - p r o p e r t i e s c o r r e l a t i o n s f o r the t a i l o r i n g o f such polymer s t r u c t u r e s . In t h i s r e s e a r c h t h r e e s y n t h e t i c approaches l e a d i n g t o s i l o x a n e - m o d i f i e d p o l y ( a r y l e n e c a r b o n a t e s ) were i n v e s t i g a t e d : (1) t h e p o l y c o n d e n s a t i o n o f s i l o x a n y l e n e - l i n k e d b i s p h e n o l s , I I , 9
g
31.
ROSENBERG ET AL.
Siloxane-Modified
Polyarylene
459
Carbonates
w i t h p h o s g e n e (37,38,39,40) ; (2) t h e h o m o p o l y o o n d e n & a t i o n o f b i s s i l a n o l s c o n t a i n i n g phenylene carbonate groups, I I I , (36); and (3) t h e h e t e r o p o l y c o n d e n s a t i o n o f b i s - s i l a n o l s , I I I , w i t h diacetoxysilanes, diacetoxydisiloxanes, or diacetoxytrisiloxanes. R e s u l t s and D i s c u s s i o n 1. P o l y c o n d e n s a t i o n o f B i s p h e n o l s , I I , w i t h Phosgene. P o l y c o n d e n s a t i o n o f s i l o x a n e - l i n k e d b i s p h e n o l s , I I , w i t h phosgene i s t h e most o b v i o u s s y n t h e t i c a p p r o a c h l e a d i n g t o s i l o x a n e modified p o l y ( a r y l e n e carbonates) since the phosgene-bisphenol polycondensation i s used i n t h e s y n t h e s i s o f aromatic p o l y c a r b o n a t e s ( 1 ) . T h i s method was u s e d i n i t i a l l y t o p r e p a r e p o l y m e r 1_ ( a s i n d i c a t e d i n r e a c t i o n 1) a s w e l l a s f o r t h e a t t e m p t e d s y n t h e s i s o f p o l y m e r s 2_ a n d 5_:
CH
CH
3
3
CH
3
CH
3
1_ However, t h e g l a s s - t r a n s i t i o n t e m p e r a t u r e o f 80°C o b t a i n e d f o r p o l y m e r 1^ was d e t e r m i n e d t o be t o o h i g h f o r t h e b i s ( p h e n y l e n e ) i s o p r o p y l i d e n e system, even i f m o d i f i e d w i t h l o n g e r s i l o x a n y l e n e s e g m e n t s , t o be u s e f u l a s a n e l a s t o m e r . Moreover, t h e s y n t h e t i c r o u t e based on t h e b i s p h e n o l - p h o s g e n e p o l y c o n d e n s a t i o n ( r e a c t i o n 1) gave p o l y m e r s o f r e l a t i v e l y l o w m o l e c u l a r w e i g h t . F o r t h e s e r e a s o n s i t was d e c i d e d t o c o n c e n t r a t e o n t h e s y n t h e s i s o f a s e r i e s o f p o l y m e r s 2-12 ( T a b l e I ) c o n t a i n i n g p_- a n d m - p h e n y l ene g r o u p s a n d s i l o x a n y l e n e segments o f v a r y i n g l e n g t h w h i l e i n v e s t i g a t i n g a l t e r n a t e s y n t h e t i c approaches ( r e a c t i o n s 2 and 3 ) . 2. H o m o p o l y c o n d e n s a t i o n o f B i s - s i l a n o l s , I I I . Homopolyc o n d e n s a t i o n o f b i s - s i l a n o l s , I I I , was a s e c o n d c h o i c e a s a s y n t h e t i c approach l e a d i n g t o s i l o x a n e - m o d i f i e d p o l y ( a r y l e n e carbonates) (reaction 2). Phosgene i n p y r i d i n e was f o u n d t o b e t h e most e f f e c t i v e medium o f a number o f r e l a t e d r e a g e n t s ( o x a l y l c h l o r i d e , a c e t y l c h l o r i d e , HC1) h a v i n g p o t e n t i a l f o r promoting the homopolycondensation o f b i s - s i l a n o l s , I I I . Polymers o b t a i n e d t h r o u g h i t s u s e e x h i b i t e d h i g h e r m o l e c u l a r w e i g h t s
