281
PHYSICAL PROPERTIES OF ALICYCLIC HYDROCARBOSS
STUDIES O F THE PHYSICAL PROPERTIES OF ALICYCLIC HYDROCARBOSS. I MOLALVOLUMESOF MONOALICYCLIC HYDROCARBOSS AT 20OC.I GUSTAV EGLOFF
AND
ROBERT C. KUDER
Research Laboratories, Universal Oil Products Company, Chicago, Illinois Received August 11, 1941 INTRODUCTION
The recent collection (1) of the physical constants of alicyclic hydrocarbons has facilitated a correlation of their physical properties with their structures. The present study considers the molal volumes in the liquid state at 2 0 T . TABLE 1 Efecl of alkene and cyclane formation A = VCnH2n+2
- VCnHsn A
n
5 6 7 8 9 10 11 12 13 14
6.10 5.95 5.80 5.78 5.92 6.39 5.86
, 1
Crclobutanes
11.88 11.98
~
-5.71 I _ _
14.00 17.72
cyc10-
1
pentanes
1
21.17
~
',
Cyclohexanes
;:%;; 18 02 17.70 17.31 17.17 16.98
22.54 18.91 20.09 19.50 19.55 19.2 18.5
Cyclo-
heptanes
1
I
25.33 23.17 23.76 23.04
Cyclo-
octanes
27.41 n.45
18.86 3.40
4.00
~
4.69
for five hundred and fifteen alicyclic hydrocarbons not containing fused rings. In certain cams in which the densities have not been determined experimentally a t 20°C. but have been determined within five degrees of this temperature, interpolations or reasonable extrapolations to 20°C. were made. ,411 density values were weighted according to the number and internal agreement of the values of the individual experimenters. CYCLIZATION VS. ALKENE FORMATION
The effect of the high densities of cyclenes (relative to the densities of alkanes and of alkenes) is shown in table 1, in which are tabulated the differences, A, between the molal volumes of normal alkanes and the molal volumes of the 1 Presented before the Division of Physical and Inorganic Chemistry at the lOlst Meeting of the American Chemical Society, which mas held in St. Louis, Missouri, April, 1941.
282
GUSTAV EGLOFF AND ROBERT C
. KUDER
TABLE 2 Monoalkylcyclanes V
EYDRWARBON
ml . pcr mole
see-Butylcyclopentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tert-Butylcyclopentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n-Butylcyclopentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isobutylcyclopentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
158.89 159.57 160.95 161.94
tert-Butylc yclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sec-Butylcyclohexane . . . . . . . . . . . . . . . . . .......................... n-Butylcyclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isobutylcyclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
172.5 172.9 175.39 176.2
3-Cyclopentylpentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-Cyclopentylpentane . . . . . . . . . . . . . . . . . . . . . . . . . . tert-Amylcyclopentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n-Amylcyclopentane* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isoamylcyclopentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
172.9 173.18 173.78 177.63 178.2
2-Cyclohexylpentane . . . . . . . . .................................. tert-Amylcyclohexane . . . . . . . d-1-Cyclohexyl-2-methylbutane .... n-Amylcyclohexane . . . . . . . . . . . . . . . Neopentylcyclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
187 187.9 190.7 191.9 193.1la
2-Cyclohexyl-2-methylpentane ....................................... 3-Cyclohexyl-3-methylpentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z-2-Cyclohexylhexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d-3-Cyclohexylhexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n-Hexylcyclohexene . . . . . . . . . . . . . . . . ...........................
201.8 203.0
3-Cyolohexyl-3-ethylhexane . . . . . . . . . . . . . . . . . . . . .
229.9s
............ 2-Cyclohexyl3,5-dimethylhexane .............................. 4-Cyclohexyl-4-methylheptane ................................. n-Octylcyclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
203.8 204.0 208.8
230.8s 231.67 240.9,
3-Cyclohexyl-3,6-dimethylheptane .......... 4-Cyclohexyl-4-ethylheptane , . . . . . . . . . . . . . . 1-Cyclohexyl-3-propylhexane. . . . . . . . . . . . . . . . . . . . . . . . . . .
241.51 251.3,
4-Cyclohexyl-2-methyl-4-propylheptane .............................. 1-Cyclohexyl-3-butylheptane ...................................
282.6r
5-Cyclohexyl-2,8-dimethyl-5-isobutylnonane ...... ...... n-Pentadecylcyclohexane ............................................
334.71 354.01
5-Cyclobexyldocosane . . n-Docosylcyclohexane . .
* Reference 5.
253.9'
............. .............
