Molecular Sieve Zeolites-II - ACS Publications

1 Present address: Petroleum Recovery Research Institute, The University of Calgary,. Calgary ... priate cation, at room temperature, for more than 6 ...
1 downloads 0 Views 2MB Size
47 Heats of Immersion of Outgassed Ion-Exchanged Zeolites R. M. BARRER and P. J. CRAM

1

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

Physical Chemistry Laboratories, Imperial College, L o n d o n S . W . 7, E n g l a n d

Heats of immersion in water have been determined for a number of outgassed porous crystals enriched by ion ex­ change in various cations (zeolites X, Y, A, chabazite, and synthetic ferrierite), and for clinoptilolite and mordenite in their Na-forms, decationated, and in various stages of dealumination. Finally, heats of immersion were determined in NaX, NaY, NaA, and (Ca,Na) chabazite in which the crys­ tals initially contained various known loadings of zeolitic water. From the results, the influence of the exchange cat­ ions upon integal heats of sorption of water, ΔΗ, and other derived heats have been evaluated and discussed. " Q e r h a p s the most i m p o r t a n t of a l l z e o l i t e - s o r b a t e complexes are those i n w h i c h w a t e r is t h e guest m o l e c u l e . W a t e r is essential f o r t h e s y n ­ thesis of zeolites a n d is present i n a l l the n a t u r a l a n d s y n t h e t i c m e m b e r s of the g r o u p , c e r t a i n of w h i c h find a p p l i c a t i o n as i n d u s t r i a l desiccants. A c c o r d i n g l y , as f u l l a n u n d e r s t a n d i n g as possible is n e e d e d of w a t e r z e o l i t e c o m p l e x e s , e s p e c i a l l y of the b i n d i n g energy of the w a t e r w i t h i n the crystals. I n f o r m a t i o n a b o u t this e n e r g y has b e e n o b t a i n e d f r o m i s o t h e r m measurements over a t e m p e r a t u r e range (3, 7, 8, 9), b y c a l o r i m e t r y (18, 19),

a n d b y d i f f e r e n t i a l t h e r m a l analysis ( I I ) .

b y d i r e c t c a l o r i m e t r y , the isosteric heats, q , st

F r o m the isotherms a n d

m a y b e f o u n d as f u n c t i o n s

of the a m o u n t of w a t e r s o r b e d . H o w e v e r , some d i s a d v a n t a g e s m a y b e associated w i t h e a c h p r o c e d u r e . S u c h is t h e affinity b e t w e e n w a t e r a n d zeolites that to d e t e r m i n e q

st

f o r s m a l l uptakes m a y r e q u i r e i s o t h e r m

measurements at temperatures a b o v e 2 0 0 ° C . A t these temperatures, lat­ tice b r e a k d o w n c a n take p l a c e b y side reactions i n v o l v i n g t h e w a t e r . Present address: P e t r o l e u m Recovery Research Institute, T h e U n i v e r s i t y of C a l g a r y , Calgary, Alberta, Canada. 1

105

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

106

MOLECULAR

Table I. Starting

Zeolites Studied

Materials

ZEOLITES

II

0

Modified

N a X (Union Carbide) N a Y (Union Carbide) N a A (Union Carbide) (Ca, N a ) chabazite N a mordenite (Na-Zeolon, N o r t o n Co.) S r ferrierite ( S r D )

SIEVE

Forms

L i , K , R b , C s , M g , C a , Sr, B a , T l , a n d P b X L i , K , R b , C s , M g , C a , Sr, B a , T l , a n d P b Y L i , K , R b , Cs, M g , C a , B a , and T1A L i , N a , K , R b , C s , C a , a n d T l chabazites Η-forms (from 2 N , 6 N , a n d 1 2 N H C l - t r e a t e d Na-Zeolon) : H-mordenite (H-Zeolon) L i , N a , a n d C a D : Η-forms (from 0.09N H C l treated S r D , a n d H D f r o m heated N H D ) Η-forms ( f r o m 0 . 2 5 N , 0.5N, I.ON, a n d 2.0N H C l - t r e a t e d clinoptilolite) 4

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

N a - r i c h clinoptilolite

° I n Tables I a n d I I . the representation of a zeolite as, for example, R b X , should not be t a k e n to i m p l y 100% exchange of the original N a b y R b .

S e c o n d l y , c a l o r i m e t r i c measurements f r o m the v a p o r phase m a y refer to n o n e q u i l i b r i u m d i s t r i b u t i o n s of w a t e r w i t h i n the crystals a n d t h r o u g h the z e o l i t e b e d .

