18 Linde Type Β Zeolites and Related Mineral and Synthetic Phases
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
1
WILLIAM C. BEARD Union Carbide Corp., Tarrytown Technical Center, Tarrytown, New York 10591 The
Linde
Type
B zeolites, synthesized
Na O-SiO -Al O -H O, 2
2
2
3
2
in the system
have been correlated
with syn
thetic phases produced by Barrer, and Taylor and Roy on the basis of powder x-ray diffraction patterns which show similarity with those of the mineral zeolites phillipsite, har motome, and gismondine.
The complex structural relation
ships among these zeolite phases are discussed, and the difficulties in identifying zeolite structures on the basis of a general similarity of x-ray powder diffraction patterns are illustrated.
Structurally, the Β zeolites may represent the
following possibilities: (1) Displacive transformations due to variable cation composition and water content; (2) Twin ning, such as is commonly encountered in phillipsite to yield lattice constants identical to the single crystal, but tetragonal diffraction pattern symmetry; (3) Intergrowths faults of several members within the phillipsite
or stacking group.
T p h e Linde Type Β zeolites are synthesized in the N a 0 - S i 0 2 - A l 0 3 2
H 0 2
2
system, and have an adsorption pore size of about 3.5A (6).
The synthesis of various B-zeolites under a variety of conditions and their sequence of formation indicates that they are thermodynamically more stable than the more open structured zeolites, Α , X , and Y. There exists a series of variants of synthetic Β phases arbitrarily designated by "B" with subscripts 1 through 8. T h e designation of the zeolites in this series is based on differences in their respective x-ray powder diffraction pat terns.
These differences are of varying degree, and the major x-ray
diffraction peaks are common to all phases; hence their tentative classifi1
Present address: Department of Geology, The Cleveland State University, Cleveland, Ohio 44115. 237 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
238
MOLECULAR SIEVE ZEOLITES
c a t i o n c o l l e c t i v e l y as " B " zeolites.
1
T h e characterization and designation
of the v a r i a n t s of the s y n t h e t i c Β phases w a s i n i t i a l l y p r o p o s e d b y Ε. M . F l a n i g e n a n d E . R . K e l l b e r g of this l a b o r a t o r y ; u n p u b l i s h e d w o r k . T h e Β zeolites
have been
c a l l e d , at various times, p h i l l i p s i t e - l i k e ,
h a r m o t o m e - l i k e , N a - P - l i k e , a n d g i s m o n d i n e - l i k e phases.
This nomencla
t u r e has arisen b y c o m p a r i s o n w i t h the x - r a y d i f f r a c t i o n patterns of m i n e r a l zeolite specimens.
S i n c e the Β zeolites first w e r e i d e n t i f i e d , h o w e v e r ,
t h e structures of p h i l l i p s i t e , h a r m o t o m e , a n d g i s m o n d i n e h a v e b e e n deter m i n e d , a n d a structure w a s p r o p o s e d
b y Barrer (2),
b a s e d o n x-ray
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
p o w d e r d i f f r a c t i o n d a t a , for N a - P l , the e q u i v a l e n t of c u b i c L i n d e Bi. T h e f o l l o w i n g discussion attempts to e x p l a i n the p r e v i o u s c o n f u s i o n of d e s c r i b i n g the Β zeolite structures i n terms of m i n e r a l zeolites
by
s h o w i n g s i m i l a r i t i e s a m o n g structures of the m i n e r a l phases a n d x - r a y p o w d e r patterns of the m i n e r a l a n d s y n t h e t i c phases. Discussion Harmotome.
T h e s t r u c t u r e of h a r m o t o m e ,
w a s d e t e r m i n e d b y S a d a n a g a et al. ( 8 ) . P2 /m 1
a n d l a t t i c e constants a
0
=
Ba Al Sii2032 · 1 2 H 0 , 2
2
2
9.87, b
T h e y give the space g r o u p as 0
=
14.14, c
0
=
8.72A; β
=
124°50'. T h a t is, the structure is m o n o c l i n i c , b u t the d e v i a t i o n f r o m a n o r t h o r h o m b i c c e l l is v e r y slight. T h e p s e u d o r h o m b i c c e l l has β = a
0
=
9.87, b
0
tetragonal cell.
=
14.14, and c
0
=
90° 2 3 ' ,
14.3A, d i f f e r i n g o n l y s l i g h t l y f r o m a
F i g u r e 1 shows the r e l a t i o n s h i p of the cells
a b o v e . T h e structure consists of d o u b l e chains of ( S i , A l ) 0
4
described tetrahedra
f o l d e d to a n s-shaped c o n f i g u r a t i o n a l o n g the fo-axis d i r e c t i o n , offset i n the d i r e c t i o n n o r m a l to the a-b p l a n e a l t e r n a t i n g l y b y 1/2 the rhombic c
0
pseudo-
p a r a m e t e r , a n d c o n n e c t e d b y 4-rings t i l t e d to the p l a n e of
the f o l d e d chains.