285.53
469.2 473.2
283
PHYSICAL PROPERTIES OF ALICYCLIC HYDROCARBONS
~-
TABLE 3 Dicyclohezylalkanes ~
EYDPOCARBON
I
v mi . per mole
1.1.Dicyclohexylethane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,2-Dicyclohexylethane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
212.89 221.61
2.2-Dicyclohexylpropane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,1-Dicyclohexylpropane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,2-Dicyclohesylpropane ........................................ 1,3-Dicyclohexylpropane ............................................
230.90 233.9 238.6s 239.29
1,2-Dicyclohexylbutane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l,l-Dicyclohexyl-2-methylpropane .................................. 1,3-Dicyclohexyl-2-rnethylpropane ................................... 1,1-Dicyclohexylbutane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,4-Dicyclohexylbutane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
245.le 250.7 251.78 252.2 253.30
l,l-Dicyclohexyl-3-methylbutane .................................... 1,3-Dicyclohexyl-3-ethylpropane .....................................
264.31 267.12 271.0,
l15-Dicyclohexylpentane .............................................
.
TABLE 4 EYDPCCAPBON
Y ml. p L I mole
1-hlethylcyclopentene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-Methylcyclopentene-1 ...........................................
105.58 107
1-Methylcyclohexene-l .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-Methylcyclohexene-l .. . . . . . . ................................... 4-Methylcyclohexene-l .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
118.47 119.5 120.2
1-Ethylcyclopentene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-Ethylcyclopentene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
120.21 122.13
1-Propylcyclohexene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-Propylc yclohexene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
150.4 150.90
1-Amylcyclopentene-l' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-Amylcyclopentene-1' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
170.08 172.33
1-Isoamylcyclopentene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-Isoamylcyclopentene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
171.7 173.0
1-Hexylcyclopentene-1*. . ............... ............... 3-Hexylcyclopentene-l* ..............................................
186.65 188.76
* Reference 5.
284
GUSTAV EGLOFF AND ROBERT C
. KUDER
corresponding 1-alkenes and isomeric normal alkylcyclanes . The differcncc in volume increases as the size of the ring increases; hence of two isomeric normal alkylcyclanes the one with the larger ring will have the smaller molal volume . TABLE 5 Dialkylc yelanes V
HYDPOCAPBOB
.
ml per mob
1,Z.Dimethylcyclopentene.l . . . . . . . . . . . . . . . . 2,3.Dimethylcyclopentene.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,3-Dimethylcyclopentene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
120.95 123.2, 126.90
l12-Dimethylcyclohexene-l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,5-Dimethylcyclohexene-1. . . . . . . . . . . . . . . . . . . . . . . 1,5-Dimethylcyclohexene-l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,4-Dimethylcyclohexene-l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,3-Dirnethylcyclohexene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l14-Dimethylcyclohexen e-1 .....................................
133.86 136.65 136.7 137.2 137.2, 137.48
1-Methyl-2-ethylcyclohexene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-Methyl-2-ethylcyclohexene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-Methyl-l-ethylcyclohexene-l .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
149.3 152.4 152.51
1,2-Diethylcyclopentene-l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,3-Diethylcyclopenten e-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-Methyl-3-isopropylcyclopentene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d-1-Methyl-l-isopropylcyclopentenc-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-Methyl-l-isopropylcyclopentene-l .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
153.58 153.70 155.1 156.10 156.6
1-Methyl-2-propylcyclohexene-l . . . .............................. 3.5-Diethylcyclohexene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d-1-Methyl-4-isopropylcyclohexene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-Methyl-6-isopropylcyclohexene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-Methyl-4-isopropylcyclohexene-l , . . . . ......................... 4-Methyl-2-propylcyclohexene-l , . . . . . . . . ......................... 4-B4ethyl-l-propylcyclohexene-l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d-4-Methyl-l-isopropylcyclohexene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
166.2 166.571 166.8 167.8 168.18 169.4 169.6 170.3
1-Methyl-2-butylcyclohexene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-Methyl-2-butylcyclohexene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-Methyl-l-butylcyclohexene-l , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-Methyl-2-isobutylcyclohexene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
183.0 185.9 186.4 187.8
. . . . . . . . .
1-Methyl-'2-amylcyclohexene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-Methyl-2-isoamylcyclohexene-l . . . . . . . . .
199.6 203.0
The average ratio of the decrease in volume due to cyclization to the decrease due to alkene formation varies from 1.96 for normal alkylcyclopropanes to 4.69 for normal alkylcyclooctanes; the continuity of the increase of this ratio with the increase in ring size is shown in the last row of table 1.