T h e v e r y energetic w a t e r - z e o l i t e b o n d , e s p e c i a l l y for

smaller w a t e r uptakes, means that w a t e r m o l e c u l e s m a y stick o n sites w h e r e t h e y first l a n d . S u b s e q u e n t r e d i s t r i b u t i o n c a n be v e r y s l o w o n the t i m e scale of the experiment, p a r t i c u l a r l y at the l o w temperatures p l o y e d (19, 21),

2 3 ° a n d 44 ° C .

em­

F i n a l l y , the i n f o r m a t i o n d e r i v e d f r o m

d i f f e r e n t i a l t h e r m a l analysis is q u a l i t a t i v e or at best o n l y s e m i q u a n t i t a t i v e . A n alternative c a l o r i m e t r i c p r o c e d u r e , w h i c h i n p r i n c i p l e m a y e l i m ­ inate the r e d i s t r i b u t i o n p r o b l e m of d i r e c t c a l o r i m e t r y , consists i n m e a ­ s u r i n g heats of i m m e r s i o n as a f u n c t i o n of the a m o u n t of p r e s o r b e d l i q u i d . T h e b u l b c o n t a i n i n g the z e o l i t e a n d its p r e s o r b e d w a t e r c a n be to a s u i t a b l y h i g h t e m p e r a t u r e

heated

to p r o m o t e w a t e r m i g r a t i o n a n d t h e n

c o o l e d s l o w l y to the e x p e r i m e n t a l temperature.

T h e b u l b is b r o k e n u n d e r

l i q u i d w a t e r a n d the heat of w e t t i n g m e a s u r e d .

T h i s m e t h o d has

been

u s e d i n the present w o r k for a n u m b e r of zeolites of d i f f e r i n g k n o w n structures, w i t h different exchange ions, a n d also for i n d i v i d u a l structures decationated a n d progressively dealuminized. Experimental Materials. T h e zeolites s t u d i e d are s u m m a r i z e d i n T a b l e I. T h e u n i t c e l l contents of the d e h y d r a t e d forms of the starting materials w e r e : NaX NaY NaA Chabazite Mordenite Clinoptilolite S r ferrierite

8 7 N a + [87 A 1 0 " · 105SiO ] 57 (Ho.i, N a . ) [ 5 7 A 1 0 - · 1 3 5 S i 0 ] 12Na+ [ 1 2 A 1 0 - · 1 2 S i 0 ] 0.4 N a A 1 0 1.6Na+ 4 . 4 C a [10.4 A 1 0 ~ · 25.6 S i O , ] 8 (Ho.i N a . ) [8AIO2- · 4 0 S i O ] 6 N a + [6AIO2- · 30SiO ] O x i d e f o r m u l a : 0.94SrO · A 1 0 · 1 2 . 3 S i 0 2

0

9

2

+

2

2

2 +

0

9

2

2

2

2

+

2

2

2

3

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

2

47.

BARRER

AND

C R A M

Heats of

107

Immersion

T h e o x i d e f o r m u l a of Sr ferrierite o n l y is g i v e n because the y i e l d of this synthetic zeolite m a y h a v e b e e n less t h a n 1 0 0 %

(12).

T h e r e are

72

o x y g e n atoms i n the o r t h o r h o m b i c u n i t c e l l . T h e i o n - e x c h a n g e d forms of sieves X , Y , a n d A w e r e p r e p a r e d b y s h a k i n g a suspension of the starting materials i n a s o l u t i o n of the a p p r o ­ priate c a t i o n , at r o o m t e m p e r a t u r e , for m o r e t h a n 6 hours i n e a c h treat­ ment. A n a l a R c h l o r i d e solutions w e r e u s e d w h e r e suitable. M g , T l , a n d P b f o r m s w e r e p r e p a r e d u s i n g sulfate, acetate, a n d nitrate respectively.

T h e e x c h a n g i n g solutions c o n t a i n e d a n i n i t i a l

solutions,

five-fold

ex­

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

cess of e x c h a n g i n g i o n , except for R b , C s , a n d T l forms, w h e r e the i n i t i a l excess was a b o u t t w o - f o l d . F o l l o w i n g ion-exchange, the samples

were

w a s h e d t h o r o u g h l y w i t h n e a r l y b o i l i n g w a t e r to r e m o v e e n t r a i n e d salt. T h e entire process w a s r e p e a t e d at least 4 times. O t h e r z e o l i t e m o d i f i c a ­ tions ( ferrierites, m o r d e n i t e s , chabazites, a n d c l i n o p t i l o l i t e s ) w e r e those p r e p a r e d b y other w o r k e r s i n these laboratories (4, 5, 6, 12, 24).

A l l the

samples s t u d i e d w e r e d r i e d o v e r n i g h t i n a 1 1 0 ° C o v e n a n d stored over saturated N H C 1 s o l u t i o n at r o o m t e m p e r a t u r e ( 2 0 ° to 2 3 ° C ) f o r at least 4

Table II.

