Molecular Sieve Zeolites-II - American Chemical Society

activity of Group ΙΑ X or Y zeolites for carbonium ion reactions, considerable .... ( as normally found in the commercial Linde zeolites ) markedly ...
0 downloads 0 Views 684KB Size
66

Downloaded by CHINESE UNIV OF HONG KONG on November 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch066

Development of Acidity in the Sodium-Y Zeolites EDUARDO A. LOMBARDO, G. A. SILL, and W. KEITH HALL 1

2

Mellon Institute, Carnegie-Mellon University, Pittsburgh, Pa. 15213

The isomerization of n-butenes was used as a test reaction to follow the development of catalytic activity in Na-Y zeo­ lite. The acidity was varied by the substitution of some of the Na (0.3 to 5.7%) with Ca and by creating a Na deficiency (up to 0.94%); both series of catalysts were stud­ ied with and without water added as cocatalyst. A pure Na-Y zeolite containing no decationated sites was found catalytically inactive for this reaction. In contrast with silica­ -alumina catalysts, carbonaceous residues did not appear to play a role in the formation of the catalytic sites as long as H O was used as cocatalyst. +

2+

+

2

A l t h o u g h there is g e n e r a l agreement r e g a r d i n g the v e r y l o w c a t a l y t i c a c t i v i t y of G r o u p Ι Α X o r Y zeolites f o r c a r b o n i u m i o n reactions, c o n s i d e r a b l e c o n t r o v e r s y exists c o n c e r n i n g the effects of vacancies, i m ­ p u r i t i e s ( m a i n l y d i v a l e n t c a t i o n s ) , a n d cocatalysts o n this p r o p e r t y . O n e g r o u p of investigators r e p o r t e d n o c o r r e l a t i o n b e t w e e n c a t i o n d e f i c i e n c y and catalytic activity ( 7 ) .

S e v e r a l others

(1, 5, 6, 7, 13)

reported a

m a r k e d increase o n a d d i t i o n of p r o t o n donors to N a - a n d C a - X o r Y zeo­ lites. A n o t h e r (17)

r e p o r t e d o n l y a s m a l l increase f o r C a - Y zeolite, b u t

n o v a r i a t i o n w a s f o u n d (19)

f o r p u r e N a - Y zeolite.

T w o firmly estab­

l i s h e d c o n c l u s i o n s d e r i v e d f r o m I R spectroscopy are that p u r e N a - X o r Y zeolites, either p a r t i a l l y o r t o t a l l y d e h y d r a t e d , s h o w n o e v i d e n c e of s t r u c t u r a l h y d r o x y l g r o u p s (4, 18, 19, 20, 21, 22),

a n d Bronsted acidity

Present address : F a c u l t a d de Ingenieria Q u i m i c a , U n i v e r s i d a d N a c i o n a l d e l L i t o r a l , Santa F e , A r g e n t i n a . * T o w h o m correspondence s h o u l d be addressed; G u l f Research a n d D e v e l o p m e n t C o . , P.O. B o x 2038, P i t t s b u r g h , P a . 15230. 1

346

Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

66.

LOMBARDO E T

Acidity

AL.

in Sodium-Y

347

Zeolites

d e v e l o p s i n d i v a l e n t ( M e ) X a n d Y zeolites d u r i n g d e h y d r a t i o n (2, 4, 2 +

14, 15, 18, 20, 21, 22) t h r o u g h R e a c t i o n I .