285
PHYSICAL PROPERTIES OF ALICYCLIC HYDROChRBONS EFFECTS OF ISOMERISM
Among monoalkylcyclanes in which only side-chain isomerism is considered, those compounds having alkyl radicals with a secondary or tertiary attachment have smaller volumes than those having radicals with a primary attachment. A straight-chain group has a smaller volume than an is0 group (isopropyl is sometimes exceptional because it is also secondary). These relationships are illustrated in table 2. When two cyclohexyl rings are substituted in isomeric alkanes, the compound with the rings a t the opposite ends of the straight chain has the largest volume, as shown in table 3. Among isomeric polyalkylcyclanes there are no well-defined general relationships apparent between the molal volumes and the relative positions of the side TABLE 6 Trialk ylcyclohezenes BYDPOCAPBON
I
V
I
ml. per mole
.I
138.2% 140.68
1,2,3-Trimethylcyclohexene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,3,3-Trimethylcyclohexene-l. .................... ....... cis-1 ,4,5-Trimethylcyclohexene-l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,1,4-Trirnethylcyclohexene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . trans-l,4,~-Trimethylcyclohexene-l. .............................. 1,4,4-Trimethylcyclohexene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3,5,5-T1imethylcyclohexene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,3,5-Trimethylcyclohexene-l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
150.0 151.14 152.6 154.1 154.3 154.5 155.70 155.81
2-Rfethyl-l,3-diet hylcyclopentene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1,2-Dimethyl-3-isopropylcyclopentene-l. ........................... 2.3-Dimethyl-4-isopropylcyclopentene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
170.5 171.3 171.7
d-1,2,3-Trimethylcyclopentene-l. .................................. 2,3,3-Trimethylcyclopentene-1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
chains. In monoalkylcyclenes the following rule holds: For position isomers of a given cyclene ring the compound with the alkyl group attached to the doublebonded carbon atom has the smallest volume. For isomeric dialkylcyclenes with a given ring the 1,a-dialkyl compound has the smallest volume (the alkyl groups may be different). Likewise in isomeric trialkylcyclenes the 1,2,3trialkyl compounds have the smallest volume. These relationships are illustrated in tables 4,5, and 6. The effect of changing a double bond from the side chain to the ring is a reduction in molal volume. That is, among bond isomers of a given carbonatom skeleton a compound with a cyclic or semicyclic double bond has a smaller volume than one with the double bond in the side chain. The only exception to this rule is the pair of isomers, vinylcyclopropane and ethylidenecyclopropane (see table 7 ) .
286
GUSTAV EGLOFF AND ROBERT C
. KUDER
TABLE 7 Bond isorners V
EYDPOCAEBONS
.
mi per male
Vinylcyclopropane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E thylidenecyclopropane . . . . . . . . . . ....... ............ 1-Ethylcyclohexene-l , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ethylidenecyclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vinylcyclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
... ...
91.5
96.85 134.10 134.1 135.47
1-Propylcyclopentene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Allylcyclopentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
137.48 138.6
1-Propylcyclohexene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-Propylcyclohexene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Allylcyclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
150.4 150.90 152.10
Isopropylidenecyclopropane. . . . . . . . . . . . . . . Isopropenylcyclopropane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
109.07 109.4s
1-Butylcyclohexene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-Cyclohexylbutene-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-Cyclohexylbutene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
167.0 169.8 170.3
1-Methyl-2-isopropylidenecyclopentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-Methyl-2-isopropenylcyclopentane , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
153.30 155.18
2-Methyl-4-isopropylcyclohexene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1-Methyl-3-isopropylidenecyclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . d-1-Methyl-3-isopropenylcyclohexane , . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
168.18 168.30 169.06
1-Methylene-4-isopropylcyclohexane . . . . . . . . . . . . . . . . . . . . . . 3-Methyl-6-ieopropylcyclohexene-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-Methyl-4-isopropylcyclohaxene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-Methyl-4-isopropylidenecyclohexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d-4-Methyl-l-isopropylcyclohexene-l . . . . . . . . . . . . . . . . . 1-Methyl-4-isopropenylcyclohexane . . . . . . . . . . . . . . . . .
159.51 167.8 168.2 168.8 170.3 170.59
1-Amylcyclohexene-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-Cyclohexylpentene-1' . . . . . . . . . . . . . . . . . . . ......................
183.5 186.42
2-Cyclohexen-l-ylpentane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-C yclohexylpentene-2. . . . . . . . . . . ..................... 2-Cyclohexylpentene-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
177.9 182.1 185.2
* Reference 3. The effect of cis-trans isomerism is shown in table 8. Although in each of the twenty known case- the trans-isomer has a larger molal volume than the cisisomer. there seems to be no general correlation between the structure of the compound and the difference in volume between the two isomers .
287
PHYSICSL PROPERTIES O F ALICYCLIC HYDROCARBONS
TABLE 8 Cis-trans isomerism !