Saturation Water Contents, Grams per G r a m of Hydrated Zeolite X I 0 0 Ion-Exchanged

Cation Form

Zeolite

Li Na Κ Rb Cs Mg Ca Sr Ba Tl Pb

X

27.8 25.8 22.5 19.4 17.5 29.3 27.6 25.2 22.2 12.3 15.9

Zeolite 27.6 25.9 21.9 20.4 17.6 28.1 26.1 25.4 23.6 16.7

a h

Chabazite

22.1 21.5 18.4 14.2 15.7 27.2 23.0

22.0 19.5 17.3 13.9 12.3 22.1,

— -

-

-

-

21.1

14.2 11.2

e

-

-

and Dealuminized

Na-Zeolon 2N H C l - t r e a t e d SN H C l - t r e a t e d 12ΛΓ H C l - t r e a t e d H-Zeolon

15.6 13.4

9.5

8.7

-

Forms Ferrierite

b

14.0 14.5 14.3 14.4 15.4

Ferrierite

-

Mordenite

1

Natural 0.257V H C l - t r e a t e d 0.5iV H C l - t r e a t e d 1.0N H C l - t r e a t e d 2.0N H C l - t r e a t e d

Zeolite A

-

Decationated Clinoptilolite

Y

Forms

13.2 -

0.09N H C l - t r e a t e d 15.7 H D from N H D 4

17.9 14.3

V a l u e for natural ( C a , N a ) chabazite. T h e fractions of A l removed i n the a c i d treatment are shown i n T a b l e I V .

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

108

M O L E C U L A R

Table III.

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

Li Na Κ Rb, N a Cs, N a Mg Ca Sr Ba Tl Pb

63.i

87.i

Zeolite Y 4.1

6Ο.3

8I.5

128.3 113.6 92.3

8

6

74., 64.o 134.x

60.3

52. 94.

8 7

103.4

143.0

94. 80.e

126.

8

7

103.6

21.2

42.

Ba, N a Tl, N a

4

2

52.4

67.i

47.2

59.4

40.

49.5

8

121.

87.4

73.3 69.5*

67.

3

27.0

Li Na Κ Rb, N a Cs, N a Mg, N a Ca

II

74.

6

99.3 93. 2

88. 32.

2 4

7

9

5

9

3

3

8

3 t

73.9 71.4

83.o 1.8 19.!

z

15.4 X 10 15.3 X 10 13.7 X 10 12.7 X 10 12.6 X 10 17.1 X 10 18.8 X 10 19.3 X 10 17.0 X 10 7.0 X 10 10.2 X 10

6 5 5 6 5 5 5 5 6

6

7

5

12.7!

6

0

3

5.1 2.8

3

8

6.I1 6.I9

0

20.9

3.9

5

6

0

4.9

6

134.5 107.7

5

Que, Cat per N Unit Cells

5.Ο4

4.3ι 4.1 4.1 5.6

6.9 3.2 5.4 6.4 6.5

29. 56.

25.3 47.7 98.0

Cal per Gram Equiv. of Cation X 10~

10.3 X 10 10.4 X 10 9 . I 9 Χ 10 9.1 Χ 10 8.5 Χ 10 15.0ι Χ 10 12.2 Χ 10

2

4.I9

Zeolite A 96.2 94.2 87.5

9

Q G E ,

z

24., 50.

84. 71.

Sr, N a

qD, Cal per Gram

Qi, Cal per Mole of Water X 10~ Zeolite X 5.9 5.8 5.7 5.5 5.4 5.8! 6.7 6.7 6.5 3.2 4.7,

92.5

Li Na Κ Rb, N a Cs, N a Mg, N a Ca, N a

ZEOLITES

Heats of Immersion of Cation Forms of Zeolites

qH, Cal per Gram

Cation Form

SIEVE

9

X 8 9

5

4

5

2

5

5

2

5

6

5

5

9

Χ

10

5

12.9 Χ 10 6.5 Χ 10

5

8

5

14.8 16.3 16.9

5

Χ Χ Χ 6.67 Χ 13.2 Χ 22. Χ 18.3 Χ

10 10 10 10 10 10 10

8.I7 X

10

2

4

4 4

4

4 4 4

17.7 17.6 15.7 14.6 14.5 19.6 21.6

22. 19.5 8.1; 11.8 2

18.2 18.3 16.1 16.0 15.0 26. 21. 3

6

22.

3

22. 11.5 7

12.3 13.6 14.1 5.5 11.0 18.5 15.3

6

!

Tl Li Na Κ Rb Cs, C a Ca, N a Ca Tl

73.2

67.

2

52.2 39H 30.4 76.7 8O.0*

22.6

93.9 83.5 63.2 45.7 34.7 97.2 102.5 25.0

Chabazite 5.9 6.2i 5.4 5.1χ 4.4 6.5 6.5 4.2 9

4

6

6

3

8

21.5 21.4 16.4 14.0o 11.7 23.5 24.9 IO.87 6

7

7

6

6

0

X X X X X X X X

4

6.81

10" 10 10 10" 10 10 10 10

20.13 20.0 15.3, 13.0 10.9 22.0i 23.2 10.1,

4 4

4

4

4

4

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

e

8

8

7

47.