Me

2 +

/

H

: Ο

\

O

+

Η

\ /

\ " /

/

Si

\

ΑΙ τ± M e + O H

/

\

Ο Ο

T h i s c h e m i s t r y suggests a role f o r H Downloaded by CHINESE UNIV OF HONG KONG on November 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch066

+

2

\ /

O H

/

Si

\

\

/

/

A l

(1)

\

0 0

0 as cocatalyst w i t h t h e m o n o v a l e n t

zeolites i f t h e e q u i l i b r i u m is m o v e d to the r i g h t i n t h e presence o f a base. I n t h e present w o r k , t h e effects o f s m a l l d e l i b e r a t e replacements o f N a b y C a , of cation deficiency, a n d of H 2 +

2

+

0 o n t h e c a t a l y t i c properties o f

N a - Y z e o l i t e w e r e s t u d i e d . A l s o i n v e s t i g a t e d w a s t h e p o s s i b i l i t y that carbonaceous residues f o r m t h e c a t a l y t i c sites, as w a s r e p o r t e d f o r t h e i s o m e r i z a t i o n o f n-butenes over s i l i c a - a l u m i n a catalysts

(3, 8, 9). T h e

i s o m e r i z a t i o n o f t h e n-butenes p r o v i d e d a u s e f u l t o o l f o r these studies b e ­ cause i t f o l l o w s first-order k i n e t i c s (10) a n d proceeds over N a - Y zeolite via t h e s e c - b u t y l c a r b o n i u m i o n (11, 12). Experimental T h e static reactor, w h i c h w a s c o n n e c t e d t o a c o n v e n t i o n a l B E T system, a n d t h e p u r i f i c a t i o n o f t h e reactants h a v e b e e n d e s c r i b e d else­ where

(10).

Catalyst Preparation. N a - Y zeolite was s u p p l i e d b y L i n d e ( L o t N o . 1280-133). T h e chemical composition p r o v i d e d b y the supplier w a s : Component

A1 0 2

%

Si0

3

22.4

Na 0

2

2

63.2

12.6

CaO 0.7

A c c o r d i n g l y , the total cationic charge ( N a

+

M g O (Ti0 +Fe 0 ) 2

0.2

+ 2Mg

2 +

2

3

0.1

+ 2 C a ) w a s just 2 +

a b o u t b a l a n c e d b y t h e t o t a l negative charge o n t h e lattice; t h e ratio w a s 0.449/0.440 =

1.02. T h e i m p u r i t y a l k a l i n e earth ions h a d a p r o f o u n d

effect o n t h e c a t a l y t i c a c t i v i t y f o r b u t e n e i s o m e r i z a t i o n a n d , therefore, t h e c o n c e n t r a t i o n o f these w a s r e d u c e d g r e a t l y b y successive

exchanges

w i t h p u r i f i e d N a A c s o l u t i o n . T h e r e s u l t i n g catalyst w a s w a s h e d thor­ oughly w i t h slightly alkaline distilled water catenation. Ca

2 +

(pH=

1 0 ) , to avoid de­

A l i q u o t s o f this " p a r e n t catalyst" ( I ) c o n t a i n i n g o n l y 0 . 0 2 %

u n d e r w e n t 2 k i n d s o f treatments: C a t a l y s t s I I t o V w e r e b a c k ex­

c h a n g e d to increase t h e C a

2 +

content f r o m 0.02 t o 0 . 4 % ( T a b l e I ) , a n d

C a t a l y s t s V I t o X w e r e m a d e b y w a s h i n g a l i q u o t s of t h e p a r e n t m a t e r i a l w i t h i n c r e a s i n g amounts o f d i s t i l l e d d e i o n i z e d w a t e r . I n this w a y , some Na

+

w a s r e m o v e d , c r e a t i n g v a r y i n g degrees o f d e c a t i o n a t i o n ( T a b l e I I ).