HYDROCARBON
1.2.4.5-Tetramethylcyclohexsne . . . . . . . . . . . . . . . . . 1.2.3-Trimethylcyclohexane . . . . . . . . . . . . . . . . . . . . 1 1.2.3.5-Tetramethylcyclohexane . . . . . . . . . . . . . . . . . lc.2c.4-Trimethylcyclohexane. . . . . . . . . . . . . . . . . . . . 1.2~. 4L-Trimethylcyclohexane .................. 1.3.5-Trimethylcyclohexane . . . . . . . . . . . . . . . . . . . 1.2~. 4-Trimethylcyclohexane . . . . . . . . . . . . . . . . . . lc.2.41-Trimethylcyclohexane .................. 1.2-Diethylcyclopentane ...................... 1-Methyl-2-ethylcyclopentane . . . . . . . . . . . . . . . . . 1-Methyl-2-propylcyclopentane . . . . . . . . . . . . . . . . lC.2.4-Trimethylcyclohexane ..................... 1.3-Dimethylcyclohexane . . . . . . . . . . . . . . . . . . . . . . i 1.2-Dimethylcyclopentane. . . . . . . . . . . . . . . . . . . 1 . 2-Dimethylcyclohexane . . . . . . . . . . . . . . . . . . . . . . . 1 . 4-Dimethylcyclohexane .................. I-Methyl-4-isopropylcyclohexane . . . . . . . . . . . . . . . . .
1
~
i
' 1
, '
VIIo.
.
1
173.16 159.67 172.31 160.6 161.57 163.52 161.57 163.1 161.18s 145.90 162.37 163.1 146.5 130.58. 144.6 147.1 177.1
1.4.5-Trimethylcyclohexen e-1 . . . . . . . . . . . . . . . . . . 154.3 1.2.4.5-Tetramethylcyclohexene-1. . . . . . . . . . . . . . . . 169.2 4.Methyl.5.isopropenyIcyclohexene.l
!
..............
160.99
Voir
~
VI%.
.
VCL8
172.69 159.19 171.76 159.8 160.6 162.48 159.8 160.6 158.587 142.94 159.362 159.8 143.21 127.13 140.88 143.3 171.9
0.47 0.48 0.55 0.8 1.0 1 .os 1.8 2.5 2.60 2.96 3.01 3.3 3.3
152.6 167.0
1.7 2.2
160.42
0.57
3.45 3.7 3.8 5.2
* Reference 2. TABLE 9 Optical isomers EYDPOCAPBON
I
VI
~
.
..... 1-Methyl-3-isopropenylcyclohexene-l . . . . 1.~Iethy14.isopropeny1cyc1ohexene.1 . . . . l.Methyl.3.isopropylcyclohexane ........ 2-Methyl-5-isopropylcyclohexsdiene-l ,3 . 1,2,3.Trirnethylcyclopenten e.1 . . . . . . . . . 1-Methyl-l-isopropylcyclohexene-l . . .
168.92 160.8 161.83 176.74 161.8 139.08 168.6
3-Methylcyclopentene-1. . . . . . . . . . . . . . 4-Methylcyclohexene-l . . . . . . . . . . . . . . . . .1 . 5-Jlethylcyclohexadiene-l ,3 . . . . . . . . . .I I-Methyl-2-isopropylcyclohexane . . . . . .
106 61 ( d l ) 120 2 ( d l )
1
172 3 ( d l )
1
l.Methyl.3.~sopropenylcyclohexane
'
I-Methyl-3-ethylcyclohexane . . . . . . . . . . ' sec-Butylcyclohexane . . . . . . . . . . . . . . . . . . 1. 4-Methyl-1-isopropenylcyclohexene-1. . . . ~
160 4
172 9 ( d l ) 163 282 ( d l )
1
'
1 1
vd
169.06 160.7, 161 69 176 52 161 4 138 2* 107 5 120 7 169 05 159 6 ( d l ) 172 1 160 1
I I
~
1
~
-0.14 0.1 0.14 0.22 0.4 0.80 1.8 -09 -05 08 08 32
288
GUBTAV EGLOFF AND ROBERT C. KUDER
TABLE 10 Side-chain homoloau b
a
SEPIES
Alkylcyclopentanes., . . . . . . , . , . . . . . . . . . . . . . . . 12.11 Alkylcyclohexanes. , . . . . . . . . . . . . . . . . . . . . , . . . . 10.14 Alkylcycloheptanes.. . . . . , . . . . . . . . . . . . . . . . . . . 2.69 1-Alkyl-1-cyclopentenes. . . . . . . . . , . . . . . . , . , . . . 6.25 3-Alkyl-l-cyclopentenes . . . . . . . . . . , , , . . , . , . . . . 4.45 1-Alkyl-1-cyclohexenes . ., , .... . , . . . . . . . , . . . , . 3.08 1 ,1'-Cyclopentylcyclohexylalkanes. . . . . , . . , . , -2.91 1,l'-Dicyclohexylalkanes.. . . , . . . . . . . . . . . . . . . -10.74
STANDAID DEVUT'ION
AVWCL PEPCENIAGE DEVIATION
-16.554 & 0.12 16.549 f 0.24 16.941 f 0.18 16.404 f 0.069 16.774 f 0.035 16.406f 0.081 16.078 f 0.051 16.568 f0.083
0.57 0.94 0.33
0.46 0.17 0.25 0.12 0.29
0.30 0.41 0.29 0.24 0.13 0.16 0.08 0.12
TABLE 11 n-Alkylcyclopentanes V 12.11 16.556ti
+
U
5,. . . . , . . . . . . . . . . 6... . . . . . . . . . . . . . 7... ... . . . . . . . . . , 8, . . .. . . . . . . , . . . . 9. , . . . . . . . . . . . . . , 10.. . . . . . . . , . . . . . . 11... . . , . . . . . . . . . . 12., . . . . . . . . , . . . . .
