47 Heats of Immersion of Outgassed Ion-Exchanged Zeolites R. M. BARRER and P. J. CRAM
1
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
Physical Chemistry Laboratories, Imperial College, L o n d o n S . W . 7, E n g l a n d
Heats of immersion in water have been determined for a number of outgassed porous crystals enriched by ion ex change in various cations (zeolites X, Y, A, chabazite, and synthetic ferrierite), and for clinoptilolite and mordenite in their Na-forms, decationated, and in various stages of dealumination. Finally, heats of immersion were determined in NaX, NaY, NaA, and (Ca,Na) chabazite in which the crys tals initially contained various known loadings of zeolitic water. From the results, the influence of the exchange cat ions upon integal heats of sorption of water, ΔΗ, and other derived heats have been evaluated and discussed. " Q e r h a p s the most i m p o r t a n t of a l l z e o l i t e - s o r b a t e complexes are those i n w h i c h w a t e r is t h e guest m o l e c u l e . W a t e r is essential f o r t h e s y n thesis of zeolites a n d is present i n a l l the n a t u r a l a n d s y n t h e t i c m e m b e r s of the g r o u p , c e r t a i n of w h i c h find a p p l i c a t i o n as i n d u s t r i a l desiccants. A c c o r d i n g l y , as f u l l a n u n d e r s t a n d i n g as possible is n e e d e d of w a t e r z e o l i t e c o m p l e x e s , e s p e c i a l l y of the b i n d i n g energy of the w a t e r w i t h i n the crystals. I n f o r m a t i o n a b o u t this e n e r g y has b e e n o b t a i n e d f r o m i s o t h e r m measurements over a t e m p e r a t u r e range (3, 7, 8, 9), b y c a l o r i m e t r y (18, 19),
a n d b y d i f f e r e n t i a l t h e r m a l analysis ( I I ) .
b y d i r e c t c a l o r i m e t r y , the isosteric heats, q , st
F r o m the isotherms a n d
m a y b e f o u n d as f u n c t i o n s
of the a m o u n t of w a t e r s o r b e d . H o w e v e r , some d i s a d v a n t a g e s m a y b e associated w i t h e a c h p r o c e d u r e . S u c h is t h e affinity b e t w e e n w a t e r a n d zeolites that to d e t e r m i n e q
st
f o r s m a l l uptakes m a y r e q u i r e i s o t h e r m
measurements at temperatures a b o v e 2 0 0 ° C . A t these temperatures, lat tice b r e a k d o w n c a n take p l a c e b y side reactions i n v o l v i n g t h e w a t e r . Present address: P e t r o l e u m Recovery Research Institute, T h e U n i v e r s i t y of C a l g a r y , Calgary, Alberta, Canada. 1
105
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
106
MOLECULAR
Table I. Starting
Zeolites Studied
Materials
ZEOLITES
II
0
Modified
N a X (Union Carbide) N a Y (Union Carbide) N a A (Union Carbide) (Ca, N a ) chabazite N a mordenite (Na-Zeolon, N o r t o n Co.) S r ferrierite ( S r D )
SIEVE
Forms
L i , K , R b , C s , M g , C a , Sr, B a , T l , a n d P b X L i , K , R b , C s , M g , C a , Sr, B a , T l , a n d P b Y L i , K , R b , Cs, M g , C a , B a , and T1A L i , N a , K , R b , C s , C a , a n d T l chabazites Η-forms (from 2 N , 6 N , a n d 1 2 N H C l - t r e a t e d Na-Zeolon) : H-mordenite (H-Zeolon) L i , N a , a n d C a D : Η-forms (from 0.09N H C l treated S r D , a n d H D f r o m heated N H D ) Η-forms ( f r o m 0 . 2 5 N , 0.5N, I.ON, a n d 2.0N H C l - t r e a t e d clinoptilolite) 4
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
N a - r i c h clinoptilolite
° I n Tables I a n d I I . the representation of a zeolite as, for example, R b X , should not be t a k e n to i m p l y 100% exchange of the original N a b y R b .
S e c o n d l y , c a l o r i m e t r i c measurements f r o m the v a p o r phase m a y refer to n o n e q u i l i b r i u m d i s t r i b u t i o n s of w a t e r w i t h i n the crystals a n d t h r o u g h the z e o l i t e b e d .