Figure 1. Rehtionship of the mon oclinic harmotome cell (H) and the cubic Na-Pl cell (N) to the orthorhombic phillipsite cell (P)
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
18.
BEARD
Linde
Type Β
239
Zeolites
Phillipsite. T h e c r y s t a l structure of p h i l l i p s i t e , p r o b a b l e c o m p o s i t i o n (K ]Vai_ .)5SiiiAl5032 · 1 0 H O , w a s d e t e r m i n e d b y Steinfink (12), a
a;
g r o u p , B2mb,
space
2
9.96, b
a = 0
=
0
14.25, c
0
=
14.25A. F r o m the lattice c o n
stants, one m i g h t q u e s t i o n w h y the s t r u c t u r e is not d e s i g n a t e d as tetrago n a l , b u t the g e o m e t r i c a l a r r a n g e m e n t of atoms a b o u t the c-axis does not p e r m i t a n axis of 4 - f o l d s y m m e t r y .
T h e f r a m e w o r k of this zeolite is
essentially the same as that of h a r m o t o m e . T h e g e n e r a l a r r a n g e m e n t of
Gismondine.
(Si,Al)0
4
tetrahedra i n
the f r a m e w o r k of g i s m o n d i n e w a s p r o p o s e d b y S m i t h a n d R i n a l d i
(11)
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
as one of the several possible arrangements of c r o s s l i n k i n g the " d o u b l e c r a n k s h a f t " t e t r a h e d r a l chains c o m m o n to f e l d s p a r structures. F i s c h e r ( 5 ) c o n f i r m e d that the N - a r r a n g e m e n t of S m i t h a n d R i n a l d i w a s i n d e e d the g i s m o n d i n e structure. L i k e the other structures discussed above,
gis
m o n d i n e has a s i m i l a r x-ray d i f f r a c t i o n p a t t e r n . T h e o r i g i n a l d e s i g n a t i o n of the B-zeolites w a s as g i s m o n d i n e - l i k e phases (4).
T h e structure m o d e l
of g i s m o n d i n e shows d o u b l e t e t r a h e d r a l c h a i n s c o m m o n to a l l of these structures. Na-Pl.
T h e structure p r o p o s e d for N a - P l b y B a r r e r (2)
space g r o u p Im3m w i t h a = 0
has the
10.0A. T h e f r a m e w o r k is f o r m e d b y j o i n i n g
d o u b l e 4-rings of ( A l , S i ) 0 t e t r a h e d r a ( c u b e s ) o n t h e i r corners so that 4
e v e r y c u b e is c o n n e c t e d to 8 other cubes. B a r r e r ( 2 ) also p r o p o s e d a d i s t o r t i o n of the c u b i c phase to a tetrago n a l structure (tetragonal N a - P 2 ) b y a displacive transformation. T h e r e l a t i o n s h i p of the c u b i c s t r u c t u r e to h a r m o t o m e / p h i l l i p s i t e , as suggested b y B a r r e r before the structures of the latter 2 w e r e k n o w n , is s h o w n i n F i g u r e 1.
T h e d i m e n s i o n s of t h e c e l l edge c o n n e c t i n g
m i d p o i n t s o n the b a n d c u n i t c e l l lengths [b
0
is 10.07A.
(12)1
=c
0
=
the
14.25A, Steinfink
T h i s gives a c e l l w i t h edges 10.07, 9.96A, w h i c h c a n
be v i s u a l i z e d as a d i s t o r t i o n f r o m a n i d e a l c u b i c structure. Table I.
T y p i c a l Chemical Analyses of Linde N a - B Zeolites" Composition,
Zeolite
Bi
B
B B B B B
2
4 6 6 7 8
Na 0 2
0.95 0.99 1.05 0.92 0.88 0.87 1.04 1.02
Moles/Al 0 2
Si0
2
3.35 4.07 3.80 3.50 3.38 2.80 3.74 5.01
3
H0 2
4.79 5.70 4.70 4.24 4.80 4.66 3.50 4.28
Range of Si0 'Al 0s Observed 2
2
2.16-3.35 3.65-4.07 2.98-5.07 3.38-3.52
.6
° Unpublished data of Ε. M . Flanigen and E . R. Kellberg. The composition listed for B is the starting composition of a cubic Β zeolite before dehydration. 6
8
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
240
MOLECULAR SIEVE ZEOLITES 1
τ—ι—ι—ι—ι—ι—ι—ι—ι—I ι—ι—ι—ι—ι—ι—ι—ι—ι—r ι—Γ —
ι
Ί
PHILLIPSITE SYLVAN IA SEA SYLVAN IA SE
I
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
PHILLIPSITE NIDDA, HESSE. GERMANY
•
ι
J
PHILLIPSITE
rniLLirgiiE
ι ROME, ITALY
HARMOTOME STRONTIAN. SCOTLAND
GISMONDINE MONTE. SOMMA.
