Chapter 15
Inhibitor-Induced Structural Changes in Serine Proteases Monitored by Fourier Transform Infrared Spectroscopy
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
Rina Κ. Dukor and Michael N. Liebman Bioinformatics Program, Amoco Technology Company, Mail Code F-2, 150 West Warrenville Road, Naperville, IL 60563-8460
Serine proteases are an important family of enzymes whose members participate in a variety of biological activities such as digestion and coagulation. The three-dimensional structure of some of the digestive serine proteases, i t s i n h i b i t o r s and t h e i r complexes have been determined to a very high atomic resolution. In this paper, conformational perturbations in enzymes (trypsin subfamily) caused by binding of synthetic and natural inhibitors and solvent changes are examined. The changes are monitored by comparison of second-derivative FTIR spectra of inhibited and uninhibited enzymes in solution (H O). The results are compared to those obtained from X-ray crystallography studies. 2
I n f r a r e d a b s o r p t i o n s p e c t r o s c o p y was f i r s t i n t r o d u c e d as a t o o l f o r t h e study o f p e p t i d e and p r o t e i n conformations more t h a n 40 y e a r s ago (1). I n t h e IR a b s o r p t i o n s p e c t r u m , amide g r o u p s a r e s t r o n g chromophores t h a t g i v e r i s e t o n i n e s t r o n g c h a r a c t e r i s t i c bands, named amide A, Β a n d I - V I I . Among t h e s e bands, amide I band (which i s due m o s t l y t o t h e C=0 s t r e t c h i n g v i b r a t i o n s o f t h e p e p t i d e backbone) h a s been p r i m a r i l y used f o rp r o t e i n secondary s t r u c t u r e d e t e r m i n a t i o n s t u d i e s due t o i t s h i g h s e n s i t i v i t y t o s m a l l changes i n m o l e c u l a r geometry a n d h y d r o g e n b o n d i n g o f t h e p e p t i d e group. I t was r e c o g n i z e d e a r l y o n t h a t f o r p r o t e i n s i n s o l u t i o n , amide I band i s b r o a d a n d f e a t u r e l e s s and f o r p r o t e i n s t h a t c o n t a i n s e g m e n t s w i t h d i f f e r e n t c o n f o r m a t i o n s , t h e r e s u l t s a r e not a l w a y s e a s y t o i n t e r p r e t
0097-6156/94/0576-0235$08.00/0 © 1994 American Chemical Society In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
236
MOLECULAR MODELING
(2) Therefore, the e a r l y e x p e r i m e n t s were u s e d t o e s t i m a t e t h e p r e d o m i n a n t c o n f o r m a t i o n and t o q u a l i t a t i v e l y follow c o n f o r m a t i o n a l changes due t o changes i n s o l u t i o n e n v i r o n m e n t (3-5). Some a t t e m p t s have been made t o d e r i v e quantitative information b a s e d on curve-fitting the o r i g i n a l s p e c t r u m (6). The f i e l d o f a p p l i c a t i o n o f IR s p e c t r o s c o p y to the p r o t e i n s t r u c t u r a l s t u d i e s has e r u p t e d i n t h e e a r l y 80's w i t h commercial a v a i l a b i l i t y of F o u r i e r t r a n s f o r m i n f r a r e d spectrometers. Due to inherent advantages of F o u r i e r transform i n f r a r e d spectroscopy (FTIR) s u c h as h i g h S/N r a t i o s and h i g h wavenumber p r e c i s i o n i t now became p o s s i b l e t o o b t a i n s p e c t r a t h a t can be e a s i l y m a n i p u l a t e d by c o m p u t e r . This l e d to access to such mathematical t r e a t m e n t s as s e c o n d d e r i v a t i v e a n a l y s i s (7), F o u r i e r s e l f deconvolution (FSD) (8) and interactive spectral s u b t r a c t i o n (9). Interactive spectral subtraction i s especially useful f o r c o r r e c t i n g a b s o r p t i o n s p e c t r a of p r o t e i n s i n water. Water has a s t r o n g a b s o r p t i o n band (HOH b e n d i n g mode) a t ~ 1650 cm- , e x a c t l y a t t h e f r e q u e n c y o f amide I b a n d . T h i s p r o b l e m i s overcome e x p e r i m e n t a l l y by u s i n g D 0 as a solvent, which i s non-absorbing i n t h i s region. But t h i s i n t u r n c r e a t e s a problem because of i n c o m p l e t e H-D e x c h a n g e t h a t c a n l e a d t o band d i s p l a c e m e n t s and small s t r u c t u r a l changes (10). Therefore, a l l studies i n t h i s l a b o r a t o r y are performed f o r p r o t e i n s i n H 0-based s o l v e n t s y s t e m s and d a t a a n a l y s i s has e m p h a s i z e d t h e c a r e f u l c o r r e c t i o n f o r w a t e r bands i n t h e o b s e r v e d s p e c t r a .