T h e v e r y energetic w a t e r - z e o l i t e b o n d , e s p e c i a l l y for
smaller w a t e r uptakes, means that w a t e r m o l e c u l e s m a y stick o n sites w h e r e t h e y first l a n d . S u b s e q u e n t r e d i s t r i b u t i o n c a n be v e r y s l o w o n the t i m e scale of the experiment, p a r t i c u l a r l y at the l o w temperatures p l o y e d (19, 21),
2 3 ° a n d 44 ° C .
em
F i n a l l y , the i n f o r m a t i o n d e r i v e d f r o m
d i f f e r e n t i a l t h e r m a l analysis is q u a l i t a t i v e or at best o n l y s e m i q u a n t i t a t i v e . A n alternative c a l o r i m e t r i c p r o c e d u r e , w h i c h i n p r i n c i p l e m a y e l i m inate the r e d i s t r i b u t i o n p r o b l e m of d i r e c t c a l o r i m e t r y , consists i n m e a s u r i n g heats of i m m e r s i o n as a f u n c t i o n of the a m o u n t of p r e s o r b e d l i q u i d . T h e b u l b c o n t a i n i n g the z e o l i t e a n d its p r e s o r b e d w a t e r c a n be to a s u i t a b l y h i g h t e m p e r a t u r e
heated
to p r o m o t e w a t e r m i g r a t i o n a n d t h e n
c o o l e d s l o w l y to the e x p e r i m e n t a l temperature.
T h e b u l b is b r o k e n u n d e r
l i q u i d w a t e r a n d the heat of w e t t i n g m e a s u r e d .
T h i s m e t h o d has
been
u s e d i n the present w o r k for a n u m b e r of zeolites of d i f f e r i n g k n o w n structures, w i t h different exchange ions, a n d also for i n d i v i d u a l structures decationated a n d progressively dealuminized. Experimental Materials. T h e zeolites s t u d i e d are s u m m a r i z e d i n T a b l e I. T h e u n i t c e l l contents of the d e h y d r a t e d forms of the starting materials w e r e : NaX NaY NaA Chabazite Mordenite Clinoptilolite S r ferrierite
8 7 N a + [87 A 1 0 " · 105SiO ] 57 (Ho.i, N a . ) [ 5 7 A 1 0 - · 1 3 5 S i 0 ] 12Na+ [ 1 2 A 1 0 - · 1 2 S i 0 ] 0.4 N a A 1 0 1.6Na+ 4 . 4 C a [10.4 A 1 0 ~ · 25.6 S i O , ] 8 (Ho.i N a . ) [8AIO2- · 4 0 S i O ] 6 N a + [6AIO2- · 30SiO ] O x i d e f o r m u l a : 0.94SrO · A 1 0 · 1 2 . 3 S i 0 2
0
9
2
+
2
2
2 +
0
9
2
2
2
2
+
2
2
2
3
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
47.
BARRER
AND
C R A M
Heats of
107
Immersion
T h e o x i d e f o r m u l a of Sr ferrierite o n l y is g i v e n because the y i e l d of this synthetic zeolite m a y h a v e b e e n less t h a n 1 0 0 %
(12).
T h e r e are
72
o x y g e n atoms i n the o r t h o r h o m b i c u n i t c e l l . T h e i o n - e x c h a n g e d forms of sieves X , Y , a n d A w e r e p r e p a r e d b y s h a k i n g a suspension of the starting materials i n a s o l u t i o n of the a p p r o priate c a t i o n , at r o o m t e m p e r a t u r e , for m o r e t h a n 6 hours i n e a c h treat ment. A n a l a R c h l o r i d e solutions w e r e u s e d w h e r e suitable. M g , T l , a n d P b f o r m s w e r e p r e p a r e d u s i n g sulfate, acetate, a n d nitrate respectively.
T h e e x c h a n g i n g solutions c o n t a i n e d a n i n i t i a l
solutions,
five-fold
ex
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
cess of e x c h a n g i n g i o n , except for R b , C s , a n d T l forms, w h e r e the i n i t i a l excess was a b o u t t w o - f o l d . F o l l o w i n g ion-exchange, the samples
were
w a s h e d t h o r o u g h l y w i t h n e a r l y b o i l i n g w a t e r to r e m o v e e n t r a i n e d salt. T h e entire process w a s r e p e a t e d at least 4 times. O t h e r z e o l i t e m o d i f i c a tions ( ferrierites, m o r d e n i t e s , chabazites, a n d c l i n o p t i l o l i t e s ) w e r e those p r e p a r e d b y other w o r k e r s i n these laboratories (4, 5, 6, 12, 24).
A l l the
samples s t u d i e d w e r e d r i e d o v e r n i g h t i n a 1 1 0 ° C o v e n a n d stored over saturated N H C 1 s o l u t i o n at r o o m t e m p e r a t u r e ( 2 0 ° to 2 3 ° C ) f o r at least 4
Table II.