V0b.d.
94.01 112.38 128.23 144.50 160.95 177.63' 193.92* 210.34'
Vmlod.
94.88 111.43 127.99 144.54 161,lO 177.65 194.20 210.76
1
PEP CENT DEVIATION
0.87 -0.95 -0.24 0.04 0.15
0.93 0.85 0.19 0.03 0.09 0.01 0.14 0.20
~~
* Reference 5.
Vdcd.
6,, , , . . , . . . . . . . . . 7.. , . . . . . . . . . . . . . 8,, , , . . . . . . . . . . . . 9., , . . . . . . . . . . . . . 10.. . , . . . . . . . . . . . . 11... . . . . . . , . . , . . . 12.., , . . . . . . . . . . . . 13... . . . . , . . . . . . . . 14., . , , . . . . . . . . . . .
108.14 127.63 142.43 159.15 175.39 191.9 208.8 240.94
109.43 125.98 142.53 159.08 175.63 192.2 208.7 225.3 241.83
I
AV
PEP CENT DEVIATION
-1.29 1.65 0.10 -0.07 0.24 0.3 -0.1
1.19 1.29 0.07
0.89
0.37
0.04
0.14 0.16 0.05
Although the densities of enantiomorphs are supposed to be identical, in ten out of fourteen pairs the d-isomer has a smaller molal volume than the l-isomer and in three other pairs the reverse relationship is true (see table 9) ; these discrepancies may be ascribed to impurities and other experimental errors.
289
PHYSICAL PROPERTIES OF ALICYCLIC HYDROCARBOh'S
TABLE 13 n-Alkyl cycloheptanes V = 2.69 16.941n
+
7 .. . ., . .. . . . , . . 8.. . . , . . . . . . . . . . 9, .. . , . . . , , . . . 10 . . . . . . , . . . . .
121.21 139.35 154.89 171.9
121.28 138.22 155.16 172.1
0.07 -1.13 0.27
0.06 0.81 0.17 0.12
TABLE 14 1+Alkyl4 -cyclopentenes V 6.25 16.404n
-
n
1'ob.d
88.2* 105.58 120.21 137.48 153.7 170.08' 186.65* 203.40*
5 6
7 8 9 10 11 12
+
Vcalcd
I
88.27 104.67 121.08 137.48 153.9 170.29 186.69 203.10
PEP CENT DEVIATION
Av
0.05 -0.91 0.87
0.06 0.86 0.72 0.00 0.13 0.12 0.02 0.01
0.00
0.2 0.21 0.04 -0.30
* Reference 5. TABLE 15 3-n-Alkyl-1 -cyclopentenes V = 4.45 16.774n
+
n
5 6
88 22
7
122 13
8 9 10 11
1
Cohd
I
1
~
~
172 33' 188 76*
I ~
vded
88 32 105 09 121 87 138 64 155 42 172 19 188 96
' 1
AV
1
PEP CENT DEVIATION
0 10 -0 26
1 -0 14
0 08
0 20
* Reference 5. TABLE 16 1 -n-Alkyl-I-cyclohezenes V = 3.08 16.406n
+
n
6, , . . , . . . . . . . . , . 7. . . . . . . . . . . , 8.. . . . . . . . . . . . . . . 9 . ... . . . . . . . . . . .. . . . . . . . ,, , 10 11 . . . . . . . . . . . ,
1
Votwd.
101.43 118.47 134.10 150.4 167.0 183.5
'
I'oalod.
101,52 117.92 134.33 150.7 167.1 183.5
1
Al'
0.09 -0.55 0.23 0.3 0.1 0.0
PER CENT DEVIATION
0.09
0.46 0.17 0.20 0.06 0.00
290
GUSTAV EGLOFF AND ROBERT C. KUDER HOMOLOGOUS SERIES
The molal volume is additive in normal alkyl side chains. The values of the constants a and b, calculated by the method of least squares for the equation Ti TABLE 17
l,f '-Cyclopenlylcyclohezyl-n-alkanes V 3 -2.91 16.078n
+
n
V0b.d.