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
c
1
2
2
I n t h e r e c e n t y e a r s , FTIR s t u d i e s o f p r o t e i n s h a v e c o n c e n t r a t e d on e x t r a c t i n g q u a n t i t a t i v e s e c o n d a r y s t r u c t u r e i n f o r m a t i o n from the s p e c t r a . The methods c u r r e n t l y u s e d a r e e i t h e r b a s e d on band n a r r o w i n g and c u r v e f i t t i n g o f t h e amide I band ( ' f r e q u e n c y - b a s e d ' a p p r o a c h ) o r on the p r i n c i p l e o f ' p a t t e r n r e c o g n i t i o n ' (such as f a c t o r a n a l y s i s and p a r t i a l l e a s t s q u a r e s method) ( t h e r e i s a l a r g e v a r i e t y o f good work on t h e s e t o p i c s ; f o r r e v i e w s see r e f . 11-14). A b i l i t y to o b t a i n q u a n t i t a t i v e secondary s t r u c t u r e i n f o r m a t i o n f r o m FTIR s p e c t r a i s o f p a r t i c u l a r v a l u e when no o t h e r t e c h n i q u e i s a v a i l a b l e f o r s i m i l a r a n a l y s i s (e.g. membrane-bound p r o t e i n s ) o r when a f a s t a p p r o x i m a t e r e s u l t i s of i n t e r e s t . We b e l i e v e , however, t h a t t h e r e a l power o f a p p l y i n g FTIR s p e c t r o s c o p y to p r o t e i n s l i e s not i n a n a l y s i s of p r o t e i n conformation but t o f o l l o w d i s c r e t e conformational changes induced by a variety of perturbations (e.g solvent, inhibitor, s i t e - d i r e c t e d m u t a t i o n , etc.)» The g o a l o f t h e work t h a t i s p a r t i a l l y d e s c r i b e d h e r e i s t o f i n d a c o n s i s t e n t , r e l i a b l e method f o r c o r r e l a t i n g s p e c t r a l i n f o r m a t i o n t o s t r u c t u r a l knowledge. To d a t e , t h e h i g h e s t r e s o l u t i o n s t r u c t u r a l i n f o r m a t i o n on p r o t e i n s comes f r o m x - r a y d i f f r a c t i o n and t h e r e f o r e we d e c i d e d t o f i r s t examine s p e c t r o s c o p i c a l l y t h o s e p r o t e i n s f o r w h i c h h i g h u
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
15.
DUKOR & LIEBMAN
Structural Changes in Serine Proteases
237
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
r e s o l u t i o n x-ray data e x i s t s . To o p t i m i z e t h e s y s t e m under analysis to evaluate the l i m i t of r e s o l u t i o n of s t r u c t u r a l d e t a i l w h i c h t h e method c a n d e t e c t we c h o s e t o examine a s e r i e s o f h i g h l y homologous p r o t e i n s , s e r i n e p r o t e a s e s . Two s u b s e t s a r e c h o s e n : one c o n s i s t i n g o f t r y p s i n a n d a w i d e r a n g e o f i t s forms a n d t h e o t h e r c o n t a i n i n g o t h e r t r y p s i n - l i k e serine proteases. In the f i r s t subset t r y p s i n a n d i t s zymogen, t r y p s i n o g e n , are subjected to d i f f e r e n t e n v i r o n m e n t a l p e r t u r b a t i o n s s u c h as c h a n g e o f s o l v e n t , pH a n d i n h i b i t i o n by n a t u r a l a n d s y n t h e t i c inhibitors. To d e m o n s t r a t e t h e methods d e v e l o p e d , we d i s c u s s t h e r e s u l t s o f some o f t h i s s u b s e t . The r e s u l t s f o r t h e r e s t o f t h e p r o t e i n s w i l l be p u b l i s h e d s e p a r a t e l y . Materials
And
Methods
Sample Preparation. Trypsinogen (TG) a n d trypsin i n h i b i t o r ( P T I ) , b o t h from b o v i n e p a n c r e a s , were p u r c h a s e d from W o r t h i n g t o n B i o c h e m i c a l Corp. Some t r y p s i n o g e n (T1143, b o v i n e p a n c r e a s ) was p u r c h a s e d f r o m Sigma C h e m i c a l Co. f o r c o m p a r i s o n . A l l samples were u s e d w i t h o u t f u r t h e r purification. O t h e r c h e m i c a l s u s e d were o f r e a g e n t g r a d e . P r o t e i n s were p r e p a r e d a t a p p r o x i m a t e c o n c e n t r a t i o n s of 20-60 mg/ml i n H 0 b a s e d s o l u t i o n s u n d e r t h e same e n v i r o n m e n t a l c o n d i t i o n s as u s e d i n t h e c r y s t a l s t r u c t u r e d e t e r m i n a t i o n s ( i . e . pH, s o l v e n t , i n h i b i t o r s ) . Table I l i s t s c r y s t a l l i z a t i o n c o n d i t i o n s f o r t r y p s i n o g e n subset a l o n g w i t h B r o o k h a v e n P r o t e i n D a t a Bank (pdb) (15) name and a t o m i c r e s o l u t i o n o f x - r a y d a t a . 2