Saturation Water Contents, Grams per G r a m of Hydrated Zeolite X I 0 0 Ion-Exchanged
Cation Form
Zeolite
Li Na Κ Rb Cs Mg Ca Sr Ba Tl Pb
X
27.8 25.8 22.5 19.4 17.5 29.3 27.6 25.2 22.2 12.3 15.9
Zeolite 27.6 25.9 21.9 20.4 17.6 28.1 26.1 25.4 23.6 16.7
a h
Chabazite
22.1 21.5 18.4 14.2 15.7 27.2 23.0
22.0 19.5 17.3 13.9 12.3 22.1,
— -
-
-
-
21.1
14.2 11.2
e
-
-
and Dealuminized
Na-Zeolon 2N H C l - t r e a t e d SN H C l - t r e a t e d 12ΛΓ H C l - t r e a t e d H-Zeolon
15.6 13.4
9.5
8.7
-
Forms Ferrierite
b
14.0 14.5 14.3 14.4 15.4
Ferrierite
-
Mordenite
1
Natural 0.257V H C l - t r e a t e d 0.5iV H C l - t r e a t e d 1.0N H C l - t r e a t e d 2.0N H C l - t r e a t e d
Zeolite A
-
Decationated Clinoptilolite
Y
Forms
13.2 -
0.09N H C l - t r e a t e d 15.7 H D from N H D 4
17.9 14.3
V a l u e for natural ( C a , N a ) chabazite. T h e fractions of A l removed i n the a c i d treatment are shown i n T a b l e I V .
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
108
M O L E C U L A R
Table III.
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
Li Na Κ Rb, N a Cs, N a Mg Ca Sr Ba Tl Pb
63.i
87.i
Zeolite Y 4.1
6Ο.3
8I.5
128.3 113.6 92.3
8
6
74., 64.o 134.x
60.3
52. 94.
8 7
103.4
143.0
94. 80.e
126.
8
7
103.6
21.2
42.
Ba, N a Tl, N a
4
2
52.4
67.i
47.2
59.4
40.
49.5
8
121.
87.4
73.3 69.5*
67.
3
27.0
Li Na Κ Rb, N a Cs, N a Mg, N a Ca
II
74.
6
99.3 93. 2
88. 32.
2 4
7
9
5
9
3
3
8
3 t
73.9 71.4
83.o 1.8 19.!
z
15.4 X 10 15.3 X 10 13.7 X 10 12.7 X 10 12.6 X 10 17.1 X 10 18.8 X 10 19.3 X 10 17.0 X 10 7.0 X 10 10.2 X 10
6 5 5 6 5 5 5 5 6
6
7
5
12.7!
6
0
3
5.1 2.8
3
8
6.I1 6.I9
0
20.9
3.9
5
6
0
4.9
6
134.5 107.7
5
Que, Cat per N Unit Cells
5.Ο4
4.3ι 4.1 4.1 5.6
6.9 3.2 5.4 6.4 6.5
29. 56.
25.3 47.7 98.0
Cal per Gram Equiv. of Cation X 10~
10.3 X 10 10.4 X 10 9 . I 9 Χ 10 9.1 Χ 10 8.5 Χ 10 15.0ι Χ 10 12.2 Χ 10
2
4.I9
Zeolite A 96.2 94.2 87.5
9
Q G E ,
z
24., 50.
84. 71.
Sr, N a
qD, Cal per Gram
Qi, Cal per Mole of Water X 10~ Zeolite X 5.9 5.8 5.7 5.5 5.4 5.8! 6.7 6.7 6.5 3.2 4.7,
92.5
Li Na Κ Rb, N a Cs, N a Mg, N a Ca, N a
ZEOLITES
Heats of Immersion of Cation Forms of Zeolites
qH, Cal per Gram
Cation Form
SIEVE
9
X 8 9
5
4
5
2
5
5
2
5
6
5
5
9
Χ
10
5
12.9 Χ 10 6.5 Χ 10
5
8
5
14.8 16.3 16.9
5
Χ Χ Χ 6.67 Χ 13.2 Χ 22. Χ 18.3 Χ
10 10 10 10 10 10 10
8.I7 X
10
2
4
4 4
4
4 4 4
17.7 17.6 15.7 14.6 14.5 19.6 21.6
22. 19.5 8.1; 11.8 2
18.2 18.3 16.1 16.0 15.0 26. 21. 3
6
22.
3
22. 11.5 7
12.3 13.6 14.1 5.5 11.0 18.5 15.3
6
!
Tl Li Na Κ Rb Cs, C a Ca, N a Ca Tl
73.2
67.
2
52.2 39H 30.4 76.7 8O.0*
22.6
93.9 83.5 63.2 45.7 34.7 97.2 102.5 25.0
Chabazite 5.9 6.2i 5.4 5.1χ 4.4 6.5 6.5 4.2 9
4
6
6
3
8
21.5 21.4 16.4 14.0o 11.7 23.5 24.9 IO.87 6
7
7
6
6
0
X X X X X X X X
4
6.81
10" 10 10 10" 10 10 10 10
20.13 20.0 15.3, 13.0 10.9 22.0i 23.2 10.1,
4 4
4
4
4
4
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
e
8
8
7
47.