T h e a m o u n t of N a extracted w a s d e t e r m i n e d i n t h e w a s h i n g w a t e r , a n d +

the degree o f d e c a t i o n a t i o n w £ s c a l c u l a t e d t h e r e f r o m . N o C a , M g , o r F e

American Chemical Society Library

1155Molecular 16th St., Flanigen and Sand; SieveN.W. Zeolites-II Advances in Chemistry; American ChemicalD.L Society: Washington, DC, 1971. Washington. 20036

348

M O L E C U L A R SIEVE ZEOLITES

II

w a s d e t e c t e d b y a t o m i c a b s o r p t i o n spectroscopy i n t h e w a s h i n g w a t e r . T h e r e w a s n o significant v a r i a t i o n i n t h e l e v e l of m i n o r i m p u r i t i e s ( B , B a , C r , C u , F e , M g , M n , T i ) b e t w e e n the p a r e n t m a t e r i a l a n d t h e

final

catalyst. P r o c e d u r e . A l l the catalysts w e r e p r e t r e a t e d w i t h 0

2

at 500 ° C a n d

e v a c u a t e d o v e r n i g h t at this t e m p e r a t u r e before e a c h r u n . T h e e x p e r i ­ ments w e r e a l l m a d e u s i n g the same a m o u n t o f reactant ( 5 5 ce S T P ) a n d Downloaded by CHINESE UNIV OF HONG KONG on November 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch066

catalyst.

T h e r e q u i r e d a m o u n t of H

2

reactor before a d d i n g t h e reactant.

0 was v a c u u m transferred into the T h e carbonaceous m a t e r i a l w h i c h

w o u l d n o t desorb o n o v e r n i g h t e v a c u a t i o n at r o o m t e m p e r a t u r e w a s d e ­ t e r m i n e d b y c o m b u s t i o n to C 0

[see also R e f . 12].

2

P r o d u c t analysis

was b y G L C . Results T h e effect of i n c r e a s i n g amounts of w a t e r , a d d e d as cocatalyst, is s h o w n i n F i g u r e 1 f o r t h e catalyst w i t h highest C a

2 +

content ( V ) . T h e

r e a c t i o n rate i n c r e a s e d s h a r p l y w i t h s m a l l w a t e r a d d i t i o n s a n d t h e n l e v e l e d off at a b o u t 10 H 0 / C a 2

(2H 0/cage).

2 +

Similar behavior was

2

o b s e r v e d w i t h t h e other 4 catalysts of this series. s h o w e d that a n i n c r e a s i n g f r a c t i o n of this H

2

Separate

experiments

0 w a s i n the gas phase w i t h

increasing addition under reaction conditions. T h e o v e r - a l l rate constants (k i

+

2

k )

f o r 1-butene d i s a p p e a r a n c e

31

f o r C a t a l y s t s I to V are g i v e n i n T a b l e I. T h e rate constants are d e f i n e d b y

1-butene

— ^

cis-2-butene

trans-2-butene When

t h e rate

against C a

constants

c o r r e s p o n d i n g to 2 H 0 / c a g e 2

were

plotted

c o n c e n t r a t i o n , a straight l i n e passing t h r o u g h t h e o r i g i n

2 +

( z e r o rate at zero C a ) r e s u l t e d . 2 +

I n e a c h case, t h e a d d i t i o n of this

a m o u n t of H 0 , w h i c h w a s sufficient to m a x i m i z e t h e rate, i n c r e a s e d t h e 2

rate b y a f a c t o r of a b o u t 40. T h e c a t a l y t i c a c t i v i t y is c o r r e l a t e d w i t h i n c r e a s i n g extent of d e ­ c a t e n a t i o n i n T a b l e I I . W h e n the rates f o r the d r y catalyst w e r e p l o t t e d vs. c a t i o n d e f i c i e n c y , a straight l i n e p a s s i n g t h r o u g h the o r i g i n a g a i n r e ­ s u l t e d . W h e n the rates f o r the w e t catalyst w e r e p l o t t e d , another straight l i n e w a s o b t a i n e d , b u t w i t h a n i n t e r c e p t c o r r e s p o n d i n g to t h e rate of C a t a l y s t I i n T a b l e I ( 6 Χ 10" m i n 2

- 1

gram" ). 1

W i t h a l l these catalysts, a s m a l l p o r t i o n of t h e reactant w a s r e t a i n e d b y t h e catalyst w h i c h c o u l d n o t b e r e m o v e d b y a n o v e r n i g h t e v a c u a t i o n

Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

66.