BARRER

AND

H eat s of

C R A M

Immersion

Table III.

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

Cation Form

Cat per Gram

Li Na Ca Sr H (from NH +) H (0.09N HC1) 4

Continued Qi, Cal per Mole of Water X 10~

QD,

QH,

Cat per Gram

109

QGE,

Que, Cal per No Unit Cells

3

Zeolite D (Synthetic 40.2 3.9 35.4 4.1, 41.5 4.5 28.2 4.0

Cat per Gram Equiv. of Cation X ίο-*

ferrierite)

17.5 15.9 18.6 13.3

2

2

2

34.5

34. *

40,

4

3.9

5

2 weeks to ensure that w a t e r u p t a k e h a d r e a c h e d e q u i l i b r i u m . T h e satu­ r a t i o n w a t e r contents, d e t e r m i n e d b y T G A u s i n g a S t a n t o n t h e r m o b a l ­ ance, are g i v e n i n T a b l e II. Outgassing. Samples w e r e w e i g h e d out i n t h i n - w a l l e d b o r o s i l i c a t e glass b u l b s of d i a m e t e r ~ 0 . 8 r e s i d u a l pressure < 1 0 "

5

c m , outgassed at 3 6 0 ° C f o r 24 hours to a

m m of H g , a n d sealed off u n d e r v a c u u m .

ples of N a X , N a Y , N a A , a n d

( C a , N a )-chabazite,

Sam­

containing varying

amounts of p r e s o r b e d w a t e r , w e r e p r e p a r e d b y p a r t i a l r e m o v a l of w a t e r f r o m the saturated materials.

E q u a l samples w e r e p a r t i a l l y outgassed

i n pairs t h r o u g h a c o m m o n t a p at temperatures

controlled b y an oil

thermostat b e t w e e n 0 ° a n d 190 ° C f o r times b e t w e e n 2 a n d 12 hours.

The

heat of i m m e r s i o n of 1 sample w a s m e a s u r e d , a n d the r e s i d u a l w a t e r content of the s e c o n d w a s d e t e r m i n e d b y i g n i t i o n at 1 1 0 0 ° C to constant w e i g h t i n a P t c r u c i b l e . T h e r e s i d u a l w a t e r contents of e a c h s a m p l e w e r e assumed, i n i n t e r p r e t i n g the heat of i m m e r s i o n , to b e the same.

T o en­

sure a n e q u i l i b r i u m d i s t r i b u t i o n of w a t e r p r i o r to the c a l o r i m e t r i c m e a ­ surement, the p a r t i a l l y outgassed samples i n sealed b u l b s w e r e p l a c e d i n a n o v e n at 100 ° C f o r 36 hours a n d t h e n c o o l e d s l o w l y to r o o m t e m ­ perature d u r i n g a p e r i o d of 6 hours. Calorimeter.

A d i f f e r e n t i a l c a l o r i m e t e r , o p e r a t i n g at 25.0 ° C u n d e r

n e a r - i s o t h e r m a l c o n d i t i o n s , w a s u s e d f o r a l l heat measurements.

Similar

calorimeters, d e s i g n e d for d e t e r m i n i n g heats of i o n exchange i n zeolites, h a v e b e e n d e s c r i b e d p r e v i o u s l y ( 5 , 6, 14, 15).

T h e calorimeter was cali­

b r a t e d b y m e a s u r i n g the heat of s o l u t i o n of p o t a s s i u m c h l o r i d e i n w a t e r . T h e ratio of the area u n d e r t h e c u r v e t r a c e d b y the r e c o r d e r p e n to the heat p r o d u c e d was 1.50 ± 0.04 c m p e r calorie. N o heat c o u l d b e d e t e c t e d 2

w h e n an empty evacuated b u l b was broken under water.

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

110

M O L E C U L A R

Errors.

SIEVE

ZEOLITES

E r r o r s w e r e e s t i m a t e d f r o m d u p l i c a t e measurements.

c a l o r i m e t r i c measurements

are accurate

to a b o u t 4 % ,

the

II

The

saturation

w a t e r contents to 1 % , a n d the r e s i d u a l w a t e r contents are r e p r o d u c i b l e to a b o u t 3 % , except at the lowest coverages, w h e r e the error is greater. Results Heat of Immersion and Exchange Cation.

H e a t s of i m m e r s i o n i n

w a t e r w e r e d e t e r m i n e d f o r t h e outgassed c a t i o n i c f o r m s of the zeolites

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

(Table III).