BARRER
AND
H eat s of
C R A M
Immersion
Table III.
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
Cation Form
Cat per Gram
Li Na Ca Sr H (from NH +) H (0.09N HC1) 4
Continued Qi, Cal per Mole of Water X 10~
QD,
QH,
Cat per Gram
109
QGE,
Que, Cal per No Unit Cells
3
Zeolite D (Synthetic 40.2 3.9 35.4 4.1, 41.5 4.5 28.2 4.0
Cat per Gram Equiv. of Cation X ίο-*
ferrierite)
17.5 15.9 18.6 13.3
2
2
2
34.5
34. *
40,
4
3.9
5
2 weeks to ensure that w a t e r u p t a k e h a d r e a c h e d e q u i l i b r i u m . T h e satu r a t i o n w a t e r contents, d e t e r m i n e d b y T G A u s i n g a S t a n t o n t h e r m o b a l ance, are g i v e n i n T a b l e II. Outgassing. Samples w e r e w e i g h e d out i n t h i n - w a l l e d b o r o s i l i c a t e glass b u l b s of d i a m e t e r ~ 0 . 8 r e s i d u a l pressure < 1 0 "
5
c m , outgassed at 3 6 0 ° C f o r 24 hours to a
m m of H g , a n d sealed off u n d e r v a c u u m .
ples of N a X , N a Y , N a A , a n d
( C a , N a )-chabazite,
Sam
containing varying
amounts of p r e s o r b e d w a t e r , w e r e p r e p a r e d b y p a r t i a l r e m o v a l of w a t e r f r o m the saturated materials.
E q u a l samples w e r e p a r t i a l l y outgassed
i n pairs t h r o u g h a c o m m o n t a p at temperatures
controlled b y an oil
thermostat b e t w e e n 0 ° a n d 190 ° C f o r times b e t w e e n 2 a n d 12 hours.
The
heat of i m m e r s i o n of 1 sample w a s m e a s u r e d , a n d the r e s i d u a l w a t e r content of the s e c o n d w a s d e t e r m i n e d b y i g n i t i o n at 1 1 0 0 ° C to constant w e i g h t i n a P t c r u c i b l e . T h e r e s i d u a l w a t e r contents of e a c h s a m p l e w e r e assumed, i n i n t e r p r e t i n g the heat of i m m e r s i o n , to b e the same.
T o en
sure a n e q u i l i b r i u m d i s t r i b u t i o n of w a t e r p r i o r to the c a l o r i m e t r i c m e a surement, the p a r t i a l l y outgassed samples i n sealed b u l b s w e r e p l a c e d i n a n o v e n at 100 ° C f o r 36 hours a n d t h e n c o o l e d s l o w l y to r o o m t e m perature d u r i n g a p e r i o d of 6 hours. Calorimeter.
A d i f f e r e n t i a l c a l o r i m e t e r , o p e r a t i n g at 25.0 ° C u n d e r
n e a r - i s o t h e r m a l c o n d i t i o n s , w a s u s e d f o r a l l heat measurements.
Similar
calorimeters, d e s i g n e d for d e t e r m i n i n g heats of i o n exchange i n zeolites, h a v e b e e n d e s c r i b e d p r e v i o u s l y ( 5 , 6, 14, 15).
T h e calorimeter was cali
b r a t e d b y m e a s u r i n g the heat of s o l u t i o n of p o t a s s i u m c h l o r i d e i n w a t e r . T h e ratio of the area u n d e r t h e c u r v e t r a c e d b y the r e c o r d e r p e n to the heat p r o d u c e d was 1.50 ± 0.04 c m p e r calorie. N o heat c o u l d b e d e t e c t e d 2
w h e n an empty evacuated b u l b was broken under water.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
110
M O L E C U L A R
Errors.
SIEVE
ZEOLITES
E r r o r s w e r e e s t i m a t e d f r o m d u p l i c a t e measurements.
c a l o r i m e t r i c measurements
are accurate
to a b o u t 4 % ,
the
II
The
saturation
w a t e r contents to 1 % , a n d the r e s i d u a l w a t e r contents are r e p r o d u c i b l e to a b o u t 3 % , except at the lowest coverages, w h e r e the error is greater. Results Heat of Immersion and Exchange Cation.
H e a t s of i m m e r s i o n i n
w a t e r w e r e d e t e r m i n e d f o r t h e outgassed c a t i o n i c f o r m s of the zeolites
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
(Table III).