Spectroscopy Measurements and Data Analysis. I n f r a r e d a b s o r p t i o n s p e c t r a were c o l l e c t e d w i t h a Bomem MB100 FTIR s p e c t r o m e t e r e q u i p p e d w i t h S i C s o u r c e a n d DTGS detector. A l l s p e c t r a were r e c o r d e d a t 2 cm- r e s o l u t i o n by c o - a d d i n g 1000 s c a n s . S o l u t i o n s were p l a c e d i n a c e l l w i t h C a F windows and 6 μ m y l a r s p a c e r ( G r a s e b y S p e c a c ) . For e a c h p r o t e i n measurement, a s i n g l e beam s p e c t r u m o f empty c e l l a n d o f b u f f e r was c o l l e c t e d . B u f f e r spectrum was s u b t r a c t e d from t h a t o f p r o t e i n f o l l o w i n g p r o c e d u r e o f Pézolet e t a l (16). The i n s t r u m e n t was c o n t i n u o u s l y p u r g e d w i t h d r y a i r (FTIR Purge Gas G e n e r a t o r from B a l s t o n , I n c . ) to reduce atmospheric a b s o r p t i o n , but n o n e t h e l e s s , b e f o r e any m a t h e m a t i c a l t r e a t m e n t s , a w a t e r v a p o r absorbance s p e c t r u m , c o l l e c t e d u n d e r t h e same c o n d i t i o n s a s t h e sample, was s u b t r a c t e d . T h i s was done i n s u c h a way as t o e l i m i n a t e sharp r e s i d u a l r o t a t i o n a l - v i b r a t i o n a l peaks of v a p o r phase w a t e r i n t h e 1800-1730 cm- r e g i o n , i . e . r e g i o n where w a t e r a b s o r b s b u t sample does n o t . For d e t e r m i n a t i o n o f p r o t e i n c o n c e n t r a t i o n s UV-VIS s p e c t r a were c o l l e c t e d on Unicam UV-2 s p e c t r o p h o t o m e t e r on the same p r o t e i n samples as u s e d i n FTIR s t u d y . Samples were p l a c e d i n a q u a r t z demountable r e c t a n g u l a r c e l l o f 10 μ path length (Starna C e l l s , Inc.). A b s o r p t i o n was 1
2
1
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
238
MOLECULAR MODELING
Table I. Subset of C r y s t a l l i z a t i o n T r y p s i n o g e n and Complexes
Conditions
pdb name (res Â)
inhibitor (molar r a t i o )
solvent
pH
1. 2 t g a (1.8)
BPTI (1/4)
MgS0
4
6.9
2 . 2tgp (1.9)
MgS0
4
6.9
BPTI
3. 3 t p i (1.9)
MgS0
4
6.9
BPTI + i l e - v a l
with
a
4. l t g c (1.8)
BPTI (1/4)
50%CH OH
7.0
5. l t g n (1.65)
benzamidine
30%C H OH
7.5
6. l t g b (1.8)
BPTI (1/4)
30% PEG
7.6
a
complex
for
3
2
5
Molar r a t i o of i n h i b i t o r to trypsinogen (moles i n h i b i t o r / moles t r y p s i n o g e n )
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
15.
DUKOR & LIEBMAN
Structural Changes in Serine Proteases
239
m e a s u r e d a t 280 nm a n d c o n c e n t r a t i o n c a l c u l a t e d u s i n g t h e l i t e r a t u r e e p s i l o n v a l u e s a t 280 nm (17). P r o t e i n FTIR a b s o r p t i o n d a t a i s c o n v e r t e d i n t o t h e u n i t s o f m o l a r e x t i n c t i o n c o e f f i c i e n t s so t h a t d i f f e r e n t samples c o u l d be compared. The e x a c t p a t h l e n g t h o f IR c e l l i s d e t e r m i n e d by an i n t e r f e r e n c e f r i n g e method o f empty c e l l (18). O t h e r methods o f n o r m a l i z a t i o n o f amide I band were a t t e m p t e d s u c h as n o r m a l i z i n g t o a r e a o r t o t y r o s i n e band b u t were f o u n d t o be i n a d e q u a t e . Second d e r i v a t i v e s p e c t r a a r e c a l c u l a t e d u s i n g Maximum L i k e l i h o o d d e r i v a t i v e a l g o r i t h m (Spectrum Square A s s o c i a t e s , I n c . ) w i t h a 7 cmhalf-width f o ra l l proteins.