T h e heats g i v e n i n this table are the f o l l o w i n g :

a. q

H

=

b. q

D

=

calories p e r g r a m of h y d r a t e d z e o l i t e ^

c. 0 / = —

H

calories p e r g r a m of d e h y d r a t e d zeolite

=

w

X 18.016 =

d . Que =

qD X WN =

e. QGE =

0™L =

0

calories p e r m o l e of w a t e r i m b i b e d calories p e r A v o g a d r o N o . of u n i t cells

calories p e r g r a m e q u i v a l e n t of cations

H e r e w is t h e w e i g h t of w a t e r p e r g r a m of h y d r a t e d zeolite e q u i l i b r a t e d o v e r saturated a m m o n i u m c h l o r i d e s o l u t i o n ; w

is the w e i g h t of a n A v o ­

No

g a d r o n u m b e r of d e h y d r a t e d u n i t cells of zeolite; a n d n

c

is t h e n u m b e r

of c a t i o n i c charges p e r u n i t c e l l . T h e values of qH w e r e d e r i v e d d i r e c t l y f r o m the c a l o r i m e t e r measurements.

T h e other q u a n t i t i e s are d e r i v a b l e ,

a s s u m i n g that a l l the w a t e r is r e m o v e d b y the outgassing at 3 6 0 ° C , a n d that w h e r e n o d i r e c t c h e m i c a l analysis w a s a v a i l a b l e , i o n exchange h a d r e a c h e d the l i m i t i n d i c a t e d b y p u b l i s h e d i o n exchange isotherms (5, 15, 31, 33).

6,14,

A l l results are t h e average of 2 or m o r e measurements except

those m a r k e d w i t h a n asterisk, w h e r e o n l y 1 m e a s u r e m e n t w a s m a d e . Dealumination and Heat of Immersion.

T r e a t m e n t s of m o r d e n i t e ,

c l i n o p t i l o l i t e , a n d f e r r i e r i t e w i t h d i l u t e a c i d i n the first instance r e m o v e m e t a l l i c cations a n d y i e l d the h y d r o g e n forms (4, 12, 13). also result b y h e a t i n g the a m m o n i u m zeolites

(24).

Such forms

Treatment

stronger a c i d solutions removes i n c r e a s i n g amounts of A l (4, ( T a b l e I V ) . T h e m a r k e d effect this has u p o n q

H

a n d d i f f e r e n t i a l (AH)

26)

is s h o w n i n the table.

^ H e a t s of Sorption as Functions of Amount Sorbed. (AH)

13,

with

T h e integral

heats of s o r p t i o n of w a t e r v a p o r w e r e o b ­

t a i n e d f r o m the r e l a t i o n s h i p s Qn

0

where

~

η

=

(η.

η,) (AH

-

àH ) L

a n d so

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

(D

47.

BARRER

AND

Heats of

C R A M

Immersion

= AH

ΔΗ + ( η . - no) Here q

n s

and q

no

111

(2)

are heats of i m m e r s i o n o f t h e z e o l i t e i n i t i a l l y c o n t a i n i n g

n a n d n moles o f p r e s o r b e d w a t e r p e r g r a m , a n d AH s

0

is t h e m o l a r heat

L

of c o n d e n s a t i o n o f w a t e r , t a k e n as 10.51 k c a l p e r m o l e . T h e degree of p r e s a t u r a t i o n , 0, is g i v e n b y _ i n i t i a l w a t e r content

_

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

s a t u r a t i o n w a t e r content where n

s a t

n

s

n

aat

is t h e n u m b e r o f moles of w a t e r n e e d e d to saturate t h e i n t r a -

c r y s t a l l i n e f r e e v o l u m e . S m o o t h e d curves of q

ns

vs. θ w e r e d r a w n ( F i g u r e

1 ), a n d t h e l o w e r l i m i t s o f θ c h o s e n f o r t h e c a l c u l a t i o n s of i n t e g r a l heats were: Zeolite: θ :

NaX 0.033

NaY 0

NaA 0.1

( C a , N a ) chabazite 0.133

T h e values o f — AH a n d —AH d e r i v e d f r o m t h e s m o o t h e d c u r v e s of F i g u r e 1 a r e s h o w n i n F i g u r e 2. A t t h e lowest values of Θ, —AH is v e r y large b u t d i m i n i s h e s as θ increases.

T h e curves f o r N a Y , N a A , a n d

( C a , N a ) c h a b a z i t e flatten for h i g h e r 0, w h i l e that for N a X has a m i n i m u m f o l l o w e d b y a r i s i n g section.

F o r N a X , the w a t e r - w a t e r self-potential

energy, i n c r e a s i n g w i t h 0, m o r e t h a n balances t h e d e c l i n i n g values of w a t e r - s o r b e n t interactions. A f t e r s a t u r a t i o n ( 0 ^ 1 ) , f o r a l l systems w o u l d b e e x p e c t e d to a p p r o a c h Table I V .