T h e heats g i v e n i n this table are the f o l l o w i n g :
a. q
H
=
b. q
D
=
calories p e r g r a m of h y d r a t e d z e o l i t e ^
c. 0 / = —
H
calories p e r g r a m of d e h y d r a t e d zeolite
=
w
X 18.016 =
d . Que =
qD X WN =
e. QGE =
0™L =
0
calories p e r m o l e of w a t e r i m b i b e d calories p e r A v o g a d r o N o . of u n i t cells
calories p e r g r a m e q u i v a l e n t of cations
H e r e w is t h e w e i g h t of w a t e r p e r g r a m of h y d r a t e d zeolite e q u i l i b r a t e d o v e r saturated a m m o n i u m c h l o r i d e s o l u t i o n ; w
is the w e i g h t of a n A v o
No
g a d r o n u m b e r of d e h y d r a t e d u n i t cells of zeolite; a n d n
c
is t h e n u m b e r
of c a t i o n i c charges p e r u n i t c e l l . T h e values of qH w e r e d e r i v e d d i r e c t l y f r o m the c a l o r i m e t e r measurements.
T h e other q u a n t i t i e s are d e r i v a b l e ,
a s s u m i n g that a l l the w a t e r is r e m o v e d b y the outgassing at 3 6 0 ° C , a n d that w h e r e n o d i r e c t c h e m i c a l analysis w a s a v a i l a b l e , i o n exchange h a d r e a c h e d the l i m i t i n d i c a t e d b y p u b l i s h e d i o n exchange isotherms (5, 15, 31, 33).
6,14,
A l l results are t h e average of 2 or m o r e measurements except
those m a r k e d w i t h a n asterisk, w h e r e o n l y 1 m e a s u r e m e n t w a s m a d e . Dealumination and Heat of Immersion.
T r e a t m e n t s of m o r d e n i t e ,
c l i n o p t i l o l i t e , a n d f e r r i e r i t e w i t h d i l u t e a c i d i n the first instance r e m o v e m e t a l l i c cations a n d y i e l d the h y d r o g e n forms (4, 12, 13). also result b y h e a t i n g the a m m o n i u m zeolites
(24).
Such forms
Treatment
stronger a c i d solutions removes i n c r e a s i n g amounts of A l (4, ( T a b l e I V ) . T h e m a r k e d effect this has u p o n q
H
a n d d i f f e r e n t i a l (AH)
26)
is s h o w n i n the table.
^ H e a t s of Sorption as Functions of Amount Sorbed. (AH)
13,
with
T h e integral
heats of s o r p t i o n of w a t e r v a p o r w e r e o b
t a i n e d f r o m the r e l a t i o n s h i p s Qn
0
where
~
η
=
(η.
η,) (AH
-
àH ) L
a n d so
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(D
47.
BARRER
AND
Heats of
C R A M
Immersion
= AH
ΔΗ + ( η . - no) Here q
n s
and q
no
111
(2)
are heats of i m m e r s i o n o f t h e z e o l i t e i n i t i a l l y c o n t a i n i n g
n a n d n moles o f p r e s o r b e d w a t e r p e r g r a m , a n d AH s
0
is t h e m o l a r heat
L
of c o n d e n s a t i o n o f w a t e r , t a k e n as 10.51 k c a l p e r m o l e . T h e degree of p r e s a t u r a t i o n , 0, is g i v e n b y _ i n i t i a l w a t e r content
_
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
s a t u r a t i o n w a t e r content where n
s a t
n
s
n
aat
is t h e n u m b e r o f moles of w a t e r n e e d e d to saturate t h e i n t r a -
c r y s t a l l i n e f r e e v o l u m e . S m o o t h e d curves of q
ns
vs. θ w e r e d r a w n ( F i g u r e
1 ), a n d t h e l o w e r l i m i t s o f θ c h o s e n f o r t h e c a l c u l a t i o n s of i n t e g r a l heats were: Zeolite: θ :
NaX 0.033
NaY 0
NaA 0.1
( C a , N a ) chabazite 0.133
T h e values o f — AH a n d —AH d e r i v e d f r o m t h e s m o o t h e d c u r v e s of F i g u r e 1 a r e s h o w n i n F i g u r e 2. A t t h e lowest values of Θ, —AH is v e r y large b u t d i m i n i s h e s as θ increases.
T h e curves f o r N a Y , N a A , a n d
( C a , N a ) c h a b a z i t e flatten for h i g h e r 0, w h i l e that for N a X has a m i n i m u m f o l l o w e d b y a r i s i n g section.
F o r N a X , the w a t e r - w a t e r self-potential
energy, i n c r e a s i n g w i t h 0, m o r e t h a n balances t h e d e c l i n i n g values of w a t e r - s o r b e n t interactions. A f t e r s a t u r a t i o n ( 0 ^ 1 ) , f o r a l l systems w o u l d b e e x p e c t e d to a p p r o a c h Table I V .