GISMONDINE CAPO Dl BOV
8
16 24 °2B
32
40
_J
48
I
56
J
I
ι—ι—ι—i—
8 16
CuK.
24
2β
32 C
40 u
K
48 56
«
Figure 2. X-ray diffraction patterns of Linde Β zeolites and phillipsite, harmotome, and gismondine
A l t h o u g h the cell dimensions for comparing the cubic N a - P l
with
the h a r m o t o m e / p h i l l i p s i t e f r a m e w o r k a r e i n g o o d agreement, w e n o w know
from
t h e structures
described
a b o v e that t h e a r r a n g e m e n t
of
t e t r a h e d r a i n t h e h a r m o t o m e / p h i l l i p s i t e structure is definitely different f r o m t h a t p r o p o s e d b y B a r r e r ( 2 ) f o r t h e N a - P l structure. O n t h e other h a n d , b y l o o k i n g a t models of these 2 structures a n d s u p e r i m p o s i n g 1 o n t h e other, s t r i k i n g s i m i l a r i t i e s are i m m e d i a t e l y a p p a r ent w h i c h a r e o t h e r w i s e difficult to d i s c e r n . F i r s t , t h e i n t e r p l a n a r spacings essentially are i d e n t i c a l , alone e n o u g h to g i v e t h e s u s p i c i o n t h a t t h e x - r a y patterns w o u l d p r o b a b l y b e s i m i l a r .
Secondly, for a given volume
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
18.
Linde
BEARD
Type Β
241
Zeolites
there are the same n u m b e r of t e t r a h e d r a , l e a d i n g to s i m i l a r densities a n d pore volumes. T a y l o r a n d R o y (13)
discussed i o n e x c h a n g e d d e r i v a t i v e s of tetago-
n a l N a - P structures. T h e y define the " P zeolite g r o u p " as t h a t g r o u p of zeolites
c o m p o s e d of
members
having an aluminosilicate framework
l i n k e d i n a m a n n e r i d e n t i c a l to t h a t of the c u b i c N a - P l z e o l i t e , n a m e l y t e t r a h e d r a l c u b e u n i t s j o i n e d b y t h e i r corners. T h e y state that the N a - P l s t r u c t u r e of B a r r e r (2)
cannot b e c o n s i d e r e d as a m e m b e r of t h e h a r m o
t o m e / p h i l l i p s i t e g r o u p because the different l i n k i n g of t e t r a h e d r a i n the
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
2 structures w o u l d r e q u i r e a r e c o n s t r u c t i v e t y p e t r a n s f o r m a t i o n .
They
s t u d i e d the effect of i o n exchange o n the structure of the t e t r a g o n a l N a - P zeolite a n d n o t e d a m a x i m u m r a n g e of 7 %
i n the c - d i m e n s i o n .
O n the
basis of p o w d e r x - r a y d i f f r a c t i o n d a t a , t h e y d i s t i n g u i s h e d 3 m a i n structure d i v i s i o n s , d e p e n d i n g o n cations present: ( 1 ) P r i m i t i v e c e l l , a ^ c: tetrago nal L i , N a ; cubic M g , N i , C u ; (2)
B o d y - c e n t e r e d c e l l a > c: t e t r a g o n a l
K , R b , C s , A g ; ( 3 ) B o d y - c e n t e r e d c e l l , c ^ a: t e t r a g o n a l C a , Sr, B a , P b ; cubic C d . Barrer's (2)
N a - P l c u b i c structure c o u l d be d i s t o r t e d to a b o d y -
c e n t e r e d t e t r a g o n a l structure b y d i s p l a c i v e t r a n s f o r m a t i o n , b u t d i s t o r t i o n to a p r i m i t i v e t e t r a g o n a l lattice w i t h o u t a r e c o n s t r u c t i v e t r a n s f o r m a t i o n seems i m p o s s i b l e . T h e r e f o r e , p r i m i t i v e c e l l t e t r a g o n a l varieties of N a - P cannot b e c o n s i d e r e d as b e l o n g i n g to the same g r o u p as the b o d y - c e n t e r e d c u b i c a n d t e t r a g o n a l N a - P ' s for the same reason g i v e n b y T a y l o r a n d R o y (13)
for e x c l u d i n g h a r m o t o m e a n d p h i l l i p s i t e .
L i n d e T y p e Β Zeolites. T h e L i n d e Β zeolites are c o n s i d e r e d s t r u c t u r a l l y the same as B a r r e r ' s N a - P phases. T a b l e I fists the t y p i c a l c h e m i c a l compositions of the Β zeolites. F o r some Β zeolites, a r a n g e of S i 0 / 2
A1 0 2
3
is listed.