LOMBARDO E T A L . Table I.

Downloaded by CHINESE UNIV OF HONG KONG on November 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch066

Catalyst No. I II III IV V

Acidity

in Sodium-Y

Zeolites

349

Variation of Catalytic A c t i v i t y with Ca Content of N a - Y Zeolite"

Calcium Analysis,

% 0.02 0.07 0.1 0.2 0.4

Rate of Isomerization of 1-Butene (fc i + kz\) X 10 Min- G~

Ads. Gases + Residues, n-Butene/ Cage

2

Number of Na+ Replaced by C a + , %

2

2

1

l

Dry Catalyst

2H 0/ Cage

0.01 0.55

6.0 21.9 20.0 38.4 84.0

0.3 1.0 1.4 2.9 5.7

2

2.20

5

b

0.08 0.10 0.40

Static reactor, 55 ce ( S T P ) of reactant, 76 m g of catalyst (dry basis), reaction temperature 2 6 0 ° C . Residues determined after runs using water as cocatalyst w h e n the n-butene mixture was close to e q u i l i b r i u m . a

b

Table II. Variation of Catalytic A c t i v i t y with Decationation of N a - Y Zeolite" Extent of

*j

^NulTo? fei +

Catalyst No.

Na+Removed,

VI VII VIII IX X X

0.15 0.35 0.54 0.79 0.94 0.94

{ i{

somer

za

f

on

0

l-Butene

k ) Χ 10 Min,2



% Dry Catalyst 0.45 0.70 1.00 1.8 2.0

1

G~

l

2H 0/Cage 2

Adsorbed Gases + Residues, n-Butenes/ Cage b

0.15 0.60

6.7 8.9 10.4 10.4 11.9

0.40 0.15

Same as for T a b l e I. Residues were determined after using d r y catalyst when the n-butene m i x t u r e was close to e q u i l i b r i u m . a

6

at r o o m t e m p e r a t u r e .

U s i n g r a d i o a c t i v e tracers a n d C a t a l y s t I , i t w a s

s h o w n that this consisted of 2 fractions, 1 c o r r e s p o n d i n g to

exchangeable

a d s o r b e d b u t è n e s , a n d the other t o residues o r t i g h t l y h e l d ( p o l y m e r ­ i z e d ? ) m o l e c u l e s (12). T h e t o t a l a m o u n t of this m a t e r i a l is r e p o r t e d i n t h e last c o l u m n s o f T a b l e s I a n d I I . solid increased w i t h increasing C a

2 +

T h e a m o u n t of gas r e t a i n e d b y the content ( T a b l e

II).

Discussion T h e results s h o w e d that d i v a l e n t cations, present a t i m p u r i t y levels ( as n o r m a l l y f o u n d i n the c o m m e r c i a l L i n d e zeolites ) m a r k e d l y i n c r e a s e d t h e c a t a l y t i c a c t i v i t y o f N a - Y zeolite.

I f these ions w e r e a l l i n t h e hex-

Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

MOLECULAR

350

SIEVE Z E O L I T E S

II

a g o n a l p r i s m positions, as c o m m o n l y s u p p o s e d for these l o w r e p l a c e m e n t levels, this effect w o u l d not b e expected. per C a

2 +

R e l a t i v e l y m u c h larger increases

a d d e d w e r e o b s e r v e d after the S

7

sites w e r e

filled.