460
MODIFICATION OF POLYMERS
Η
to to
-d CJ ο
vO
LO LO
O
o to
i-H O
ο oo
o
o o o o
m
vO
O O
O
O O O
o o
o"
o 00
vO
vO
to
en
X
u
a: CJ
CJ
X u
X u
a: u
to X CJ
X
X u
X
X
a: u
a: u
X
X u
X
to
CJ
X u
tu O CO
ι—ι m ex o e:
00 Ο
ζ
toi
LO
I
vO
I
3
12 C
H
3
6 5
CH
H
6 5
3
3
3
CH
C H
CH
3
3
CH
C H
3
2
CH
R
C
C
C
3
H
6 5
H
6 5
H
6 5
3
H
6 5
3
CH
C
C H
R
3
3
3
CH
CH
3
3
CH
C H
4
3
CH
C H
R
(CONTINUED)
20,000
C
385
440 -7 0.31 81,000 C
11
445
18 0.21 20,000
C
0.20
421 -1 0.25
22,000
C
C
422
402
-5
-35
0.43
f
(°c;
121,000
0.87
[i\f
C
b
--
M w
0.40
a
d
g (°C)
T
50,000
Β
Meth.
Synth
(a) A - P o l y c o n d e n s a t i o n o f b i s p h e n o l s , I I , w i t h p h o s g e n e ; Β - p h o s g e n e - i n d u c e d homopolycondensation of b i s - s i l a n o l s , I I I ; C - heteropolycondensation o f b i s - s i l a n o l s , I I I , with diacetoxysilanes or d i a c e t o x y d i - ( o r t r i - ) s i l o x a n e s ; (b) c o r r e s p o n d s t o t h e p e a k on t h e GPC c u r v e ; ( c ) THF, 25°C; (d) DSC; (e) " d e c o m p o s i t i o n t e m p e r a t u r e " d e t e r m i n e d a s t h e i n t e r c e p t o f t h e t a n g e n t o f t h e s t e e p e s t p a r t o f t h e TGA c u r v e ( o b t a i n e d i n a h e l i u m a t m o s p h e r e a t a h e a t i n g r a t e o f 20°C/min.), r e p r e s e n t i n g t h e f i r s t m a j o r w e i g h t l o s s ; ( f ) t o l u e n e , 30°C.
3
11
C
H
3
3
1
6 5
CH
2
C
CH
2
2
R
X
2
Ar
10
No.
Polym.
TABLE I
462
MODIFICATION OF
POLYMERS
(Table I) t h a n t h o s e o b t a i n e d by u s e o f o t h e r r e a g e n t s . The m a i n l i m i t a t i o n o f t h i s a p p r o a c h i s t h a t o n l y p o l y m e r s c o n t a i n i n g an even number o f s i l i c o n atoms i n t h e s i l o x a n y l e n e segment c a n be s y n t h e s i z e d ; p o l y m e r s 2_, A_, ,5, a n d 7_ ( T a b l e i ) were p r e p a r e d b y t h i s method ( r e a c t i o n 2, y = 0 o r 1 ) . A n o t h e r d i s a d v a n t a g e o f t h i s approach i s t h a t t h e s y n t h e s i s o f polymers c o n t a i n i n g a t e t r a s i l o x a n y l e n e segment ( p o l y m e r s £ a n d 7), w h i c h a r e o f p a r t i c u l a r i n t e r e s t due t o t h e i r l o w v a l u e o f g l a s s - t r a n s i t i o n temperature, r e q u i r e s a complex s y n t h e s i s o f b i s - s i l a n o l s , I I I ( y = l ) . A t p r e s e n t , t h i s method l e a d s t o s i l o x a n e - m o d i f i e d p o l y ( a r y l e n e carbonates) w i t h higher molecular weights than a r e o b t a i n e d b y a l l o t h e r methods i n v e s t i g a t e d i n t h i s l a b o r a t o r y . 3. H e t e r o p o l y c o n d e n s a t i o n of Bis-silanols, I I I , with Diacetoxysilanes. Heteropolycondensation of bis-silanols,I I I , was i n v e s t i g a t e d s i n c e t h i s a p p r o a c h a p p e a r e d t o o f f e r a r e l a t i v e l y r a p i d p r e p a r a t i v e r o u t e t o a number o f v a r i o u s s i l o x a n e m o d i f i e d p o l y ( a r y l e n e c a r b o n a t e s ) w h i c h were r e q u i r e d i n o r d e r to o b t a i n s t r u c t u r e - p r o p e r t i e s c o r r e l a t i o n s f o r such polymers. I n a d d i t i o n , p o l y m e r s c o n t a i n i n g a n odd number o f s i l i c o n atoms i n t h e s i l o x a n y l e n e segment c a n be p r e p a r e d b y t h i s a p p r o a c h . However, r e a c t i o n c o n d i t i o n s e m p l o y e d i n c o n d e n s a t i o n o f b i s s i l a n o l s , I I I , w i t h d i a m i n o s i l a n e s (41) o r s i l o x a z a n e s (42) l e d t o t h e c l e a v a g e o f t h e c a r b o n a t e group. Consequently, t h e r e c e n t l y reported s i l a n o l - a c e t o x y s i l a n e polycondensation r e a c t i o n (43) was i n v e s t i g a t e d f o r t h e p o l y c o n d e n s a t i o n o f b i s - s i l a n o l s , I I I , with diacetoxysilanes or diacetoxydisiloxanes (reaction 3). I t was f o u n d t h a t t h e r e a c t i o n c o n d i t i o n s w h i c h were o p t i m i z e d f o r t h e s y n t h e s i s o f p o l y ( a r y l e n e s i l o x a n y l e n e s ) (43) c o u l d be e m p l o y e d f o r t h e s y n t h e s i s o f s i l o x a n e - m o d i f i e d p o l y (arylene carbonates). 2,4,6-Trimethylpyridine ( c o l l i d i n e ) was s e l e c t e d a s t h e most s u i t a b l e o f a l l c a t a l y s t s i n v e s t i g a t e d ( 4 3 ) f o r the synthesis o f the s i l o x a n e modified p o l y f a r y l e n e carbonates). P r o p e r t i e s o f p o l y m e r s p r e p a r e d b y t h i s method a r e g i v e n in Table I . I n c o m p a r i s i o n t o t h e p h o s g e n e - c a t a l y z e d homopolycondensation o f b i s - s i l a n o l s , I I I , the inherent v i s c o s i t i e s
31.
ROSENBERG E T AL.
Siloxane-Modified
Polyarylene
Carbonates
463
of polymers o b t a i n e d by t h e s i l a n o l - a c e t o x y s i l a n e condensation were f o u n d t o be s i g n i f i c a n t l y l o w e r . 4. P r o p e r t i e s o f Polymers. Since the siloxane-modified p o l y ( a r y l e n e carbonates) a r e o f p o t e n t i a l i n t e r e s t as s p e c i a l t y elastomers f o r c e r t a i n aerospace a p p l i c a t i o n s , i t i s important t o achieve as low a v a l u e as p o s s i b l e f o r t h e g l a s s - t r a n s i t i o n temperature i n order t o achieve f l e x i b i l i t y a t low temperatures i n such systems. From T a b l e I i t i s r e a d i l y a p p a r e n t t h a t , o f t h e v a r i o u s d i m e t h y l - s u b s t i t u t e d p o l y m e r s i n v e s t i g a t e d , p o l y m e r 7_ b e s t meets t h i s r e q u i r e m e n t . As w o u l d be e x p e c t e d , t h e v a l u e o f the g l a s s - t r a n s i t i o n temperature f o r t h e polymers l i s t e d i n t h e t a b l e decreases with the increasing length o f the siloxanylene segments and w i t h t h e d e c r e a s i n g l e n g t h o f t h e a r y l e n e c a r b o n a t e segment. F u r t h e r m o r e , p o l y m e r s c o n t a i n i n g m-phenylene g r o u p s i n t h e b a c k b o n e have a c o n s i d e r a b l y l o w e r v a l u e f o r t h e g l a s s - t r a n s i t i o n temperature than t h e analogous polymers c o n t a i n i n g p_-phenylene g r o u p s . For t h i s reason, i n further i n v e s t i g a t i o n o f the e