T h e m a x i m u m observed variation i n S i 0 / A l 0 2
2
3
i n the
Β series is f r o m 2.2 to 5.1. S y n t h e t i c phases a p p a r e n t l y r e l a t e d to the p h i l l i p s i t e g r o u p o c c u r i n the Κ a n d K - N a systems. L i n d e (7),
O n e s u c h phase, d e s i g n a t e d Zeolite W
appears to be analogous to B a r r e r ' s K - M (1).
r e p o r t e d a B a - M phase i n the b a r i u m system w h i c h is d e s c r i b e d h a r m o t o m e - l i k e (3).
by
B a r r e r also has as
R e l a t e d phases w h i c h o c c u r i n systems other t h a n
p u r e N a w i l l not b e discussed f u r t h e r here. X - r a y d i f f r a c t i o n patterns of L i n d e Β zeolites are s h o w n i n F i g u r e 2 a n d T a b l e I I . T h e s i m i l a r i t y of the m a i n d i f f r a c t i o n peaks is obvious. T h e s y n t h e t i c phases p r o d u c e d b y v a r i o u s w o r k e r s h a v e b e e n a r r a n g e d i n T a b l e I I I to s h o w t h e i r r e l a t i o n s h i p to e a c h other. Z e o l i t e Bi is c o r r e l a t e d w i t h the c u b i c b o d y - c e n t e r e d phases of B a r r e r (2) T a y l o r a n d Roy's N a - P
c
(13).
( N a - P l ) and
The Linde B , B , B „ and B 2
3
r
s i m i l a r to the t e t r a g o n a l b o d y - c e n t e r e d phases of B a r r e r (2)
6
phases are
(Na-P2) and
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
242
MOLECULAR SIEVE ZEOLITES
Table II. B\ d, A
B I/h
— 7.08
86
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
d, A
I/h
7.14
83
2.88
15
— —
— —
— —
— —
2.67
69
2.36
13
— — — —
— — — —
—
—
1.77
10 17 13
1.97
19
1.72 1.67 0
79 66
5.07
45
12 66
4.11
— — —
7.14 7.08
4.21 4.11
83
100
—
83
4.10
— — —
100
38 36 14
—
3.18
///•
5.04 4.98 4.93
—
— — —
d, A
39 25 15
—
— —
I/h
—
5.04 5.01 4.93
— — — — —
d, A
—
— —
44
B\
7.08
— —
4.98
— — —
— — —
3.33 3.21 3.19 3.12 3.05 2.99 2.90 2.70 2.68 2.66
18 100 60 43 12 12 9 46 35 22
— — — —
— — — —
2.21 2.16 1.98
7 8 12
—
—
1.76 1.72 1.69
X - R a y Diffraction
Bs
2
8 9 8
—
3.88 3.41 3.33 3.20 3.16
—
3.02 2.95 2.83 2.72 2.68 2.64 2.54 2.40
—
2.45 2.20 2.17 2.10 1.97 1.82 1.76
—
1.69
1
— 13
4.93
—
— 20
4.11 4.06
83 15
— —
— —
13 11 89 17
3.34 3.21
17 100
30 15 14 36 14
3.12 3.05 3.00
55 13 9
2.71
— 29
10 10
— 16 6 6 7 7 12 10
— 12
—
—
—
—
—
—
—
—
—
—
— — 1.73
— —
53
24 8 7 7
2.66 2.54 2.44 2.39
9
2.21
9 8
1.99 1.97
12 9
1.69
Unpublished data of Ε. M . Flanigen and E . R. Kellberg.
T a y l o r a n d R o y ' s N a - P (13), a n d p o s s i b l y represent v a r i o u s degrees of d i s t o r t i o n ( d i s p l a c i v e t r a n s f o r m a t i o n ) of the c u b i c b o d y - c e n t e r e d struc ture. B is q u i t e s i m i l a r to Bi except for d o u b l e t i n g of peaks n e a r 1 8 ° , 2 8 ° , a n d 3 4 ° 2 0 ( C u K « ) . B p r o b a b l y represents the least d i s t o r t i o n f r o m the c u b i c s t r u c t u r e (Bi) of a l l the other Β zeolites. Zeolites B a n d B t
6
6
2
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
5
18.