— AH a n d — AH
—AH . L
Heats of Immersion in Decationated and Dealuminized Zeolites
Sample
7c Al Relative to Original
Original 0.25N H C 1 0.5N H C 1 1.0N H C 1 2.0N HC1
100 58 33 7 0
N a Zeolon Η Zeolon 2.0iV H C 1 6.0N H C 1 12.0ΛΓ H C 1
100 87 49 32 25
Cal per Gram Clinoptilolite 41.o 41.3 32.4 27.3
23.
6
Mordenite 46a 34. 38. * 7
3
36.7* 34.8*
QD,
Cal per Cram 47.7 48.3
37. 31. 27.
8 9 9
qi, Kcal per Mole of Water 5.2 5.1 4.0 3.4 2.7
53.i 40.
6.2 4.3 -
42.4
3.5
5
-
que, Cal. per No Unit Cells X 10~
7 x 8 2 6
9 7
-
4
10.3, 9.5 7.3 6.0 5.2 3
3
7
9
16.2i 11.5 7
-
0
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
11.6i
112
M O L E C U L A R
SIEVE
ZEOLITES
II
Discussion Exchange Ions and Heats of Immersion. T h r e e c a t i o n i c f o r m s give heats of i m m e r s i o n w h i c h are out of l i n e w i t h other results. O n e o f these is B a A , f o r w h i c h q
H
is o n l y 1.8 c a l p e r g r a m . T h i s f o r m c a n lose m u c h
o f its structure o n outgassing ( 3 2 ) ,
a n d the w a t e r u p t a k e a n d heat of
i m m e r s i o n are r e d u c e d a c c o r d i n g l y . ( R b , N a ) A a n d ( M g , N a ) X also m a y lose some c r y s t a l l i n i t y d u r i n g outgassing. R a s t r e n e n k o et al. ( 2 9 ) q
H
extensive lattice b r e a k d o w n . P l a n k (28) Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
found
f o r ( R b , N a ) A to b e o n l y 3 c a l p e r g r a m , w h i c h p r o b a b l y i n d i c a t e s reported partial breakdown i n
( M g , N a ) X a l t h o u g h this w a s not c o n f i r m e d b y others (16, B e c a u s e of the a b n o r m a l i t i e s i n q
H
20, 27,
36).
observed w i t h B a A , ( R b , N a ) A , and
( M g , N a ) X , these 3 w i l l b e d i s r e g a r d e d i n the f o l l o w i n g c o m p a r i s o n s . O u r values of q
H
for L i , ( M g , N a ) , a n d C a forms of zeolite A are 12 to
2 0 % l o w e r t h a n those of R a s t r e n e n k o et al., b u t o u r v a l u e f o r Κ A is a p p r e c i a b l y h i g h e r . H o w e v e r , w i t h the e x c e p t i o n of K A , the trends i n
q
H
are t h e same, a n d n u m e r i c a l differences m a y arise f r o m differences i n the zeolite s a m p l e . O f the c a t i o n forms of c h a b a z i t e , C s - c h a b a z i t e contains a b o u t
20%
of r e s i d u a l C a w h i l e the other m o d i f i c a t i o n s s h o u l d c o n t a i n less t h a n 1 0 % of this i o n (6).
I n zeolite X , the R b , C s , M g , a n d B a forms c o n t a i n a b o u t
30, 30, 27, a n d 23 r e s i d u a l N a ions p e r u n i t c e l l (14) +
out of a t o t a l i n o u r
Figure 1. Curves of q vs. θ for (a) NaX, (b) (c) NaA, and (d) (Ca,Na)chabazite n s
NaY,
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
47.
BARRER
Heats of
A N D C R A M
113
Immersion
to;
(a) 25h
-ΔΗ -ΔΗ -ΔΗι_ ( 2 5 ° C )
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
AH|_ (25 C)
0-2
0-4 0 6
θ
0-8
0-2
0-4
θ
0-6
08
Figure 2. Curves of —AH and — Δ Η plotted against θ for (a) NaX, (b) NaY, (c) NaA, and (d) (Ca,Na)chabazite s a m p l e o f 87 ions. O f these n u m b e r s , 16 N a ions i n e a c h case p r o b a b l y +
o c c u p y sites w i t h i n t h e h e x a g o n a l p r i s m s a n d thus are c o m p l e t e l y s h i e l d e d f r o m w a t e r m o l e c u l e s . T h e r e m a i n d e r m u s t h a v e some c o n t a c t w i t h w a t e r a n d thus m o d i f y t h e heat of i m m e r s i o n c o m p a r e d w i t h t h e h o m o i o n i c f o r m . I n zeolite A , t h e R b , C s , a n d M g f o r m s c o n t a i n a b o u t 29, 54, a n d 33%
of N a ions, r e s p e c t i v e l y , a l l of w h i c h c a n interact w i t h w a t e r . I n +
z e o l i t e Y , a l t h o u g h the R b , C s , C a , Sr, B a , a n d T l f o r m s e a c h c o n t a i n a b o u t 16 N a
+
p e r u n i t c e l l ( 5 ) , these N a ions are p r o b a b l y w i t h i n t h e +
h e x a g o n a l p r i s m s a n d i f so w o u l d n o t interact w i t h w a t e r o r m o d i f y t h e heats o f i m m e r s i o n . T h e m a g n i t u d e of q
H
is d e t e r m i n e d l a r g e l y b y t h e w a t e r content p e r
g r a m ( T a b l e I I ), w i t h f u r t h e r i n f l u e n c e b y t h e n u m b e r , size, a n d v a l e n c e of cations a n d t h e f r a m e w o r k c o n f i g u r a t i o n .