f f e c t o f v a r y i n g pendant groups ( s y n t h e s i s o f polymers 8-^2) e f f o r t s were c o n c e n t r a t e d on p o l y m e r s c o n t a i n i n g m - p h e n y l ene g r o u p s . I n t r o d u c t i o n o f p e n d a n t p h e n y l g r o u p s on t h e p o l y m e r b a c k b o n e i n c r e a s e s t h e g l a s s - t r a n s i t i o n t e m p e r a t u r e (T ) c o n s i d e r a b l y , p a r t i c u l a r l y when t h e p h e n y l g r o u p s a r e i n t r o d u c e d on s i l i c o n atoms a t t a c h e d t o t h e p h e n y l e n e m o i e t y . This increase of t h e Tg i s a p p a r e n t l y caused by l i m i t e d f l e x i b i l i t y o f t h e s i l o x a n y l e n e segments c o n t a i n i n g p e n d a n t p h e n y l g r o u p s , a s i s a l s o e v i d e n c e d f r o m nmr s p e c t r a . A t t h e o t h e r end o f t h e t e m p e r a t u r e s p e c t r u m , w i t h h i g h thermal s t a b i l i t y o f siloxane-modified poly(arylene carbonates) a l s o a d e s i r e d p r o p e r t y , t h e o n s e t o f t h e r m a l d e c o m p o s i t i o n (40) f o r p o l y m e r s 1-12 was f o u n d t o be i n t h e r a n g e o f 385-456°C (as d e t e r m i n e d f r o m TGA c u r v e s o b t a i n e d b y h e a t i n g p o l y m e r s a m p l e s i n n i t r o g e n a t a h e a t i n g r a t e o f 20°C/min.). T h e r e d o e s n o t appear t o be any pronounced t r e n d i n r e g a r d t o v a r i a t i o n o f t h e t h e r m a l s t a b i l i t y w i t h s t r u c t u r e i n p o l y m e r s 1-12. The s m a l l d i f f e r e n c e s i n t h e v a l u e s o f T, f o r t h e s e p o l y m e r s c a n b e due
464
MODIFICATION OF
POLYMERS
to d i f f e r e n c e s i n molecular weights o r t o the p o s s i b l e presence of trace impurities. D a t a on t h e a n a l y t i c a l c h a r a c t e r i z a t i o n o f p o l y m e r s ( i . e . , t h e e l e m e n t a l a n a l y s e s and nmr s p e c t r a l c h a r a c t e r i s t i c s ) a r e summarized i n T a b l e I I . Experimental 1. General. Intrinsic viscosities, [1], w e r e measured o n a C a n n o n - U b b e l o h d e d i l u t i o n v i s c o m e t e r a t 30°C i n THF. The GPC a n a l y s e s were c a r r i e d o u t u s i n g a W a t e r s M o d e l 6000A l i q u i d c h r o m a t o g r a p h , e q u i p p e d w i t h a UV d e t e c t o r and a s e t o f m i c r o s t y r a g e l 30-cm c o l u m n s (10 , 10 , 10 ,500, 500 a n d 100 X ) . _ P o l y m e r s were a n a l y z e d i n THF s o l u t i o n s and t h e v a l u e s o f M^ were d e t e r m i n e d b y t h e u n i v e r s a l method, u s i n g p o l y s t y r e n e s t a n d a r d s . G l a s s - t r a n s i t i o n t e m p e r a t u r e s o f p o l y m e r s were d e t e r m i n e d b y d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y (DSC) i n a n a t m o s p h e r e o f n i t r o g e n a t a h e a t i n g r a t e o f 20°C/min. The t h e r m o g r a v i m e t r i c a n a l y s e s were c a r r i e d o u t i n a d u P o n t M o d e l 950 t h e r m o g r a v i m e t r i c a n a l y s e r a t a h e a t i n g r a t e o f 20°C/min. and a t a h e l i u m f l o w r a t e o f 60 m l / m i n . S y n t h e s i s o f monomers w i l l be d e s c r i b e d i n forthcoming p u b l i c a t i o n s . 