Vdcd.
11_ . . ... . . . . . . . . . . 12. , . , , . , . . . . . . . . . 13...... . . . . , . . . . . 14...... . . . . . . . . . .
173.86 190.40 206.18 222.09
173.95 190.03 206.10 222.18
'
AV
1
-0.37
PEP C E N I DEVUTION
0.05 0.19 0.04 0.04
TABLE 18
f ,1 '-Dicyclohezyl-n-alkanes V = -10.74 16.568n
+
12.. . . . . . . . . . . . . . . 13. . . . . _ . . . . . . . . . 14.. . , . . . . . . . , . . . . 15. , . . , _ . . . . . . . , . 16... .... . . . . . . . . . 17.. . , . . , . . . , . . . . .
187.99 204.73 221.61 237.9 253.39 271.01
188.08
0.09
204.64
-0.09 -0.40 -0.1 0.96 -0.09
221.21 237.8 254.35 270.92
0.05 0.04 0.18 0.04 0.38 0.03
TABLE 19 Ring homology V=a+bn a
SEPIES
..
. .. .
Cyolanes (5-10). . . . . , , . . . . , . , . . . , , . . . . . Methylcyclanes (5-9). . , . , , . . . . . . . . . . . . . . . . . . Ethylcyclanes (5-9). . . . . . . . . . . . . . . , . , . . . . . . . . Propylcyclanes ( 6 1 0 ) . . . . . . . . . . . . . . . . . . . . . . . . Methylenecyclanes (5-8). . . . , . , . . . . . . . . . . . . . . Cyclenes (5-8). . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-Methyl-1-cyclenes (6-9). . . . , . . . . . , . . . . . . . . . Cyclylcyclanes (l(r16). . . , . . . . . . . . . . . . . . . . . . .
25.35 35.78 38.03 35.36 22.96 17.27 22.08 28.51
Cyclanes (12-34). . . . . . . . , . , . . . . , , . . . . . . . , . . . . I Alkanes (12-34). . . . . . . . , . . . . . . . , . . . . . . . . . . . . . / ;:9
+
0.29 0.98 0.59 0.53 0.21 0.44
13.739 f 0.098 12.98s It 0.44 12.988 f 0.23 13.710 f 0.29 13.81, f 0.12 14.128 f 0.25 13.830 0.31 13.258 f 0.14
*
16.58 f 0 . 0 6 16.431 f 0.017
0.23 0.71 0.36 0.48 0.19 0.35 0.37 0.27
0.50
0.51
' I
1.5 0.51
~
= a bn, where V is the molal volume in ml. per mole and n is the total number of carbon atoms in the molecule, are shown for eight homologous series in table 10. The limits given in this table for the parameter b are the standard errors of
291
PHYSICAL PROPERTIES OF ALICYCLIC HYDROCARBONS
TABLE 20 Cyclanes, five to ten carbon atoms V = 25.35 13.739n
+
n
Vobsd.
5. . . . . . . . . . . . . . . . 6 . . .. . . . . . . . . . . . . 7.. . . . . . . . . . . . . . . 8 9 ................
................I
94.01 108.14 121.21 135.11
Vdcd.
1
94.04 107.78 121.52 135.26 149.00
A v
1
0.03 -0.36 0.31 0.15
PEP CENT DEVIATION
0.03 0.33 0.26 0.11
,
TABLE 21 Methylcyclanes V = 35.78 12.98an
+
n
1
5 . .. . . . . . . . . . . . . . . 6 ................ 7 . . .. . . . . . . . . . . . . . 8. . . . . . . . . . . . . . . . . e . . .. . . . . . . . . . . . . .
Vobd.
Vcaled.
101.18 112.38 127.63 139.35 151.20
100.70 113.68 126.66 139.64 152.63
AV
PEP CENT DEVIATION
-0.48 1.30 -0.97 0.29 1.40
0.47 1.16 0.76 0.21 0.93
PEP CENT DEVIATION
5,. . . . . . . . . . . . . . . . 6. . . . . . . . . . . . . . . . . 7 . . .. . . . . . . . . . . . . . 8 . . .. . . . . . . . . . . . . .
g . . .. . . . . . . . . . . . . .
103.50 115.55 128.23 142.43 154.89
102.97 115.96 128.95 141.93 154.92
~
0.51 0.35 0.56 0.35 0.02
0.72 -0.50 0.03
TABLE 23 Propylcyclanes V = 35.36 13.710n n
~
6 . . . . . . . . . . . . . . . .' 7. . . . . . . . . . . . . . . . 8... ............. 9. . . . . . . . . . . . . . . . 10. . . . . . . . . . . . . . . .
V0b.d.
118.7 132.1 144.50 159.15 171.9
'
1
+
Vealcd.