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
1
Computational Methods. A l l c o m p u t a t i o n a l methods u s e d for a n a l y s i s of c r y s t a l l o g r a p h i c s t r u c t u r e data a r e based on a l g o r i t h m s o f Liebman and c o - w o r k e r s (19-22). In short, t h r e e - d i m e n s i o n a l p r o t e i n s t r u c t u r e s a r e r e p r e s e n t e d by two g e o m e t r i c p a r a m e t e r s : α-carbon d i s t a n c e s ( l i n e a r d i s t a n c e v a l u e s - LD) and α-carbon t o r s i o n a n g l e s (backbone d i h e d r a l a n g l e s - BDA). The LD v a l u e o f an amino a c i d i n a p r o t e i n sequence , i , i s computed by summing up t h e d i s t a n c e s from i t s α-carbon t o e a c h o f t h e f o u r s u c c e s s i v e r e s i d u e acarbons. Therefore, e a c h LD v a l u e describes the conformation o f f i v e r e s i d u e s , and f o r a p r o t e i n o f Ν r e s i d u e s t h e r e a r e (N-4) LD v a l u e s . A p l o t o f LD v a l u e s v e r s u s sequence p o s i t i o n g i v e s a d e t a i l e d p r o f i l e o f l o c a l folding. To compare two forms o f t h e same p r o t e i n , t h e i r r e s p e c t i v e LD's a r e s u b t r a c t e d p a i r w i s e a n d a p l o t w i l l h i g h l i g h t r e g i o n s t h a t undergo change (20). The BDA i s a d i h e d r a l a n g l e between two p l a n e s , one c o n t a i n i n g i , i+1, i+2 and t h e s e c o n d c o n t a i n i n g i+1, i+2, 1+3. One BDA value describes the o r i e n t a t i o n of four residues. This p a r a m e t e r g i v e s r e p r e s e n t a t i o n o f handedness o f p o l y p e p t i d e c h a i n and i s used t o d i s t i n g u i s h between a m b i g u i t y i n distance-based a n a l y s i s alone. To d e t e r m i n e i f f r a g m e n t s o f p o l y p e p t i d e backbone i n d i f f e r e n t p r o t e i n s t r u c t u r e s a r e e q u i v a l e n t , an a l g o r i t h m , b a s e d on s i m i l a r i t y i n t h e LD a n d BDA v a l u e s , h a s been d e v e l o p e d (21 ) and was u s e d h e r e w i t h some m o d i f i c a t i o n s . The b a s i s f o r t h e a l g o r i t h m i s d e s c r i b e d i n d e t a i l by P r e s t r e l s k i e t a l . (21) and a d d i t i o n a l m o d i f i c a t i o n s ( K l e i n , G. C , a n d L i e b m a n , Μ. Ν. , u n p u b l i s h e d ) a r e summarized here. F i r s t , we d e f i n e a s u b s t r u c t u r e a s any octapeptide conformation t h a t o c c u r s i n more t h a n one p r o t e i n i n the set of proteins studied. Substructures are e s t a b l i s h e d by s c r e e n i n g t h e LD a n d BDA v a l u e s o f a l l p o t e n t i a l substructures i n the proteins i n the set using cost function. To a c c o m p l i s h t h i s , the proteins are c o n s i d e r e d s e q u e n t i a l l y and f r a g m e n t s o f a d e f i n e d l e n g t h (N=8) a r e compared w i t h a l l o t h e r f r a g m e n t s o f t h e same l e n g t h . The 'screened' f i l e c o n t a i n s a l l t h e s u b s t r u c t u r e s and their matches. One r e s u l t a n t t a b l e contains s u b s t r u c t u r e number, f r e q u e n c y o f i t s o c c u r r e n c e s i n t h e s e t a n d c o r r e s p o n d i n g LD and BDA v a l u e s . A second l i s t s
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
MOLECULAR MODELING
240
t h e o r d e r o f s u b s t r u c t u r e s a s s i g n e d t o e a c h r e s i d u e a s one p r o g r e s s e s a l o n g t h e amino a c i d s e q u e n c e . A hierarchical o r d e r i n g of substructures i s then generated, c o n t a i n i n g 5 LD v a l u e s , t o f i n d e q u i v a l e n t r e g i o n s i n t h e p r o t e i n s i n the s e t . A l l c a l c u l a t i o n s d e s c r i b e d h e r e were p e r f o r m e d on a Sun computer.