N o t e that

these effects a p p e a r e d w i t h the d r y catalyst; it is possible that the a d d e d H 0 p l a y e d a role i n d r a w i n g m o r e cations f r o m these positions. 2

Slight

d e c a t i o n a t i o n ( or c a t i o n d e f i c i e n c y ) p r o d u c e d a s i m i l a r effect. T h e i n t e r ­ cepts of the rate plots s h o w e d that the a c t i v i t y f o r a c i d - c a t a l y z e d reac­ Downloaded by CHINESE UNIV OF HONG KONG on November 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch066

tions w o u l d b e n e g l i g i b l y l o w f o r a n i m p u r i t y - f r e e , n o n d e c a t i o n a t e d , N a - Y zeolite. T h e s e facts s u p p o r t t h e i d e a that the c a t a l y t i c a c t i v i t y is asso­ c i a t e d w i t h B r o n s t e d sites f o r m e d b y i n t e r a c t i o n of H 0 w i t h d i v a l e n t 2

cations or b y d e c a t i o n a t i o n t h r o u g h h y d r o l y s i s . If the in situ i n t e r a c t i o n of N a w i t h w a t e r contributes to the c a t a l y t i c a c t i v i t y , this c o n t r i b u t i o n +

is n e g l i b l e f o r a l l p r a c t i c a l purposes.

T h i s p o i n t is c l a r i f i e d b y the d a t a

s h o w n i n F i g u r e 1. T h e tangent to the e x p e r i m e n t a l c u r v e ( s o l i d l i n e ) corresponds to 1 H o O / C a ; the c a t a l y t i c a c t i v i t y w o u l d f o l l o w this c u r v e 2+

if every H 0 a d d e d c o u l d be adsorbed on C a . T h e dashed line, shown 2 +

2

f o r c o m p a r i s o n , corresponds to 2 H 0 / C a 2

2 +

. T h e rate does not

its m a x i m u m s a t u r a t i o n v a l u e , h o w e v e r , u n t i l 10 H 0 / C a 2

2 +

reach

have

been

a d d e d . T h i s is p r o b a b l y because w i t h larger a d d i t i o n s , a major f r a c t i o n of the H 0 remains i n the gas phase.

M o v e m e n t of d i v a l e n t ions f r o m

2

the S/ sites, effected b y i n c r e a s i n g s o l v a t i o n of the zeolite surface, c o u l d c o n t r i b u t e also.

T h i s analysis, together w i t h the fact that the r e a c t i o n

rate levels off m u c h before 1 H 0 / N a 2

+

is present i n the system, supports

the i d e a that the m e c h a n i s m represented i n E q u a t i o n 1 is responsible f o r the c a t a l y t i c a c t i v i t y , viz., that the B r o n s t e d sites are o n b r i d g i n g oxygens b e t w e e n s i l i c a a n d a l u m i n a tetrahedra a n d that these m a y be f o r m e d either b y h y d r o l y s i s of d i v a l e n t cations o r b y c r e a t i n g a c a t i o n deficiency. It is, of course, a m o o t q u e s t i o n w h e t h e r m o r e of these sites are f o r m e d adjacent to C a

2 +

i n the presence of H 0 or this m o l e c u l e p l a y e d a r e l a t e d

role as cocatalyst.

2

I n either case, the p i c t u r e agrees w e l l not o n l y w i t h

the a v a i l a b l e spectroscopic G o u r i s e t t i et al.

(6)

d a t a , b u t also w i t h the k i n e t i c results

for alcohol dehydration.

C a r e f u l analysis of

of the

present rate d a t a suggests that B r o n s t e d sites f o r m e d b y i n t r o d u c t i o n of d i v a l e n t ions are m o r e active t h a n those f o r m e d b y d e c a t i o n a t i o n .

This

m a y b e e x p l a i n e d b y the p o l a r i z i n g effect of the d i v a l e n t cations, as d i s ­ cussed b y R i c h a r d s o n (16).

T h e r e is, h o w e v e r , one other p o s s i b i l i t y n o t

r u l e d out b y the present d a t a . T h e B r o n s t e d sites created b y d e c a t i o n a ­ t i o n or b y E q u a t i o n 1 c o u l d h a v e b e e n p a r t i a l l y d e h y d r o x y l a t e d d u r i n g pretreatment.