— AH a n d — AH

—AH . L

Heats of Immersion in Decationated and Dealuminized Zeolites

Sample

7c Al Relative to Original

Original 0.25N H C 1 0.5N H C 1 1.0N H C 1 2.0N HC1

100 58 33 7 0

N a Zeolon Η Zeolon 2.0iV H C 1 6.0N H C 1 12.0ΛΓ H C 1

100 87 49 32 25

Cal per Gram Clinoptilolite 41.o 41.3 32.4 27.3

23.

6

Mordenite 46a 34. 38. * 7

3

36.7* 34.8*

QD,

Cal per Cram 47.7 48.3

37. 31. 27.

8 9 9

qi, Kcal per Mole of Water 5.2 5.1 4.0 3.4 2.7

53.i 40.

6.2 4.3 -

42.4

3.5

5

-

que, Cal. per No Unit Cells X 10~

7 x 8 2 6

9 7

-

4

10.3, 9.5 7.3 6.0 5.2 3

3

7

9

16.2i 11.5 7

-

0

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

11.6i

112

M O L E C U L A R

SIEVE

ZEOLITES

II

Discussion Exchange Ions and Heats of Immersion. T h r e e c a t i o n i c f o r m s give heats of i m m e r s i o n w h i c h are out of l i n e w i t h other results. O n e o f these is B a A , f o r w h i c h q

H

is o n l y 1.8 c a l p e r g r a m . T h i s f o r m c a n lose m u c h

o f its structure o n outgassing ( 3 2 ) ,

a n d the w a t e r u p t a k e a n d heat of

i m m e r s i o n are r e d u c e d a c c o r d i n g l y . ( R b , N a ) A a n d ( M g , N a ) X also m a y lose some c r y s t a l l i n i t y d u r i n g outgassing. R a s t r e n e n k o et al. ( 2 9 ) q

H

extensive lattice b r e a k d o w n . P l a n k (28) Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

found

f o r ( R b , N a ) A to b e o n l y 3 c a l p e r g r a m , w h i c h p r o b a b l y i n d i c a t e s reported partial breakdown i n

( M g , N a ) X a l t h o u g h this w a s not c o n f i r m e d b y others (16, B e c a u s e of the a b n o r m a l i t i e s i n q

H

20, 27,

36).

observed w i t h B a A , ( R b , N a ) A , and

( M g , N a ) X , these 3 w i l l b e d i s r e g a r d e d i n the f o l l o w i n g c o m p a r i s o n s . O u r values of q

H

for L i , ( M g , N a ) , a n d C a forms of zeolite A are 12 to

2 0 % l o w e r t h a n those of R a s t r e n e n k o et al., b u t o u r v a l u e f o r Κ A is a p ­ p r e c i a b l y h i g h e r . H o w e v e r , w i t h the e x c e p t i o n of K A , the trends i n

q

H

are t h e same, a n d n u m e r i c a l differences m a y arise f r o m differences i n the zeolite s a m p l e . O f the c a t i o n forms of c h a b a z i t e , C s - c h a b a z i t e contains a b o u t

20%

of r e s i d u a l C a w h i l e the other m o d i f i c a t i o n s s h o u l d c o n t a i n less t h a n 1 0 % of this i o n (6).

I n zeolite X , the R b , C s , M g , a n d B a forms c o n t a i n a b o u t

30, 30, 27, a n d 23 r e s i d u a l N a ions p e r u n i t c e l l (14) +

out of a t o t a l i n o u r

Figure 1. Curves of q vs. θ for (a) NaX, (b) (c) NaA, and (d) (Ca,Na)chabazite n s

NaY,

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

47.

BARRER

Heats of

A N D C R A M

113

Immersion

to;

(a) 25h

-ΔΗ -ΔΗ -ΔΗι_ ( 2 5 ° C )

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

AH|_ (25 C)

0-2

0-4 0 6

θ

0-8

0-2

0-4

θ

0-6

08

Figure 2. Curves of —AH and — Δ Η plotted against θ for (a) NaX, (b) NaY, (c) NaA, and (d) (Ca,Na)chabazite s a m p l e o f 87 ions. O f these n u m b e r s , 16 N a ions i n e a c h case p r o b a b l y +

o c c u p y sites w i t h i n t h e h e x a g o n a l p r i s m s a n d thus are c o m p l e t e l y s h i e l d e d f r o m w a t e r m o l e c u l e s . T h e r e m a i n d e r m u s t h a v e some c o n t a c t w i t h w a t e r a n d thus m o d i f y t h e heat of i m m e r s i o n c o m p a r e d w i t h t h e h o m o i o n i c f o r m . I n zeolite A , t h e R b , C s , a n d M g f o r m s c o n t a i n a b o u t 29, 54, a n d 33%

of N a ions, r e s p e c t i v e l y , a l l of w h i c h c a n interact w i t h w a t e r . I n +

z e o l i t e Y , a l t h o u g h the R b , C s , C a , Sr, B a , a n d T l f o r m s e a c h c o n t a i n a b o u t 16 N a