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
Results
and
Discussion
The t r y p s i n - l i k e s u b f a m i l y o f s e r i n e p r o t e a s e s i s i d e a l f o r t h e s t u d y o f c o n f o r m a t i o n a l changes t h a t t a k e p l a c e upon e n v i r o n m e n t a l p e r t u r b a t i o n s due t o a l a r g e number o f h i g h r e s o l u t i o n c r y s t a l l o g r a p h i c data a v a i l a b l e f o r under a variety of conditions . F i g u r e 1 shows a f l o w - c h a r t ( s i m i l a r t o a minimum s p a n n i n g t r e e ) o f t h e a v a i l a b l e x - r a y d a t a (pdb name) a n d t h e c o r r e s p o n d i n g p e r t u r b a t i o n s . As a demonstration o f t h e a n a l y s i s method, FTIR d a t a i s presented f o r trypsinogen (2tga), trypsinogen-BPTI complex (2tgp) a n d t r y p s i n o g e n i n d i f f e r e n t s o l v e n t s ( l t g b , l t g c ) . The s u b s t r u c t u r e l i b r a r y c a l c u l a t i o n was c a r r i e d o u t u s i n g a l l s t r u c t u r e s shown i n F i g u r e 1. F i g u r e 2 shows d i f f e r e n c e l i n e a r d i s t a n c e p l o t s f o r (a) l t g b , (b) l t g c a n d (c) 2 t g p a s e a c h i s compared t o 2tga. The c r y s t a l s t r u c t u r e l t g b i s o f t r y p s i n o g e n i n 30% p o l y e t h y l e n e g l y c o l (24) . Polyethylene g l y c o l i s quite d i f f e r e n t f r o m MgS04 ( t h e s o l v e n t u s e d f o r 2 t g a {25) s t r u c t u r e ) i n s a l t c o n c e n t r a t i o n and d i e l e c t r i c c o n s t a n t . B a s e d o n t h e d i f f e r e n c e LD p l o t , t h e m a i n d i f f e r e n c e b e t w e e n t h e two s t r u c t u r e s i s i n t h e r e g i o n b e t w e e n r e s i d u e s 168-174 ( p o s i t i o n s a r e r e f e r r e d t o b a s e d o n t h e o r d e r e d r e s i d u e l i s t i n β-trypsin, i . e . 1-223 f o r 223 residues i n β-trypsin (20). The s e v e n t h residue i n t r y p s i n o g e n , i s o l e u c i n e , assumes p o s i t i o n number 1 . ) . T h i s r e g i o n i s p a r t o f t h e " a c t i v a t i o n domain" (26), i . e . regions which are conformationally d i f f e r e n t i n trypsinogen as compared t o t r y p s i n . In trypsinogen, the a c t i v a t i o n d o m a i n i s d i s o r d e r e d (26) b u t i t i s d i s o r d e r e d i n b o t h e n v i r o n m e n t s (24). Based on t h e m a g n i t u d e o f t h e change i n l i n e a r distance values (2.2 Â) a n d c o m p a r i s o n w i t h c h a n g e s upon b i n d i n g o f p a n c r e a t i c t r y p s i n inhibitor ( F i g u r e 2 c , s e e below) i t i s r e a s o n a b l e t o c o n c l u d e t h a t t h e changes s e e n upon a s o l v e n t change a r e c o n f o r m a t i o n a l i n n a t u r e a n d most l i k e l y a r e due t o r i g i d i f i c a t i o n o r ordering of a 'disordered' chain. The c r y s t a l s t r u c t u r e t r y p s i n o g e n l t g c (27) i s i n 50% methanol-water mixture. B a s e d on t h e d i f f e r e n c e LD p l o t , t h e ' l a r g e s t ' d i f f e r e n c e o b s e r v e d i s i n t h e same r e g i o n a s t h a t d e s c r i b e d above, r e s i d u e s 168-174, b u t t h e change i s about 4 times s m a l l e r . Therefore, i ti s concluded that t h e r e i s a v e r y s m a l l e f f e c t ( i f any a t a l l ) o f a l c o h o l on the conformation o f trypsinogen. B o v i n e p a n c r e a t i c t r y p s i n i n h i b i t o r (PTI) i s a s m a l l p r o t e i n o f 58 amino a c i d s t h a t b i n d s t r y p s i n o g e n w i t h t h e
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
15. DUKOR & LIEBMAN
30% PEG \
Structural Changes in Senne Proteases
J50%CH3OH DIP ,50%H2O
241
30% C2H50H (benzamidine as inhibitor)
Trypsinogen
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
2tga (MgS04) • N-terminal hexapeptide
BPTI
(%tT)«
2 t g a
purified
GtgjT)
β-Trypsin Itpo
lle-Val
V
APPA
BPTI
GtpT)
QtjD S t D \ ^
t
p
o
benzamidine
Gptb) commercial prep, (α + β)
Gptn )
DIP
XiptpJ F i g u r e 1. F l o w - c h a r t o f c r y s t a l l o g r a p h i c d a t a f o r t r y p s i n and i t s zymogen and t h e c o r r e s p o n d i n g perturbations. Each s t r u c t u r e i s i d e n t i f i e d by i t s P r o t e i n Data Bank (pdb) name.