2. P o l y c o n d e n s a t i o n o f B i s p h e n o l s , I I , w i t h Phosgene. A f r e s h l y - p r e p a r e d s o l u t i o n o f p h o s g e n e (8 mmole) i n 10 ml o f m e t h y l e n e c h l o r i d e was added d r o p w i s e t o a s t i r r e d s o l u t i o n o f 5 mmole o f t y p e I I b i s p h e n o l i n 2 ml o f d r y p y r i d i n e and 30 ml o f methylene c h l o r i d e . A f t e r t h e m i x t u r e was s t i r r e d f o r s e v e n h o u r s , t h e r e s u l t i n g s o l u t i o n was e x t r a c t e d w i t h 50 ml o f 10% HC1 and t h e n s e v e r a l t i m e s w i t h d i s t i l l e d w a t e r u n t i l n e u t r a l . The s o l u t i o n was d r i e d o v e r a n h y d r o u s c a l c i u m s u l f a t e , c o n c e n t r a t e d under reduced p r e s s u r e , and t h e polymer p r e c i p i t a t e d by methanol. The p o l y m e r was r e d i s s o l v e d i n m e t h y l e n e c h l o r i d e , r e p r e c i p i t a t e d w i t h m e t h a n o l , and d r i e d o v e r n i g h t a t 100°C (0.01 mm H g ) . 3. Homopolycondensation o f B i s - s i l a n o l s , I I I . Into a f l a s k e q u i p p e d w i t h a m a g n e t i c s t i r r i n g b a r and à g a s i n l e t a d a p t e r t u b e e x t e n d i n g j u s t above t h e s u r f a c e o f t h e r e a c t i o n m i x t u r e was p l a c e d 10 mmole o f a t y p e I I I b i s - s i l a n o l d i s s o l v e d i n 30 ml of f r e s h l y - d i s t i l l e d pyridine. The f l a s k was c o o l e d b y a c o l d w a t e r b a t h and p h o s g e n e i n t r o d u c e d s l o w l y w h i l e t h e r e a c t i o n m i x t u r e was s t i r r e d v i g o r o u s l y . A p r e c i p i t a t e was f o r m e d i n i t i a l l y a n d , a f t e r 15 m i n u t e s o f c o n t i n u e d p h o s g e n e a d d i t i o n , t h e m i x t u r e became q u i t e v i s c o u s i n d i c a t i n g t h a t t h e r e a c t i o n was e s s e n t i a l l y complete. E x c e s s p h o s g e n e was removed b y s w e e p i n g t h e s y s t e m w i t h d r y n i t r o g e n . The r e a c t i o n m i x t u r e was d i l u t e d w i t h 20 ml o f m e t h y l e n e c h l o r i d e , f i l t e r e d and t h e r e s u l t i n g p o l y m e r p r o d u c t was i s o l a t e d b y p r e c i p i t a t i o n w i t h m e t h a n o l a s d e s c r i b e d above.
6.46 5.99
6.55
5.88
51.07
60.71
59.30
54.51
51.18
60.35
60.35
5
6
1_
8
9_
5.89
60.62
60.60
11
3
m 7.0-7.6(28) m 0.13(6) m 0.55(6)
15.44
15.16 18.65
5.29 6.08
18.66
m 7.1-7.6(18) s 0.01(12)
s 0.59(6)
m 0.34-0.22(21)
m 7.2-7.6(23)
m 7.2-7.6(18)
18.26
5.89
m 0.34-0.23(18)
18.21
m 7.2-7.5(8) s 0.07(12)
s 0.37(12)
18.47
m 7.2-7.5(8) s 0.07(6)
s 0.35(12)
18.21
20.17 22.79
20.13
m 7.2-7.5(8)
s 0.33(12)
22.79
6.52
16.28
3
1
3
m 7.0-7.6(33) m 0.1-0.2(9) m 0.55(6) 16.01 16.19 65.88 5.41 12 65.71 5.51 * R e p o r t e d a s ppm d o w n f i e l d f r o m TMS i n t e r n a i s t a n d a r d w i t h a a n d b r e p r e s e n t i n g a s s i g n m e n t o f p r o t o n s i n S i C H ( a : R , R y = C H ; b: R , R" - C H ) and arom t h e p r o t o n s i n m - p h e n y l e n e a n d p h e n y l g r o u p s .