T h e effect of H 0 o n the rate c o u l d t h e n c o r r e s p o n d to 2

the i n t e r a c t i o n of H 0 m o l e c u l e s w i t h these d e h y d r o x y l a t e d sites. 2

In

v i e w of the present state of k n o w l e d g e c o n c e r n i n g the t h e r m a l s t a b i l i t y of these materials, this e x p l a n a t i o n is d e e m e d b o t h u n l i k e l y a n d u n n e c ­ essary.

Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

66.

LOMBARDO E T A L .

351

Acidity in Sodium-Ύ Zeolites

u-

Downloaded by CHINESE UNIV OF HONG KONG on November 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch066

•β——β

Figure 1.

Variation of catalytic activity with amount of cocatalyst

T h e results p r e s e n t e d h e r e i n afford a n e x p l a n a t i o n f o r some of t h e d i s c r e p a n c i e s f o u n d i n t h e l i t e r a t u r e (1, 5, 7, 13, 19, 23) w h e r e u s u a l l y the c h e m i c a l c o m p o s i t i o n of t h e zeolite has n o t b e e n specified c a r e f u l l y —e.g., H a b g o o d (7) n o t e d that the a c t i v i t y c h a n g e d f r o m o n e l o t of zeo­ lite to another a n d r e p o r t e d that t h e a c t i v i t y of t h e N a zeolites i n c r e a s e d o n a d d i t i o n of w a t e r ; W a r d (19),

o n t h e other h a n d , f o u n d that a p u r e

N a - Y zeolite w a s n o t a c t i v a t e d b y H 0 . 2

T h e r e f o r e , to define c l e a r l y a

G r o u p Ι Α X o r Y zeolite catalyst, i t is v e r y i m p o r t a n t to s p e c i f y t h e k i n d a n d a m o u n t of i m p u r i t i e s present. T h e carbonaceous m a t e r i a l w h i c h w a s r e t a i n e d b y the catalysts after e v a c u a t i o n w a s h e l d i n 2 f o r m s : 1 c o u l d b e r e c o v e r e d as b u t e n e m o l e ­ cules (12)

b y exchange w i t h i s o t o p i c a l l y l a b e l l e d 1-butene; t h e other

c o u l d b e r e m o v e d o n l y b y c o m b u s t i o n to C 0 . W i t h s i l i c a - a l u m i n a cata­ 2

lysts, t h e latter ( r e s i d u e s )

is t h o u g h t to f o r m t h e a c t i v e sites f o r c a r -

b o n i u m i o n a c t i v i t y (3,8,9).

T h e present results s h o w e d that t h e a c t i v i t y

c o r r e l a t e d w i t h t h e degree of d e c a t i o n a t i o n o r t h e C a catalyst.

2 +

content of t h e

M o r e o v e r , t h e a m o u n t of r e s i d u e r e t a i n e d b y t h e catalyst ( n o n -

exchangeable ) w a s a b o u t 2 orders of m a g n i t u d e s m a l l e r t h a n t h e n u m b e r of d e c a t i o n a t e d sites of t h e s a m p l e (12).

It seems p r o b a b l e ,

therefore,

that residues d o not p l a y a n i m p o r t a n t role i n t h e d e v e l o p m e n t of c a t a l y t i c a c t i v i t y of these materials i n t h e presence of H 0 ; h o w e v e r , residues m a y 2

s u p p l y t h e necessary protons f o r c a t a l y t i c a c t i v i t y i n its absence.

Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

352 MOLECULAR SIEVE ZEOLITES II

Acknowledgment This w o r k was sponsored b y the G u l f Research & Development C o . as p a r t of t h e r e s e a r c h p r o g r a m of t h e F e l l o w s h i p o n P e t r o l e u m . O n e o f us ( E A L ) is i n d e b t e d to t h e O r g a n i z a t i o n of A m e r i c a n States f o r t h e a w a r d of a F e l l o w s h i p .