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
MOLECULAR MODELING
Q
(Delta LDP = LDP OF 2TGA - LDP OF 1TGBJ
|o
6.06.04.02.0delta LDP-I 0.0Anatrpmg -2.0
N^^J^^ ]
-4.0
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
-6.0. 1 20 40 60 80 100 120 140 160 180 200 223| (Residue Number] I IALDP ΙΙΙΜ.ΟΙΡΓ^ΒΡ [Delta LDP = LDP OF 2TGA - LDP OF 1TGCJ lO.Ot 8.06.04.02.0delta LDP-
0.0-2.0 -4.0 -6.0 1 20 40 60 80 100 120 140 160 180 200 223| (Residue Number! IALDP
iiigLgbLig^UJiia|
[Delta LDP r LDP OF 2TGA - LDP OF 2TGPZJ
I»· U
1
ΙΟΟ .τ 8.06.04.02.0delta LDP-I 0.0Απ gstroms
Ά
-6.0r1 20 40 60 80 100 120 140 160 ISO 200 223| (Residue Number] I ULDP
p»i.tll-*-^IB3
F i g u r e 2. D i f f e r e n c e l i n e a r d i s t a n c e p l o t s f o r (a) l t g b ( t r y p s i n o g e n i n 3 0% p o l y e t h y l e n e g l y c o l ) , (b) l t g c ( t r y p s i n o g e n i n 50% m e t h a n o l - w a t e r m i x t u r e ) a n d (c) 2 t g p ( t r y p s i n o g e n - b o v i n e p a n c r e a t i c i n h i b i t o r complex) as compared t o 2 t g a ( t r y p s i n o g e n i n MgS0 ) . 4
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
15. DUKOR & LIEBMAN
243
Structural Changes in Serine Proteases
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
1
b i n d i n g c o n s t a n t o f 106 M - (28) . Upon b i n d i n g o f P T I , t h e a c t i v a t i o n domain becomes s t r u c t u r e d (26) and o v e r a l l t h e trypsinogen component adopts a more trypsin-like conformation (28). The d i f f e r e n c e LD p l o t ( F i g u r e 2c) shows t h e d i f f e r e n c e between LD v a l u e s f o r f r e e t r y p s i n o g e n and a t r y p s i n o g e n - P T I complex. A g a i n t h e change i s o b s e r v e d i n t h e same a c t i v a t i o n domain r e g i o n , r e s i d u e s 168 t o 175, b u t t h e s i g n o f t h e d i f f e r e n c e p l o t f o r r e s i d u e s 170 t o 175 i s o p p o s i t e t o t h a t s e e n i n 2 t g a - l t g b p l o t ( F i g u r e 2a) .. T h i s d i f f e r e n c e i n s i g n f o r t h e two p l o t s probably implies that i f there i s ordering of the a c t i v a t i o n r e g i o n upon a c o m p l e x f o r m a t i o n o r s o l v e n t change, then, t h e s e c o n f o r m a t i o n a l changes t h a t r e s u l t f r o m t h e two p e r t u r b a t i o n s a r e d i f f e r e n t . The d i f f e r e n c e FTIR d e r i v a t i v e s p e c t r a f o r t r y p s i n o g e n i n 12 - 1 3 % p o l y e t h y l e n e g l y c o l (PEG) , 2 0 % CH OH a n d a complex with. PTI as compared t o f r e e t r y p s i n o g e n a r e shown i n F i g u r e s 3, 4 and 5 r e s p e c t i v e l y . A l l t h r e e s p e c t r a show a d i f f e r e n c e i n t h e amide I r e g i o n (1600 -1690 cm- ) and no d i f f e r e n c e s i n a m i d e I I (1480-1575 cm- ) r e g i o n a r e observed. "The amide I I r e g i o n r e s u l t s p r i m a r i l y f r o m NH b e n d i n g a n d CN s t r e t c h i n g . I t i s n o t as s e n s i t i v e t o s e c o n d a r y s t r u c t u r a l c h a n g e s a s amide I a n d when t h e changes are small, i t i s not expected to reveal differences. The l a r g e s t d i f f e r e n c e s s e e n i n amide I f o r a l l t h r e e s p e c t r a a r e i n t h e same ' r e g i o n ' , i . e. 16331643 cm- ( o t h e r s a s s i g n t h i s r e g i o n as β-sheet (11-14, 29, 30), p o s s i b l y i n d i c a t i n g t h a t t h e change i s w i t h i n t h e same s u b s t r u c t u r e and p o t e n t i a l l y even i n t h e same p o s i t i o n o f protein. The LD r e s u l t s , as d e s c r i b e d above, s u g g e s t t h a t i t i s s a f e zo assume t h a t t h e c o n f o r m a t i o n a l changes t h a t t a k e p l a c e i n s o l u t i o n a r e i n f a c t i n t h e same p a r t o f t h e polypeptide chain i n a l l three cases. Other small d i f f e r e n c e p e a k s o b s e r v e d a t h i g h e r f r e q u e n c i e s (1670-1690 cm- ) a r e due t o s m a l l changes i n l o o p s a n d t u r n s . It is important t o p o i n t out that the r e s u l t s presented here are p r e l i m i n a r y and s e v e r a l sample p r e p a r a t i o n techniques r e q u i r e f u r t h e r r e f i n e m e n t b e f o r e f u r t h e r a n a l y s i s c a n be made. A l s o , t h e spectrum o f t h e complex o f t r y p s i n o g e n w i t h PTI c o n t a i n s c o n t r i b u t i o n s from amides o f b o t h p o l y p e p t i d e s a n d s i n c e i t i s n o t d e t e r m i n e d e x a c t l y how much PTI i s bound t o t r y p s i n o g e n i t i s n o t c l e a r how much o f i t s s p e c t r u m t o s u b t r a c t from t h a t o f t h e complex. The p r o t e i n s u b s t r u c t u r e l i b r a r y u s e d i n t h i s a n a l y s i s was c r e a t e d f o r t h e p r o t e i n s e t shown i n F i g u r e 1 . A n a l y s i s of the l i b r a r y i n d i c a t e s that f o r trypsinogen c r y s t a l s t r u c t u r e s 2 t g a , l t g c and 2 t g p s t a r t i n g w i t h r e s i d u e number 166 t h e o c t a p e p t i d e s u b s t r u c t u r e i s o f t h e same t y p e t h r o u g h r e s i d u e number 173. The l i b r a r y a v e r a g e LD v a l u e s f o r t h i s s u b s t r u c t u r e a r e : 27.4, 29.7, 27.8, and 31.8 Â w h i c h a r e c h a r a c t e r i s t i c o f LD v a l u e s f o r more 'extended' structures, similar t o 2.2 helix (LD=29.08) (21). For ltgb, the octapeptide substructure 3