117.6 131.3 145.04 158.75 1 1 7 2 . 5
'1 ~
[
1
Av
1;:; 0.54 -0.40 0.4
I 1
~
~
PEPCENTDEVIAIION
0.93 0.61 0.37 0.25 0.23
the slope of each line; these standard errors are given to show that, although the methylene volume increment is about 16.5 ml. per mole in each homologous series, in certain cases there are significant differences among the increments.
292
QUSTAV EGLOFF AND ROBERT C. KUDER
TABLE 24 Met hylenecyclanes V 22.96 13.81,n
-
Vobld.
I
5.. . . . . . . . . . . . . . . .
6 . .. . . . . . . . . . . . . . . 7.. . . . . . . . . . . . . . . .
8. . . . . . . . . . . . . . . . .
92.22 10f0.4~ 119.7, 133.7
+
-
~~
~
~~
Vdcd.
AV
PEP CENI DEVIATION
92.03 105.84 119.66 133.5
-0.20 0.36 -0.05
0.22 0.34 0.04 0.15
-0.2
I
vow.
Volod.
AV
PEP CENT DEVIATION
5,. . . . . . . . . . . . . . . . 6 . .. . . . . . . . . . . . . . . 7 . ,. . . . . . . . . . . . . . . 8. . . . . . . . . . . . . . . . .
88.21 101.43 116.52 130.1
87.92 102.04 115.17 130.3
-0.30 0.61 -0.35 0.2
0.34 0.60 0.30 0.15
m
TABLE 26 1-Methyl4-cyclenes V = 22.08 13.83m
+
n
Vobad.
Vealod.
AV
PEP CENI DEVIATION
6 . .. . . . . . . . . . . . . . . 7 . .. . . . . . . . . . . . . . . 8. . . . . . . . . . . . . . . . . 9. . . . . . . . . . . . . . . .
105.5s 118.4, 133.3, 146.36
105.11 118.95 132.79 146.63
-0.47 0.48 -0.58 0.27
0.45 0.41 0.43 0.18
AV
PEP CENT DEVIATION
161.04 174.29 187.55 200.80 214.05 227.30
0.59 0.43 -0.44
0.37
-0.27
0.13
240.56
0.83
TABLE 27 Cyclanylcyclanes V = 28.51 13.253n
+
~~
I
10. . . . . . . . . . . . . . . . 11.. . . . . . . . . . . . . . . 12. . . . . . . . . . . . . . . 13.. . . . . . . . . . . . . . . 14.. . . . . . . . . . . . . . . 15.. . . . . . . . . . . . . . . 16. . . . . . . . . . . . . . . .
160.45 173.86 187.99 214.32 239.73
0.25
0.23
0.35
Thus, while the slopes for the alkylcyclanes are all about the same, the slopes for the 1,1'-cyclopentylcyclohexylalkanes and the 1,1'-dicyclohexylalkanes are significantly different when their standard errors are considered. The agree-
TABLE 28 Cyclanee. 12 to 54 carbon atom8 V = -3.2 16.58%
+
" 12. . . . . . . . . . . . 13 . . . . . . . . . . . 14. . . . . . . . . . . . . . . . 15 . . . . . . . . . . . . . . . 16 . . . . . . . . . . . . . . 17. . . . . . . . . . . . . . . . I8 . . . . . . . . . . . . . . 19 . . . . . . . . . . . . . . . . 21 . . . . . . . . . . . . . . . . 22 . . . . . . . . . . . . . . . . 23 . . . . . . . . . . . . . . . .
Vobd .
195.5 211.8 m.5 244.6 260.6 279.5 296.0
363.0 379.5
24 . . . . . . . . . . . . . . . 25 . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . 27 . . . . . . . . . . . . . . . 28 . . . . . . . . . . . . . . . . 29 . . . . . . . . . . . . . . . . 30 . . . . . . . . . . . . . . . 31 . . . . . . . . . . . . . . 32 . . . . . . . . . . . . . . 33 . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . . .
430 463 478 492 524 557
Ab'
195.8 212.3 228.9 245.5 262.1 278.7 295.2 311.8 328.4 345.0 361.6 378.1 394.7 411.3 428 444 461 478 494 511 527 544 560
I
PEXCENTDEVIAIION
-0.8
0.2 0.2 0.6 0.4 0.6 0.3 0.3
-1.4 -1.6
0.4 0.4
-2
0.5
-2 0 2
0.4 0.0 0.4
3
0.6
AV
PEP CENT DEVIATION
0.3 0.5 1.4 0.9 1.5
-0.8
TABLE 29 n.Alkanes. 1.9 to 34 carbon atoms V = 29.79 16.431n
+
I
Vobd .
Vuled
.