Linde
BEARD
Spacings of L i n d e N a - B Z e o l i t e s Β
0
Ββ
δ
d, A
I/h
d, A
96
7.14
7.14
— — — — —
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
243
Type Β Zeolites
— — — — —
5.07 5.01 4.93
39 40 14
Bi
I/h 91
—
—
5.75
38
5.13 5.04
13 42
5.04
— — —
— — —
4.11
100
4.11
87
— —
— —
3.33 3.21 3.18 3.12 3.04 3.00 2.90 2.71 2.68 2.67
17 88 86 44 13 8 11 25 58 20
— —
— — —
2.37
—
1.97
16
— —
1.97
14
3.23 3.19
— — —
2.90 2.71 2.69
— — —
18 100
— — —
16 35 61
— 13
—
—
7.08 7.03
—
4.90
—
68 68
—
40 29
—
4.42
10
4.11 4.04
100 22
—
—
3.33 3.20
23 100
3.11 3.04 2.98 2.89 2.70
50 19 12 14 53
—
—
—
—
— — —
2.65 2.53 2.44 2.39
28 12 9 9
Ζ
ζ
—
—
2.05 1.98
7 12
12
— 1.72
—
— — — —
— —
— —
I/h
— — — —
— —
— —
d, A
Bfi
1.78 1.72 1.68
12 14 14
d, A
I/h
— — —
— — —
— — —
— — —
—
—
—
—
—
— —
— — — —
— — — — —
— — — — — — —
— — — — — — —
3.86
67
3.00
88
ζ
1.87
9
1.76 1.72 1.69
9 13 10
— —
—
50
4.79
— — —
—
100
6.56
are c h a r a c t e r i z e d b y s p l i t t i n g of the lines i n Bi i n t o doublets.
— — — — — —
B is s i m i l a r 3
to B a n d B w i t h 2 a d d i t i o n a l reflections at 22.9° a n d 40° 20. Zeolites B 2
and B
5
7
resemble the t e t r a g o n a l p r i m i t i v e structure ( N a - P ) t
a n d R o y (13) Zeolite B
8
of
4
Taylor
a n d s h o w doublets i n the first m a i n p e a k of the p a t t e r n .
is a phase p r o d u c e d b y p a r t i a l d e h y d r a t i o n of the c u b i c
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Bi
244
MOLECULAR SIEVE ZEOLITES
1
zeolite. T h e o r t h o r h o m b i c N a - P phase r e p o r t e d b y B a r r e r ( 2 ) w a s n o t o b t a i n e d b y T a y l o r a n d R o y (13)
or b y L i n d e .
X - r a y d i f f r a c t i o n patterns of the m i n e r a l zeolites p h i l l i p s i t e , h a r m o tome, a n d g i s m o n d i n e are s h o w n i n F i g u r e 2 a n d T a b l e I V . T h e S y l v a n i a Sea M o u n t p h i l l i p s i t e is a deep-sea s p e c i m e n o n d e c o m p o s e d basalt o b t a i n e d f r o m the S c r i p p s I n s t i t u t e , L a J o l l a , C a l i f . T h e N i d d a , G e r m a n y , a n d R o m e , I t a l y , p h i l l i p s i t e s are f r o m igneous rocks.
T h e N i d d a x-ray
p a t t e r n checks i n a l l m a j o r peaks w i t h the A S T M c a r d (13-455) for a p h i l l i p s i t e f r o m the same l o c a l i t y , a n d is f r o m t h e H a r v a r d M u s e u m
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
c o l l e c t i o n ( N o . 102839).
T h e Rome, Italy, specimen came from Ward's,
Rochester, Ν. Y . T h e harmotome specimen, from Strontian, Scotland ( H a r v a r d N o . 8 6 5 4 5 ) , agrees w i t h the A S T M p a t t e r n for a s p e c i m e n f r o m S t r o n t i a n ( 1 3 - 4 9 4 ) , b u t does not c h e c k w i t h the p a t t e r n for one f r o m N o r t h - W e s t Ross-shire, S c o t l a n d ( 9 - 4 8 0 ) . O f the g i s m o n d i n e specimens M o n t e S o m m a ( W a r d ' s ) a n d C a p o d i B o v e ( H a r v a r d M u s e u m ), o n l y the latter c o u l d b e s a i d to agree w i t h the A S T M d a t a (13-495) of a g i s m o n d i n e s p e c i m e n f r o m F r i t z ' s Is., P a . F r o m T a b l e I V a n d F i g u r e 2, the s i m i l a r i t y i n x-ray patterns for p h i l l i p s i t e , h a r m o t o m e , a n d g i s m o n d i n e is a p p a r e n t . A l l 3 zeolites h a v e the f o l l o w i n g a p p r o x i m a t e i n t e r p l a n a r spacings i n c o m m o n :
8.00,
7.15,
6.40, 5.35, 5.04, 4.12, 3.25, 3.20, 2.69. T h e v a r i a t i o n s a m o n g the patterns of 2 or m o r e specimens i d e n t i f i e d as the same species are often as great as the v a r i a t i o n s b e t w e e n species. F r o m t h e d i s c u s s i o n of l a t t i c e p a r a m e ter changes w i t h c a t i o n c o m p o s i t i o n a n d w a t e r content b y T a y l o r a n d R o y (13, 14),
changes i n c e l l s y m m e t r y a n d size w i t h a c c o m p a n y i n g d i f
f r a c t i o n p a t t e r n p e a k shifts a n d s p l i t t i n g are to b e expected i n n a t u r a l zeolite specimens f r o m different localities a n d exposed to different c a t i o n environments. A t least 6 of the d i f f r a c t i o n peaks l i s t e d a b o v e as b e i n g c o m m o n to the 3 m i n e r a l zeolites, n a m e l y the 7.15, 5.04, 4.12, 3.25, 3.20, a n d 2.69,
Table III. Relationship Between Linde B-Zeolites and Synthetic Phases of Barrer, and T a y o r and Roy Linde
Barrer
Bi Β , B g, B, B 2
5
Β, B 4
B
7
6
—
and Roy
(13)
N a - P l ( C u b i c , body-centered)
Na-P
Na-P2 (Tetragonal, b o d y centered)
N a - P (Tetragonal, bodycentered)
—
-
8
Taylor
(2)
Na-P3 ( O r t h o r h o m b i c )
c
( C u b i c , body-centered)
t
Na-Pt (Tetragonal, primitive)
—
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
18.