5.44
66.37
66.45
10
5.88
6.26
60.57
54.58
5.81
m 7.3-7.6(8)
s 0.07(12)
s 0.33(12)
22.92
22.79
m 7.3-7.5(8)
s 0.06(6)
s 0.33(12)
20.26
6.42
6.55
51.32
51.18
4
m 7.2-7.5(8)
s 0.33(12)
arom.
Shifts*
16.28
\
Chemical
m 7.0-7.6(16)
NMR
s 0.31(12)
k
*H
CARBONATES)
9.67
20.13
54.51
3
5.81
Si, % Found Calcd.
6.47
6.62
54.12
59.30
2
6.94
72.37
1
Found
Calcd.
H, % C a l c d . Found
Poly. No ·
c, %
ANALYTICAL DATA ON POLY(SILOXANYLENEARYLENE
TABLE I I
466
MODIFICATION OF POLYMERS
4. Polycondensation of Bis-silanols, III, with Diacetoxy silanes, Diacetoxydisiloxanes or Diacetoxytrisiloxanes. A mix ture of 12.00 mmole of a bis-silanol, III, 12.00 mmole of a diacetoxysilane, diacetoxydisiloxane or diacetoxytrisiloxane, 4.4 ml of collidine, and 10 ml of toluene was magnetically stirred at room temperature in a sealed flask in an atmosphere of dry nitrogen for two days. The solution was then either allowed to stand for an additional four days or was refluxed for four hours under a positive pressure of dry nitrogen. The resulting polymer product was isolated by precipitation with methanol as described above. Acknowledgment The financial support of two of us CB-D»N- a n d C.A.K.) by the Air Force Systems Command through a National Research Council Postdoctoral Research Associateship is acknowledged. We also wish to thank Mr. D. Crawshaw, Mr. W. Price and Mrs. N.K. Ngo for assistance with experiments. Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
Bottenbruch, L., "Polycarbonates", in "Encyclopedia of Polymer Science and Technology", Mark, H.F. and Gaylord, N.G., Eds. John Wiley: New York, N.Y., 1969; Vol. 10, p. 710. Kambour, R.P. Polymer Preprints,1969; 10 [No.2], 885. Vaughn, H.A.,Jr. J. Polym. Chem., Polym. Letters Ed., 1969, 7, 569. Vaughn, H.A., Jr. Amer Chem. Soc., Div. Org. Coatings Plast. Chem., Papers, 1969, 29, 133; Chem. Abstr., 1971, 74, 4096. Matzner, M.; Noshay, A. U.S. Patent 3,579,607 (1971). Union Carbide Co. French Patent 2,076,507 (1971); Chem. Abstr., 1972, 77, 35981. Noshay, Α.; Matzner, M.; Williams, T.C. Ind. Eng. Chem., Prod. Res. Develop., 1973, 12, 268. Buechner, W.; Noll. W.; Bressel, B. German Patent 2,162,418 (1973); Chem. Abstr., 1973, 79, 92984. Bayer A.-G. French Patent 2,163,700 (1973); Chem. Abstr., 1974, 80, 60397. Merritt, W.D., Jr. U.S.Patent 3,821,325 (1974); Chem. Abstr., 1974, 81, 136962. Merritt, W.D., Jr. U.S. Patent 3,832,419 (1974); Chem. Abstr., 1974, 81, 153605. Raigorodskiy, I.M.; Bakhayeva, G.P.; Makarova, L.I.; Savin, V.A.; Andrianov, K.A. Vysokomol. Soedin., 1975, A17, 84. Holdschmidt, N.; Bressel, B.; Buechner, W.; De Montigy, A. German Patent 2,343,275 (1975); Chem. Abstr., 1975, 83, 11389. Kambour, R.P.; Corn, J.E.; Miller, S.; Niznik, G.E. J. Appl. Polym. Sci., 1976, 20, 3275.
31.
ROSENBERG ET AL.