+

p e r u n i t c e l l ( 5 ) , these N a ions are p r o b a b l y w i t h i n t h e +

h e x a g o n a l p r i s m s a n d i f so w o u l d n o t interact w i t h w a t e r o r m o d i f y t h e heats o f i m m e r s i o n . T h e m a g n i t u d e of q

H

is d e t e r m i n e d l a r g e l y b y t h e w a t e r content p e r

g r a m ( T a b l e I I ), w i t h f u r t h e r i n f l u e n c e b y t h e n u m b e r , size, a n d v a l e n c e of cations a n d t h e f r a m e w o r k c o n f i g u r a t i o n .

A m o n g the alkali metal

c a t i o n s — e x c l u d i n g ( R b , N a ) A — t h e r e is a r e g u l a r decrease i n q

H

and q

i n t h e sequence. L i + > N a + > K + > R b + > Cs+ F o r t h e d i v a l e n t i o n s — e x c l u d i n g B a A a n d ( M g , N a ) X — t h e o r d e r is

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

D

114

M O L E C U L A R

Mg + > 2

Ca + > 2

Sr + >

Ba

2

SIEVE

ZEOLITES

II

2 +

w h i l e the heat of i m m e r s i o n f o r a g i v e n zeolite c o n t a i n i n g a d i v a l e n t exchange i o n is u n i f o r m l y larger t h a n this heat i n the same zeolite c o n ­ t a i n i n g a m o n o v a l e n t i o n of s i m i l a r radius—e.g., C a

and Na —despite

2 +

+

the smaller n u m b e r of d i v a l e n t ions. T h e i n f l u e n c e of charge d e n s i t y i n 2 o t h e r w i s e i d e n t i c a l structures is seen c l e a r l y b y c o m p a r i n g q

H

or

q

D

f o r the same exchange i o n i n zeolites X a n d Y . I n a l l cases except that of T l , the heat of i m m e r s i o n is c o n s i d e r a b l y larger i n X . +

For T l

+

the

reverse is true, p r i m a r i l y because the w a t e r content of T 1 X is less t h a n Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

that of T1Y ( T a b l e

II).

T h e effect of p o l a r i t y of the f r a m e w o r k u p o n the heat of i m m e r s i o n c a n b e s h o w n i n a m o r e g e n e r a l w a y . T h e l a t t i c e - f o r m i n g units of the a n i o n i c f r a m e w o r k c a n be c o n s i d e r e d as ( A l ^ S i d . ^ )0 ~ x

2


30 k c a l p e r m o l e 30 k c a l p e r mole 22.7 k c a l per mole 17 k c a l p e r mole

F o r h i g h w a t e r l o a d i n g s , i n t e g r a l heats at t h e largest m e a s u r e d of θ c o m m o n to a l l t h e zeolites m a y i n d i c a t e j t h e

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

desiccants at s u c h l o a d i n g s . F o r θ =

value

r e l a t i v e usefulness as

0.8, —AH has t h e values

( C a , N a ) chabazite NaA NaX NaY

18.9 17.7 16.9 15.2

kcal kcal kcal kcal

per per per per

mole mole mole mole

T h i s o r d e r is t h e same as that of t h e i n i t i a l heats. R e t e n t i v i t y f o r w a t e r at h i g h l o a d i n g s also d e p e n d s

u p o n t h e i n t r a c r y s t a l l i n e free

volumes

w h i c h a r e ( J ) a b o u t 0.54 c m p e r c m f o r N a Y a n d N a X , a n d a b o u t 0.46 3

cm

3

3

per c m for N a A a n d chabazite. 3

A c o m p a r i s o n of w a t e r r e t e n t i v i t y is g i v e n i n F i g u r e 7 i n w h i c h 0 ( N a Y ) , 0 ( N a A ) , a n d Θ(chabazite)

are p l o t t e d against 0 ( N a X ) .

I n each

case, starting w i t h saturated crystals, outgassing w a s c o n d u c t e d f o r the 4 zeolites u n d e r i d e n t i c a l c o n d i t i o n s .