Linde
BEARD
Type Β
245
Zeolites
are c o m m o n to the Β zeolites. F o r this reason, t h e y w e r e o r i g i n a l l y i d e n t i fied as b e i n g p h i l l i p s i t e - , h a r m o t o m e - , or g i s m o n d i n e - l i k e phases. O n e source of the difficulty m a y arise f r o m the i n c o r r e c t i d e n t i f i c a t i o n of m i n e r a l specimens w h o s e x - r a y patterns w e r e u s e d as standards for c o m p a r i s o n .
X - r a y p o w d e r patterns of m a t e r i a l s u s e d i n structure
d e t e r m i n a t i o n s w o u l d b e of great h e l p i n c l a r i f y i n g the p r o b l e m of i d e n t i f y i n g these zeolites. A n a l t e r n a t i v e to the a c t u a l p o w d e r patterns is the c a l c u l a t i o n of p o w d e r patterns f r o m structure d a t a , as d e m o n s t r a t e d b y Smith
(9).
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
F r o m the f o r e g o i n g d i s c u s s i o n , i t is seen that the m i n e r a l zeolites a n d N a - P l possess s i m i l a r l a t t i c e constants, cZ-values, a n d are d e r i v e d f r o m different arrangements of a c o m m o n s t r u c t u r a l element, t h e d o u b l e t e t r a h e d r a l c h a i n or " d o u b l e - c r a n k s h a f t . "
A d d e d to this is the p o s s i b i l i t y of
s t i l l f u r t h e r structures as yet u n k n o w n , b a s e d o n the same s t r u c t u r a l units.
T h i s w a s p o i n t e d out b y S m i t h a n d R i n a l d i (11)
i n describing
t h e series of structures d e r i v e d b y c h a n g i n g the t e t r a h e d r a i n a 4 - r i n g as either p o i n t i n g u p w a r d ( U ) or d o w n w a r d ( D ) .
T h e y said, "Because a l l
types of structures b a s e d o n the U U D D a n d r e l a t e d chains s h o u l d give s i m i l a r p o w d e r patterns, i t is possible t h a t some of the c o m p l e x i t y m a y arise because of the existence of several u n r e c o g n i z e d m e m b e r s of this structural family." Conclusion The Linde Type
Β zeolites h a v e b e e n
phases p r o d u c e d b y B a r r e r (2)
correlated w i t h
a n d T a y l o r a n d R o y (13)
synthetic
o n the basis of
x-ray p o w d e r d i f f r a c t i o n d a t a . T h e p o w d e r patterns of the Β zeolites also s h o w s i m i l a r i t y w i t h those of the m i n e r a l zeolites p h i l l i p s i t e , h a r m o t o m e , and gismondine. Since the structures of the Β zeolites h a v e not b e e n classification is difficult, b u t f r o m the x-ray p o w d e r
determined,
diffraction data it
seems t h a t a n assignment c a n b e m a d e to the p h i l l i p s i t e g r o u p as defined b y S m i t h (10),
i.e., b e i n g a g r o u p of structures f o r m e d f r o m p a r a l l e l f o u r -
a n d e i g h t - m e m b e r e d rings of ( S i , A l ) 0
4
tetrahedra.