Siloxane-Modified Polyarylene Carbonates 467
15. Kambour, R.P.; Corn, J.E.; Klopfer, H.; Miller, S.; Orlando, C.M. U.S. Gov. Report AD-A041-087 (1977); Chem. Abstr., 1978, 88, 7723. 16. Friedrich, T.K.; Maass, G.; Beck, M. German Patent 2,555,746 (1977); Chem. Abstr., 1977, 87, 54061. 17. Kambour, R.P. J. Polym. Chem., Polym. Letters Ed., 1969, 7, 573. 18. LeGrand, D.G. J. Polym. Sci., Polym. Letters Ed., 1969, 7, 579. 19. LeGrand, D.G. and Gaines, G.L., Jr. Polym. Preprints, 1970, 11 [No.2], 442. 20. Magilla, T.L.; LeGrand, D.G. Polym. Eng. Sci., 1970, 10, 349. 21. Kambour, R.P. in "Block Copolymers", S.L. Aggarwal, Ed. Plenum: New York, N.Y., 1970; p.263. 22. Narkis, M.; Tobolsky, A.V. J. Macromol. Sci., Phys. Ed., 1970, 4B, 877. 23. Gaines, G.L., Jr. J. Polym. Sci., Part C, 1971, 34, 115. 24. LeGrand, D.G. Trans. Soc. of Rheology, 1971, 15, 541; Chem. Abstr., 1971, 75, 141290. 25. LeGrand, D.C. J. Polym. Sci., Polym. Letters Ed., 1971, 9, 145. 26. Kaniskin, V.; Kaya, Α.; Ling, Α.; Shen, M. J. Appl. Polym. Sci., 1973, 17, 2605. 27. Smirnova, O.V.; Klenova, T.S.; Khatuntsev, G.D; Shedulyakov, V.D.; Mironova, N.V.; Sebernikova, A.I. Vysokomol. Soedin., 1975, 16A, 1940. 28. Stefan, D.; Williams, H.L. J. Appl. Polym. Sci., 1974, 18, 1451. 29. Raigorodskiy, I.M.; Lebedev, V.P.; Savin, V.A.; Bakhayeva, G.P. Vysokomol. Soedin., 1975, 17A, 1267. 30. Kambour, R.P.; Ligon, W.V.; Russell, R.R. J. Polym. Sci., Polym. Let. Ed., 1978, 16, 327. 31. Niznik, G.E.; LeGrand, D.G. J. Polym. Sci., Polym. Symp., 1978, 60, 97. 32. Allport, D.C. in "Block Copolymers", Allport, D.C. and Janes, W.H., Eds. John Wiley: New York, N.Y., 1973; p.532. 33. General Electric Co. Netherlands Patent Appl. 7,407,871 (1974); Chem. Abstr., 1975, 83, 132868. 34. Stark, L.; Auslander, D.M.; Mandell, R.B.; Marg, E. French Patent 2,185,653 (1974); Chem. Abstr., 1974, 81, 50730. 35. Lloyd, N.C.; Pearle, C.A.; Pattison, J. U.S. Patent 3,595,974 (1971); Chem. Abstr., 1971, 75, 152338. 36. Greber, G.; Lohman, D. Angew. Chem., Internat. Ed., 1967, 6, 462. 37. Greber, G. Angew. Makromol. Chem., 1969, 4/5, 212. 38. Greber, G. J. Prakt. Chem., 1971, 313, 461. 39. Sheludyakov, V.D.; Mkhitaryan, S.S.; Gorlov, E.G.; Zhinkin, D.Ya. USSR Patent 550,407 (1977); Chem. Abstr., 1977, 86, 172154.
468
MODIFICATION OF POLYMERS
40. Ehlers, G.F.L. Air Force Materials Laboratory Technical Report No. AFML-TR-75-202, Part I, AD-A019-957 (1975). 41. Burks, R.E.; Covington, E.R.; Jackson, M.V. and Curry, J.E. J. Polym. Sci., Polym. Chem. Ed., 1973, 11, 319. 42. Breed, L.W.; Elliott, R.L. and Whitehead, M.E. J. Polym. Sci., Part A-1, 1967, 5, 2745. 43. Rosenberg, H. and Nahlovsky, B.D. Polym. Preprints, 1978, 19, [No.2], 625. 44. Ehlers, G.F.L. Air Force Materials Laboratory Technical Report No. 74-177, Part I , AD-A008-187 (1974). RECEIVED
July
16, 1979.