A m o n g the alkali metal
c a t i o n s — e x c l u d i n g ( R b , N a ) A — t h e r e is a r e g u l a r decrease i n q
H
and q
i n t h e sequence. L i + > N a + > K + > R b + > Cs+ F o r t h e d i v a l e n t i o n s — e x c l u d i n g B a A a n d ( M g , N a ) X — t h e o r d e r is
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
D
114
M O L E C U L A R
Mg + > 2
Ca + > 2
Sr + >
Ba
2
SIEVE
ZEOLITES
II
2 +
w h i l e the heat of i m m e r s i o n f o r a g i v e n zeolite c o n t a i n i n g a d i v a l e n t exchange i o n is u n i f o r m l y larger t h a n this heat i n the same zeolite c o n t a i n i n g a m o n o v a l e n t i o n of s i m i l a r radius—e.g., C a
and Na —despite
2 +
+
the smaller n u m b e r of d i v a l e n t ions. T h e i n f l u e n c e of charge d e n s i t y i n 2 o t h e r w i s e i d e n t i c a l structures is seen c l e a r l y b y c o m p a r i n g q
H
or
q
D
f o r the same exchange i o n i n zeolites X a n d Y . I n a l l cases except that of T l , the heat of i m m e r s i o n is c o n s i d e r a b l y larger i n X . +
For T l
+
the
reverse is true, p r i m a r i l y because the w a t e r content of T 1 X is less t h a n Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
that of T1Y ( T a b l e
II).
T h e effect of p o l a r i t y of the f r a m e w o r k u p o n the heat of i m m e r s i o n c a n b e s h o w n i n a m o r e g e n e r a l w a y . T h e l a t t i c e - f o r m i n g units of the a n i o n i c f r a m e w o r k c a n be c o n s i d e r e d as ( A l ^ S i d . ^ )0 ~ x
2
30 k c a l p e r m o l e 30 k c a l p e r mole 22.7 k c a l per mole 17 k c a l p e r mole
F o r h i g h w a t e r l o a d i n g s , i n t e g r a l heats at t h e largest m e a s u r e d of θ c o m m o n to a l l t h e zeolites m a y i n d i c a t e j t h e
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
desiccants at s u c h l o a d i n g s . F o r θ =
value
r e l a t i v e usefulness as
0.8, —AH has t h e values
( C a , N a ) chabazite NaA NaX NaY
18.9 17.7 16.9 15.2
kcal kcal kcal kcal
per per per per
mole mole mole mole
T h i s o r d e r is t h e same as that of t h e i n i t i a l heats. R e t e n t i v i t y f o r w a t e r at h i g h l o a d i n g s also d e p e n d s
u p o n t h e i n t r a c r y s t a l l i n e free
volumes
w h i c h a r e ( J ) a b o u t 0.54 c m p e r c m f o r N a Y a n d N a X , a n d a b o u t 0.46 3
cm
3
3
per c m for N a A a n d chabazite. 3
A c o m p a r i s o n of w a t e r r e t e n t i v i t y is g i v e n i n F i g u r e 7 i n w h i c h 0 ( N a Y ) , 0 ( N a A ) , a n d Θ(chabazite)
are p l o t t e d against 0 ( N a X ) .
I n each
case, starting w i t h saturated crystals, outgassing w a s c o n d u c t e d f o r the 4 zeolites u n d e r i d e n t i c a l c o n d i t i o n s .