C u r v e s s h o w n i n F i g u r e 7 are n o t

O(Na-X) Figure 7. θ for NaY ( • ), NaA (Φ), and chaba­ zite (M) plotted against θ for NaX, following identical outgassing conditions

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

120

MOLECULAR

SIEVE

ZEOLITES

II

at e q u i l i b r i u m so that factors s u c h as crystallite size m a y h a v e a n i n f l u ­ ence. N e v e r t h e l e s s , w i t h t h e e x c e p t i o n of a n a n o m a l o u s r e g i o n f o r N a A i n t h e r a n g e 0.25 < θ


0

(c) B

-.- ( r / ) w h e r e rj is the r a d i u s of the w a t e r m o l e c u l e p l u s A the r a d i u s of t h e c a t i o n i n a h y p o t h e t i c a l nonelectrostatic e n v i r o n m e n t . T h i s latter r a d i u s w a s t a k e n as the r a d i u s of the i n e r t gas a t o m h a v i n g the s a m e electronic c o n f i g u r a t i o n ( N e , 1.60A; A r , 1 . 9 2 A ) . ( d ) T h e h a r d sphere m o d e l w i t h B = oo f o r r ^ r a n d B = 0 f o r r > r . r w a s a g a i n set e q u a l to r . T h e m a x i m u m i n t e r a c t i o n energy, c o r r e s p o n d i n g w i t h t h e e q u i l i b ­ s

=

6

4

e

e

e

4

0

r i u m distance of separation, r , w a s o b t a i n e d f r o m the plots of φ = e

+

Φ^ρ +

φρ +

φβ +

(φ^

μ

φΛ) against r. T h e values of r a c c o r d i n g to t h e c

v a l u e of Β t a k e n , a n d the c o r r e s p o n d i n g values of the c o m p o n e n t s of φ, are s h o w n i n T a b l e V I . T h e values of φ a n d r associated w i t h B e

x

seem

u n r e a l i s t i c , so a n average v a l u e f o r φ w a s c a l c u l a t e d f r o m t h e other 3 values. T h u s , the m a x i m u m energies of i n t e r a c t i o n a r e : Na+-H 0

—25 k c a l per mole

Ca

—61 k c a l per mole

2

2 +

-H 0 2

T h e r e l a t i o n s h i p b e t w e e n φ a n d AH at 0 ° K is ( φ — φ ) 0

φ

0

is t h e zero p o i n t energy.

=

AH w h e r e

I n v i e w of t h e a p p r o x i m a t i o n s m a d e , φ is

In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

0

124

MOLECULAR

SIEVE

n e g l e c t e d , a n d it is assumed also that ΔΗ 98°κ == AH o . 2

coverages e x a m i n e d , the values of AH

0

ZEOLITES

A t the lowest

K

are

NaX NaY

θ = 0.05 θ~ 0

Δ/7 = AH =

NaA

θ = 0.1

Ai/=

—29 k c a l per m o l e

Δ#

— 32 k c a l per mole

( C a , N a ) c h a b a z i t e θ = 0.15

II

- 2 4 k c a l per m o l e - 2 0 k c a l per mole

=

T h e heats of s o r p t i o n at l o w coverages f o r the N a - f o r m s thus are c o m ­ parable w i t h the calculated value. F o r N a X , N a A , a n d ( C a , N a )

Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047

z i t e , — A H at θ =

0 p r e s u m a b l y w o u l d be s o m e w h a t greater.

chaba­

This may

e x p l a i n i n p a r t w h y the m e a s u r e d heat f o r c h a b a z i t e is s u b s t a n t i a l l y less t h a n that c a l c u l a t e d f o r a n i s o l a t e d C a

2 +

- H 0 pair. A further possibility 2

is that the N a ions i n n a t u r a l c h a b a z i t e o c c u p y m o r e exposed positions +

than the more numerous C a

2 t

ions.

T h e n u m e r i c a l l y largest e x o t h e r m a l t e r m at r is φρ e

(Table V I ) .

β

A

d i r e c t m e t h o d of e s t i m a t i n g t h e r e l a t i v e i m p o r t a n c e of the energy c o m ­ ponents (φ

0

+

ΦΒ +

φρ) a n d (φ

Εβ

- f Φ^)

has b e e n d e v e l o p e d

(2).

T h e i n i t i a l heats of s o r p t i o n f o r a n u m b e r of n o n p o l a r , s t r u c t u r a l l y s i m p l e m o l e c u l e s w e r e p l o t t e d against t h e i r p o l a r i z a b i l i t y , a, for a g i v e n sorbent. I n this w a y , a characteristic c u r v e g i v i n g the c o n t r i b u t i o n to AH (φο +

ΦΒ +

from

Φ ρ) as a f u n c t i o n of a w a s o b t a i n e d . T h i s c o n t r i b u t i o n c a n

b e i n t e r p o l a t e d t h e n for m o l e c u l e s of i n t e r m e d i a t e p o l a r i z a b i l i t i e s w h i c h also h a v e p e r m a n e n t electric m o m e n t s . of ( ψ ^

μ

B y difference, the c o n t r i b u t i o n

- f φ^ρ) to AH c a n be f o u n d . T h i s m e t h o d demonstrates

again

t h e d o m i n a n c e of the electrostatic energy components i n w a t e r - z e o l i t e systems, as is a p p a r e n t f r o m T a b l e V I I . T h e c a l c u l a t e d values of (φ , Ρμ