. 12. . . . . . . . . . . . . . . . 227.32 226.96 -0.36 243.60 -0.21 13. . . . . . . . . . . . . . . . 243.39 259.82 0.02 276.26 -0.01 292.69 16. . . . . . . . . . . . . . . . 292.59. 0.10 308.94 17. . . . . . . . . . . . . . . . 309.12 0.18 325.5 0.1 342.0 0.4 20 . . . . . . . . . . . . . . . . 358.4 358.1 0.3 21 . . . . . . . . . . . . . . . . 374.4 374.8 0.4 22., . . . . . . . . . . . . . . 391.3 0.2 391.1 23 . . . . . . . . . . . . . . . . 407 1 408 24. . . . . . . . . . . . . . . 424 424 0 25. . . . . . . . . . . . . . . . 441 0 457 -2 473 28 . . . . . . . . . . . . . . . . 491 -1 490 29... . . . . . . . . . . . . . 507 -1 506 30 . . . . . . . . . . . . . . . . 523 523 0 31. . . . . . . . . . . . . . . . 539 539 0 1 556 572 0 588 -1
293
0.16 0.09 0.01 0.00
0.03 0.06
0.03 0.11 0.08 0.11 0.05 0.2 0.0
0.0 0.4 0.2 0.2 0.0 0.0 0.2 0.0 0.2
294
GUSTAV EGLOFF AND ROBERT C . KUDER
ment between observed and calculated values of the individual hydrocarbons is shown in tables 11 to 18. The effect of homology within a ring itself is not so simple. The difference in the structure of small and of large rings has been pointed out previously by Rusicka and coworkers (6, 7, 8). They have shown that the larger rings consist
/
100
I
/
I
33
PHYSICAL PROPERTIES OF ALICYCLIC HYDROCARBONS
295
by Muller (4) by the use of s-rays. The results of the present study are in complete agreement with Ruzicka’s picture of the structure of alicyclic compounds. I n order to study the higher members (above n = 11) of the unsubstituted cyclane series a t 20°C. it was necessary to extrapolate the densities to below the melting points, as was done by Ruzicka; for comparison, similar extrapolations were made for the corresponding alkanes (up to n = 34 for both series). In the plot of the molal volumes of the cyclanes against the number of carbon atoms (see figure l ) , a distinct break in the curve occurs a t about n = 10. For the compounds cyclopentane to cyclodecane the slope of the molal volume line is 13.739 ml. per mole, while from cyclododecane to cyclotetratriacontane the slope is 16.58 ml. per mole; the corresponding slope for dodecane to tetratriacontane is 16.43 ml. per mole. That is, the effect of adding a methylene group to a large ring is about the same as the effect of adding a methylene group to a long-chain normal alkane, but the effect is much less for small rings. As shown in table 19, the small-ring compounds of other homologous series of alicyclic hydrocarbons also have methylene volume increments of about 13 to 14 ml. per mole. The details for the individual hydrocarbons are given in tables 20 to 29. SUMMARY
The molal volumes of the known alicyclic hydrocarbons (not containing fused rings) in the liquid state a t 20°C. have been studied from the viewpoint of isomerism and homology. The effects of the positions of side chains and double bonds are discussed. The molal volumes in homologous series are additive and can be reproduced within a few tenths of 1 per cent by linear functions of the number of carbon atoms. Comparison with aliphatic hydrocarbons shows the effects of ring closure and indicates a molecular structure in agreement. with Ruzicka’s picture of the structure of alicyclic compounds. REFEREKCES (1) EGLOFF,G . : Physical Conslants of H y d r o c a h n s , Vol. 11. Reinhold Publishing Corporation, Kea. York (1940). (2) GLASGOW, A . R . , J R . : J. Research Katl. Bur. Standards 24, 509-29 (1940). (3) LEVINA,R. Y.,GOLUB,G . B., ASD SMIRWOV, K . M.: J. Gen. Chern. (U.S.S.R.) 9, 825 (1939); Chern. Abstracts 34, 388 (1940). (4) MCTLLERA . : Helv. Chim. Acta 16, 155-61 (1933). (5) PLATE,A. F.: Compt. rend. scad. sci. U.R.S.S. 24, 25742 (1939);Chem. Abstracts 34, 994 (1940). (6) RUZICKA, L., AND GIACOMELLO, G . : Helv. Chim. Acta 20, 548-62 (1937). (7) RUZICKA, L.,STOLL,M., HUYBER,H. W., A X D BOEKENOOGEN, H . A.: Helv. Chirn. Acta 13, 1152-85 (1930). (8) STOLL,Xi,, AKD STOLL-COMTE, G.: Helv. Chirn. Acta 13, 1185-1200 (1930). (9) WIBAUT,J. P., HOOG,H . , LANGEDIJK, S. L., OVERHOFF, J., ASD SMITTENBERG, J.: Rec. trav. chim. 68, 329-77 (1939).