1
1
1
1
7
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
244
MOLECULAR MODELING
2TGA
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
1TGB
2TGA - 1TGB
1800
1400
1600 Frequency ( 1 / c m )
F i g u r e 3. D i f f e r e n c e FTIR d e r i v a t i v e s p e c t r a f o r t r y p s i n o g e n i n 12-13% p o l y e t h y l e n e g l y c o l as compared t o t r y p s i n o g e n i n MgS0 . 4
s t a r t s a t r e s i d u e 165 and has an a v e r a g e LD v a l u e s o f 22.2, 27.4, 2 9 . 8 , a n d 27.9 À w h i c h i n d i c a t e t h a t t h e f i r s t 5 r e s i d u e s a r e i n v o l v e d i n a t u r n ( p r o b a b l y deformed) and t h e n f o l d s i n t o a n ' e x t e n d e d ' s t r u c t u r e (I) . A t r e s i d u e 173, t h e f o l d i n g p a t t e r n becomes t h e same f o r 2 t g a , l t g b and l t g c b u t n o t f o r 2 t g p . A t t h i s p o i n t t h e c o n f o r m a t i o n changes f o r 2 t g p and t h e n changes a g a i n a t r e s i d u e s 174 and 175. A t r e s i d u e 176 a l l f o u r s t r u c t u r e s a d o p t t h e same conformation. These r e s u l t s a r e c o n s i s t e n t w i t h t h e d i f f e r e n c e LD p l o t s b u t g i v e more d e t a i l a n d i n s i g h t on t h e n a t u r e o f t h e e x a c t changes. The h i e r a r c h i c a l o r d e r i n g o f substructures indicates that f o r a l l other crystal s t r u c t u r e s i n F i g u r e 1 except l t g n , 2tgd and 4 p t i t h e r e g i o n s t a r t i n g w i t h r e s i d u e 166 c a n be d e f i n e d by t h e same s u b s t r u c t u r e (as d e s c r i b e d above t h i s r e g i o n i s p a r t o f t h e ' a c t i v a t i o n domain'). Conclusion
I n t h i s p a p e r , we d e s c r i b e a m e t h o d f o r a n a l y z i n g s t r u c t u r a l changes i n p r o t e i n s u s i n g a c o m b i n a t i o n o f experimental, i . e . FTIR s p e c t r o s c o p y and computational techniques. The method i n v o l v e s t h e c o m p a r i s o n o f p r o t e i n s i n d i f f e r e n t s t a t e s u s i n g second d e r i v a t i v e a n a l y s i s o f
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
DUKOR & LIEBMAN
Structural Changes in Serine Proteases
2TGA
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
1TGC
2TGA -
1800
1TGC
1400
1600 F r e q u e n c y (1 / c m )
F i g u r e 4. D i f f e r e n c e FTIR d e r i v a t i v e s p e c t r a f o r t r y p s i n o g e n i n 20% m e t h a n o l as compared t o t r y p s i n o g e n i n MgS0 . 4
2TGA
2TGP
2TGA -
2TGP
I 1800
1600
1400
F r e q u e n c y (1 / c m )
F i g u r e 5. D i f f e r e n c e FTIR d e r i v a t i v e s p e c t r a f o r trypsincgen-bovine pancreatic trypsin i n h i b i t o r complex as compared t o t r y p s i n o g e n i n MgS0 . 4
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
246
MOLECULAR MODELING
F T I R s p e c t r a a n d d i f f e r e n c e LD v a l u e s c o m p u t e d from s t r u c t u r e s observed by x - r a y c r y s t a l l o g r a p h y . C o l l e c t i o n and a n a l y s i s o f d a t a f o r a f a m i l y o f p r o t e i n s , e.g. s e r i n e p r o t e a s e s , enables t h e assignment o f observed spectral bands t o p r o t e i n s u b s t r u c t u r e - b a s e d f e a t u r e s a n d f u r t h e r e n a b l e s a n a l y s i s o f s p e c t r a where no x - r a y s t r u c t u r e i s available. I t i s i m p o r t a n t t o n o t e t h a t a l t h o u g h we r e p o r t the i n i t i a l r e s u l t s o f t h i s study i t i s apparent t h a t t h e method we d e s c r i b e does n o t r e l y on b a n d f i t t i n g t h e s p e c t r a or on d e v e l o p i n g frequency-based band assignments. However, a s t h e methods f o r d a t a a n a l y s i s from FTIR s p e c t r a c o n t i n u e t o e v o l v e (see o t h e r c h a p t e r s i n t h i s volume) FTIR spectroscopy promises t o be a p o w e r f u l method f o r e v a l u a t i n g p r o t e i n s t r u c t u r e and monitoring protein c o n f o r m a t i o n a l response i n s o l u t i o n .