Downloaded by CHINESE UNIV OF HONG KONG on November 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch066

Literature Cited (1) Bartley, B. H., Habgood, H. W., George, Ζ. M.,J.Phys. Chem. 1968, 72, 1689. (2) Christner, L. G., Liengme, Β. V., Hall, W. K., Trans. Faraday Soc. 1968, 64, 1679. (3) Clark, Α., Proc. Intern. Congr. Catalysis, 4th, 1968, Paper No. 75. (4) Eberly, P. E.,J.Phys. Chem. 1968, 72, 1042. (5) Frilette, V. J., Munns, G. W.,J.Catalysis 1965, 4, 504. (6) Gourisetti, B., Cosyns, J., Leprince, P., Bull. Soc. Chim. France 1966, 3, 1085. (7) Habgood, H. W., George, Ζ. M., "London Conference on Molecular Sieves," 1968, 130. (8) Hightower, J. W., Hall, W. K., Chem. Eng. Progr. Symp. Ser. 1967, 63 (73), 122. (9) Hightower, J. W., Hall, W. K.,J.Am. Chem. Soc. 1967, 89, 778. (10) Lombardo, Ε. Α., Hall, W. K., A.I.Ch.E. J., in press. (11) Lombardo, Ε. Α., Hall, W. K., in preparation. (12) Lombardo, Ε. Α., Sill, G. Α., Hall, W. K., in preparation. (13) Matsumato, H., Yasul, K., Morita, Y.,J.Catalysis 1968, 12, 84. (14) Olson, D. H., J. Phys. Chem. 1968, 72, 1400. (15) Pickert, P. E„ Rabo, J. Α., Dempsey, E., Schomaker, V., Proc. Intern. Congr. Catalysis, 3rd, 1965, 1, 714. (16) Richardson, J. T.,J.Catalysis 1967, 9, 182. (17) Topchieva, K. F., Romanovski, Β. V., Piguzova, L. I., Thoang,H.,Bizreh, Y. W., Proc. Intern. Congr. Catalysis, 4th, 1968, Paper No. 57. (18) Uytterhoeven, J. B., Schoonheydt, R. S., Liengme, Β. V., Hall, W. K., J. Catalysis 1969, 13, 425. (19) Ward, J.,J.Catalysis 1968, 11, 238. (20) Ibid., 1968, 10, 34. (21) Ward, J.,J.Phys. Chem. 1968, 72, 1042. (22) Ibid., 1968, 72, 4211. (23) Watanake, I., Habgood, H. H.,J.Phys. Chem. 1968, 72, 3066. RECEIVED January 12, 1970.

Discussion Gourisetti Balamalliah ( I n d i a n Institute of P e t r o l e u m , D e h r a d u m , I n d i a ) : I w o u l d l i k e to d r a w t h e authors' attention to t h e f a c t t h a t t h e r e l a t i o n s h i p b e t w e e n t h e n u m b e r of w a t e r m o l e c u l e s a n d t h e n u m b e r of c a l c i u m ions f o r m a x i m u m c a t a l y t i c a c t i v i t y of C a X a n d C a Y m o l e c u l a r

Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

66.

LOMBARDO E T A L .

Acidity

in Sodium-Ύ

sieves i n the d e h y d r a t i o n o f tert-butyl setti et al,

Compt.

Rend.

Zeolites

353

a l c o h o l w a s first r e p o r t e d b y G o u r i ­

1 9 6 4 , 258 ( 1 8 ) , 4 5 4 7 - 9 . I t w a s o b t a i n e d b y

d r a w i n g tangents to rate curves as s h o w n i n the present p a p e r . E . L o m b a r d o : W e r e p o r t e d i n o u r p a p e r u n d e r R e f . 6 a later w o r k of G o u r i s e t t i , B . , et ai. t h a t i n c l u d e s t h e d a t a g i v e n i n t h e short c o m m u ­

Downloaded by CHINESE UNIV OF HONG KONG on November 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch066

n i c a t i o n r e f e r r e d to b y G o u r i s e t t i .

Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.