A s s i g n m e n t to this g r o u p does little to define the a c t u a l structure, however,
for a l t h o u g h N a - P l
a n d harmotome/phillipsite have
similar
lattice constants, etc., t h e y h a v e q u i t e different structures. T h e Β series m a y represent d i s p l a c i v e transformations f r o m one or m o r e b a s i c structures. S t r u c t u r a l changes d u e to c a t i o n c o m p o s i t i o n a n d h y d r a t i o n state i n the N a - P zeolites h a v e b e e n discussed b y T a y l o r a n d R o y (13,
T h e Β zeolite series, h o w e v e r , a l l c o n t a i n s o d i u m cations
14).
as s y n t h e s i z e d , a n d the w a t e r content ( T a b l e I I ) is essentially constant, except for B
8
w h i c h is a d e h y d r a t e d f o r m p r o d u c e d f r o m Bi.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Another
246
MOLECULAR SIEVE ZEOLITES Table IV. Phillipsite -
Phillipsite
0
d,
A
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
8.25
6
d e /
I/h
d,A
0
I/h
d, A
19
—
8.04
20
7.97
5
7.15 6.39
69 16
7.14 6.42
100 80
7.19 6.42
100 10
5.37 5.04
—
28 31
—
5.36 5.04 4.96
23 85 25
5.40 5.07 4.96
10 20 10
— 4.12
— 45
4.27 4.11
10 60
4.31 4.13
5 20
3.26 3.19
40 100
2.96
29
3.25 3.19 3.13 2.91
40 88 28 43
3.29 3.21 3.14 2.93
20 60 20 10
12 28
2.75 2.69
45 40
2.76 2.71 2.68
15 20 30
2.53 2.39 2.33
8 10 10
2.54 2.39 2.34
10 10 10
2.17
13
1.79
18
2.75 2.69
c
Phillipsite
0
—
—
a
X - R a y D i f f r a c t i o n Spacings
—
—
—
Phillipsite, Sylvania Sea Mount, near Bikini Atoll. Phillipsite, Nidda, near Giessen, Germany. Phillipsite, V i a Laurentia, Rome, Italy. Harmotome, Strontian, Scotland. Gismondine, Capo di Bove, Italy. Gismondine, Monte Somma, Italy.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1 of
18.
Linde
BEARD
Type Β
Zeolites
Phillipsite, Harmotome, and Gismondine Zeolites Harmotome
Gismondine
d
d, A
I/h
8.04
29
—
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
7.08 6.33
— 53 70
— — 4.98 — — — 4.27
— — 20 — — — 10
4.10 4.06 4.02 3.88
13 14 13 8
— — — — 3.23
— — — — 15
3.20 3.12 3.06 2.91 2.71 2.69 2.66 2.62
10 100 15 7 16 46 17 7
— — 2.32 2.25 2.15 1.95
— — — — 1.77 — 1.70 — — —
Gismondine
6
— —8 10 6 10
— — — —7 — 14 — — —
f
d, A
I/h
—
—
7.25 7.14 6.33 5.72 5.34 5.04
100 87 23 13 9 15
4.65 4.25 4.10 4.04
11 19 23 13
— 4.90
— 19
— — 3.63
— —6
3.59 3.48 3.33 3.25 3.20 3.12
11 9 43 11 43 30
— — 2.75
— — 28
à, A
7.196 6.463
—
5.405 5.096 4.983
— — 100 15
— 10 17 13
— — 4.311
— — 12
4.133
35
— — — — — — — 3.278
— — — — — — — 30
3.209 3.143 2.940
97 20 12
—
2.763 2.706
— 22 35
2.71 2.65
26 89
2.5-1 2.37 2.33
—9
— — 2.578
— —7
19 11
2.392 2.344
7 7
— — — 1.82
— — — 34
1.80 1.79 1.787 1.780
6 15 17 17
— — 1.667
— — 19
1.406 1.393
13 17
— — — — — 1.791 — — 1.728 — — — —
— — — — — 10 — —7 — — — —
American Chemical Socfefe Library 1155 16th St.. N.W.
Washington, O.C. 20031 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
248
M O L E C U L A R SIEVE ZEOLITES
1
p o s s i b i l i t y for v a r i a t i o n i n t h e Β series is t w i n n i n g . T w i n n i n g i n p h i l l i p s i t e is q u i t e c o m m o n , a n d i n d e e d , Steinfink ( 1 2 ) n o t e d that a t w i n e d p h i l l i p site c r y s t a l gave a d i f f r a c t i o n p a t t e r n d i s p l a y i n g tetragonal
symmetry
w i t h the same u n i t c e l l dimensions as the u n t w i n n e d c r y s t a l . Determination
o f t h e s t r u c t u r a l relationships
between the L i n d e
T y p e Β zeolites a n d the r e l a t e d m i n e r a l zeolites b y c o m p a r i s o n o f x - r a y p o w d e r data w o u l d b e greatly aided i f p o w d e r data were available o n t h e same s p e c i m e n o n w h i c h structure d e t e r m i n a t i o n s w e r e m a d e . T h e c o m p l e x relationships a m o n g t h e f a m i l y o f zeolite
structures
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
discussed here a p t l y illustrate the difficulties i n i d e n t i f y i n g zeolite f r a m e work
structures o n t h e basis of a general s i m i l a r i t y i n x-ray
powder
d i f f r a c t i o n patterns. Acknowledgment T h e a u t h o r is g r a t e f u l t o U n i o n C a r b i d e C o r p . f o r p e r m i s s i o n t o p u b l i s h this w o r k , a n d a c k n o w l e d g e s the c o n t r i b u t i o n s of R . M . M i l t o n , D . W . B r e c k , Ε. M . F l a n i g e n , a n d E . R . K e l l b e r g o f the L i n d e R e s e a r c h Laboratory of U n i o n Carbide Corp.