C u r v e s s h o w n i n F i g u r e 7 are n o t
O(Na-X) Figure 7. θ for NaY ( • ), NaA (Φ), and chaba zite (M) plotted against θ for NaX, following identical outgassing conditions
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
120
MOLECULAR
SIEVE
ZEOLITES
II
at e q u i l i b r i u m so that factors s u c h as crystallite size m a y h a v e a n i n f l u ence. N e v e r t h e l e s s , w i t h t h e e x c e p t i o n of a n a n o m a l o u s r e g i o n f o r N a A i n t h e r a n g e 0.25 < θ
0
(c) B
-.- ( r / ) w h e r e rj is the r a d i u s of the w a t e r m o l e c u l e p l u s A the r a d i u s of t h e c a t i o n i n a h y p o t h e t i c a l nonelectrostatic e n v i r o n m e n t . T h i s latter r a d i u s w a s t a k e n as the r a d i u s of the i n e r t gas a t o m h a v i n g the s a m e electronic c o n f i g u r a t i o n ( N e , 1.60A; A r , 1 . 9 2 A ) . ( d ) T h e h a r d sphere m o d e l w i t h B = oo f o r r ^ r a n d B = 0 f o r r > r . r w a s a g a i n set e q u a l to r . T h e m a x i m u m i n t e r a c t i o n energy, c o r r e s p o n d i n g w i t h t h e e q u i l i b s
=
6
4
e
e
e
4
0
r i u m distance of separation, r , w a s o b t a i n e d f r o m the plots of φ = e
+
Φ^ρ +
φρ +
φβ +
(φ^
μ
φΛ) against r. T h e values of r a c c o r d i n g to t h e c
v a l u e of Β t a k e n , a n d the c o r r e s p o n d i n g values of the c o m p o n e n t s of φ, are s h o w n i n T a b l e V I . T h e values of φ a n d r associated w i t h B e
x
seem
u n r e a l i s t i c , so a n average v a l u e f o r φ w a s c a l c u l a t e d f r o m t h e other 3 values. T h u s , the m a x i m u m energies of i n t e r a c t i o n a r e : Na+-H 0
—25 k c a l per mole
Ca
—61 k c a l per mole
2
2 +
-H 0 2
T h e r e l a t i o n s h i p b e t w e e n φ a n d AH at 0 ° K is ( φ — φ ) 0
φ
0
is t h e zero p o i n t energy.
=
AH w h e r e
I n v i e w of t h e a p p r o x i m a t i o n s m a d e , φ is
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
0
124
MOLECULAR
SIEVE
n e g l e c t e d , a n d it is assumed also that ΔΗ 98°κ == AH o . 2
coverages e x a m i n e d , the values of AH
0
ZEOLITES
A t the lowest
K
are
NaX NaY
θ = 0.05 θ~ 0
Δ/7 = AH =
NaA
θ = 0.1
Ai/=
—29 k c a l per m o l e
Δ#
— 32 k c a l per mole
( C a , N a ) c h a b a z i t e θ = 0.15
II
- 2 4 k c a l per m o l e - 2 0 k c a l per mole
=
T h e heats of s o r p t i o n at l o w coverages f o r the N a - f o r m s thus are c o m parable w i t h the calculated value. F o r N a X , N a A , a n d ( C a , N a )
Downloaded by PRINCETON UNIV on September 30, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch047
z i t e , — A H at θ =
0 p r e s u m a b l y w o u l d be s o m e w h a t greater.
chaba
This may
e x p l a i n i n p a r t w h y the m e a s u r e d heat f o r c h a b a z i t e is s u b s t a n t i a l l y less t h a n that c a l c u l a t e d f o r a n i s o l a t e d C a
2 +
- H 0 pair. A further possibility 2
is that the N a ions i n n a t u r a l c h a b a z i t e o c c u p y m o r e exposed positions +
than the more numerous C a
2 t
ions.
T h e n u m e r i c a l l y largest e x o t h e r m a l t e r m at r is φρ e
(Table V I ) .
β
A
d i r e c t m e t h o d of e s t i m a t i n g t h e r e l a t i v e i m p o r t a n c e of the energy c o m ponents (φ
0
+
ΦΒ +
φρ) a n d (φ
Εβ
- f Φ^)
has b e e n d e v e l o p e d
(2).
T h e i n i t i a l heats of s o r p t i o n f o r a n u m b e r of n o n p o l a r , s t r u c t u r a l l y s i m p l e m o l e c u l e s w e r e p l o t t e d against t h e i r p o l a r i z a b i l i t y , a, for a g i v e n sorbent. I n this w a y , a characteristic c u r v e g i v i n g the c o n t r i b u t i o n to AH (φο +
ΦΒ +
from
Φ ρ) as a f u n c t i o n of a w a s o b t a i n e d . T h i s c o n t r i b u t i o n c a n
b e i n t e r p o l a t e d t h e n for m o l e c u l e s of i n t e r m e d i a t e p o l a r i z a b i l i t i e s w h i c h also h a v e p e r m a n e n t electric m o m e n t s . of ( ψ ^
μ
B y difference, the c o n t r i b u t i o n
- f φ^ρ) to AH c a n be f o u n d . T h i s m e t h o d demonstrates
again
t h e d o m i n a n c e of the electrostatic energy components i n w a t e r - z e o l i t e systems, as is a p p a r e n t f r o m T a b l e V I I . T h e c a l c u l a t e d values of (φ , Ρμ