Acknowledgments We w i s h t o t h a n k Mr. Gary K l e i n f o r h i s h e l p i n d e v e l o p i n g programs t o c r e a t e p r o t e i n s u b s t r u c t u r e l i b r a r y .
Literature
Cited
1. Elliott, Α., and Ambrose, E. J . Nature, 1950, 165, 921 2. Susi, H. Methods Enzymol. 1913, 26 , 455 3. Timasheff, S. Ν., Susi, H., and Stevens, L. J. Biol. Chem. 1967, 242, 5467 4. Susi, H., Timasheff, S.N., and Stevens, L. J. Biol. Chem. 1967, 242, 5460 5. Gratzer, W.B., Bailey, Ε., and Beaven G. H. Biochem. Biophys. Res. Commun.1967,28, 914 6. Rüegg, M., Metzger, V., and Susi, H. Biopolymers 1975, 14, 1465 7. Kauppinen, J . K., Moffatt, D. J., Mantsch, H. H., and Cameron, D. G. Anal. Chem. 1981, 53, 1454 8. Kauppinen, J . Κ., Moffatt, D. J., Mantsch, Η. Η., and Cameron, D. G. Appl. Spec. 1981, 35, 271 9. Therrein, Μ., Lafleur, Μ., and Pézolet, M. Proc. SPIE Int. Soc. Opt. Eng. 1985, 553, 173 10. Englander, S. W., and Kallenbach, Ν. R. Q. Rev. Biophys. 1984, 16, 521 11. Susi, H., and Byler, D. M. Methods Enzymol. 1986, 130, 290 12. Surewicz, W. K., and Mantsch, H. H. Biochim. et Biophys. Acta 1988, 952, 115 13. Surewicz, W. Κ., Mantsch, H. H., and Chapman, D. Biochemistry 1993, 32, 389 14. Arrondo, J . L. R., Muga, Α., Castresana, J., and Goñi, F. M. In Prog. Biophys. Molec. Biol. 1993, 59, 23 15. Bernstein, F. C., Koetzle, T. F . , Williams, G.J.B., Meyer, J r . , E. F . , Brice, M. D., Rodgers, J . R., Kennard, O., Shimanouchi, T., and Tasumi, M. J. Mol. Biol. 1977, 112, 535
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.
Downloaded by MONASH UNIV on October 26, 2012 | http://pubs.acs.org Publication Date: December 14, 1994 | doi: 10.1021/bk-1994-0576.ch015
15.
DUKOR & LIEBMAN
Structural Changes in Senne Proteases
247
16. Dousseau, F . , Therrien, Μ., and Pézolet, M. Appl. Spec. 1989, 43, 538 17. Practical Handbook of Biochemistry and Molecular Biology ; Fasman, G. D., Ed.; CRC Press, Inc.: Boca Raton, FL., 1989 18. Ingle, Jr., J . D., and Crouch, S. R. Spectrochemical Analysis; Prentice Hall, Inc.: Englewood Cliffs, NJ, 1988; p.418 19. Liebman, M. Ν., Venanzi, C. Α., and Weinstein, H. Biopolymers 1985, 24, 1724 20. Liebman, Μ. Ν. Enzyme 1986, 36, 115 21. Prestrelski, S. J., Williams, Jr., A. L . , and Liebman, Μ. Ν. Proteins : Structure, Function, and Genetics. 1992, 430 22. Prestrelski, S. J., Byler, D. Μ., and Liebman, M. N. Proteins: Structure, Function, and Genetics. 1992, 440 23. Prestrelski, S. J . Ph.D. Thesis 1990, The City University of New York 24. Bode, W., and Huber, R. FEBS Letters 1978, 90, 265 25. Bode, W., Fehlhammer, H., and Huber, R. J. Mol. Biol. 1976, 106, 325 26. Huber, R., and Bode, W. Accts. Chem. Res. 1978, 11, 114 27. Singh, T. P., Bode W., and Huber, R. Acta Cryst. 1980, B36, 621 28. Bode, W., Schwager, P., and Huber, R. J. MOl. Biol. 1978, 118, 99 29. Kumosinski, T. F . , and Unruh, J . J . present publication 30. Dong, Α., Huang, P., and Caughey, W. S. Biochemistry 1990, 29, 3303 RECEIVED
June 9, 1994
In Molecular Modeling; Kumosinski, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1994.