Literature Cited (1) Barrer, R. M., Baynham, J. W., J. Chem. Soc. 1956, 2882. (2) Barrer, R. M., Bultitude, F. W., Kerr, I. S., J. Chem. Soc. 1959, 1521-28. (3) Barrer, R. M., Marshall, D. J., J. Chem. Soc. 1964, 2296. (4) Breck, D. W., Eversole, W. G., Milton, R. M., J. Am. Chem. Soc. 1956, 78, 2338. (5) Fischer, K., Am. Mineralogist 1963, 48, 664-72. (6) Milton, R. M., U. S. Patent 3,008,803 (1961). (7) Milton, R. M., U. S. Patent 3,012,853 (1961). (8) Sadanaga, R., Marumo, F., Takeuchi, Y., Acta Cryst. 1961, 14, 1153-63. (9) Smith, D. K., Norelco Reptr. 1968, 15, 57-65. (10) Smith, J. V., Mineral. Soc. Am. Spec. Paper 1963, 1, 281-290. (11) Smith, J. V., Rinaldi, F., Mineral. Mag. 1962, 33 (258), 202-12. (12) Steinfink, H., Acta Cryst. 1962, 15, 644-51. (13) Taylor, A. M., Roy, R., Am. Mineralogist 1964,49, 656-82. (14) Taylor, A. M., Roy, R., J. Chem. Soc. 1965, 4028-43. RECEIVED February 13, 1970.
Discussion W . M . Meier ( Eidgenossische Technische Hochschule, Z u r i c h ) : The structure o f N a P l ( B ) has r e c e n t l y b e e n s o l v e d u s i n g x-ray intensities x
obtained from a m u l t i p l y - t w i n n e d crystal i n addition to p o w d e r data. R e finement
p r o c e e d e d to a n i n t e n s i t y R v a l u e o f 0.077. T h e structure is
based on a gismondine-type
f r a m e w o r k a n d is thus n o n c u b i c .
The maxi-
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
18. mum
BEARD
Linde
Type Β
249
Zeolites
possible s y m m e t r y of the f r a m e w o r k is lét/amd.
T h e f r a m e w o r k is
r e m a r k a b l y flexible, a n d d i s p l a c i v e changes are a c c o m p a n i e d b y m a r k e d changes of the lattice constants a n d s y m m e t r y . Since this t y p e of f r a m e w o r k c a n r e a d i l y u n d e r g o d i s p l a c i v e changes a n d t w i n n i n g , i t is n o l o n g e r s u r p r i s i n g t h a t several a p p a r e n t l y different F-phases h a v e b e e n r e c o r d e d . F u l l details w i l l b e g i v e n i n a f o r t h c o m i n g p a p e r ( C . B a e r l o c h e r a n d W . M . M e i e r , to b e p u b l i s h e d i n Z .
Krist.).
G . H . K i i h l ( M o b i l Research & Development Corp., Paulsboro, N . J . 08066 ) : Y o u h a v e s h o w n the x - r a y diffraction patterns of three different
Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018
" p h i l l i p s i t e s " f r o m different locations.
T h e r e are n u m e r o u s references i n
the l i t e r a t u r e to s o - c a l l e d p h i l l i p s i t e s . T h e x - r a y d i f f r a c t i o n patterns are a l l different. I t h i n k it is t i m e to agree o n w h a t p h i l l i p s i t e is. I suggest that the s t r u c t u r e d e t e r m i n e d b y Steinfink is that of a r e a l p h i l l i p s i t e . A l l the other " p h i l l i p s i t e s " r e p o r t e d are either m i x t u r e s or h a v e
different
structures a n d s h o u l d n o t be c a l l e d p h i l l i p s i t e . W.
C . B e a r d : I agree that w e s h o u l d a c c e p t Steinfink s s t r u c t u r e
d e t e r m i n a t i o n as that of a r e a l p h i l l i p s i t e a n d that the p r a c t i c e b e
ex-
t e n d e d to cover the other zeolites for w h i c h structures h a v e b e e n determ i n e d . F o r p r a c t i c a l i d e n t i f i c a t i o n of p o w d e r x - r a y d i f f r a c t i o n patterns, I w o u l d suggest u s i n g c a l c u l a t e d p o w d e r d i f f r a c t i o n patterns f r o m the structure d a t a as c a r r i e d out b y D . K . S m i t h ( R e f . 9).
I p l a n to do this
for the three m i n e r a l zeolites discussed i n this p a p e r .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.