20 Molybdoenzymes: The Role of Electrons, Protons, and Dihydrogen
E D W A R D I. S T I E F E L , W I L L I A M E . N E W T O N , G E R A L D K. L A M O N T H A D F I E L D , and W I L L I A M A. B U L E N
D. W A T T ,
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
1
Charles F . Kettering Research Laboratory, Yellow Springs, Ohio 45387
The biochemistry of molybdenum enzymes and the coordi nation chemistry of molybdenum are each discussed as background for understanding the role of molybdenum in enzymes. Electron transfer pathways and spectroscopic data implicate the molybdenum site in substrate reactions. For xanthine oxidase there is evidence for involvement of proton transfer in substrate oxidation. For nitrogenase, data on dihydrogen inhibition of nitrogen fixation and HD formation (under dideuterium and dinitrogen) can be inter preted in terms of a bound diimide-level intermediate. Sev eral mechanistic schemes are possible for ATP utilization, dihydrogen evolution, and substrate reduction by nitrogen ase. For other molybdoenzymes, oxo transfer and coupled proton-electron transfer processes are alternative mechanis tic possibilities. Molybdenum may be uniquely suited for its biochemical role.
Molybdenum
is t h e o n l y element of t h e s e c o n d t r a n s i t i o n r o w k n o w n
to h a v e a n a t u r a l b i o l o g i c a l f u n c t i o n . I t is also c o n s i d e r a b l y less a b u n d a n t i n t h e earth's crust t h a n t h e first t r a n s i t i o n - r o w elements w h i c h p l a y k e y b i o l o g i c a l r o l e s — i r o n , cobalt, c o p p e r , a n d m a n g a n e s e .
The
r e l a t i v e s c a r c i t y of m o l y b d e n u m , c o u p l e d w i t h t h e great i m p o r t a n c e of the b i o l o g i c a l processes f o r w h i c h i t is essential, has l e d to c o n s i d e r a t i o n of t h e p o t e n t i a l i n s i g h t w h i c h this m a y g i v e c o n c e r n i n g t h e o r i g i n of l i f e o n e a r t h . I n p a r t i c u l a r , C r i c k a n d O r g e l ( 1 ) h a v e s u g g e s t e d that t h e u s e of m o l y b d e n u m b y terrestrial m i c r o o r g a n i s m s m a y ( w e a k l y ) s u p p o r t a 1
Deceased 353
354
BIOINORGANIC C H E M I S T R Y
d i r e c t e d p a n s p e r m i a h y p o t h e s i s f o r t h e o r i g i n of l i f e o n e a r t h .
II
This
h y p o t h e s i s c l a i m s that l i f e d i d n o t s p o n t a n e o u s l y o r i g i n a t e o n e a r t h b u t r a t h e r was sent to e a r t h f r o m s o m e w h e r e else i n the u n i v e r s e . C r i c k a n d O r g e l r e a s o n e d that i f l i f e o r i g i n a t e d o n e a r t h , i t is u n l i k e l y t h a t a n elem e n t as rare as m o l y b d e n u m w o u l d h a v e b e e n c h o s e n f o r s u c h a n i m p o r tant task as n i t r o g e n
fixation.
O n the other h a n d , i f l i f e o r i g i n a t e d else-
w h e r e , w h e r e m o l y b d e n u m w a s a b u n d a n t , t h e n the use of this e l e m e n t w o u l d not b e at a l l u n u s u a l . Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
These interesting arguments can be faulted on two grounds.
First,
w h i l e m o l y b d e n u m is i n d e e d r e l a t i v e l y r a r e i n the earth's c r u s t or i n the e a r t h as a w h o l e , this is not the case i n seawater (2,3,4). ing
to
recent
estimates, the
c o m p a r a b l e w i t h (2,3)
concentration
of
I n fact, a c c o r d -
molybdenum
is e i t h e r
o r p e r h a p s s l i g h t l y exceeds ( 4 ) that of m a n g a n e s e ,
i r o n , a n d c o p p e r . W h i l e this s i t u a t i o n m a y result f r o m the p r e s e n c e of l i f e a n d / o r f r o m a n o x i d i z i n g a t m o s p h e r e of m o r e recent o r i g i n ( 5 ) , at the v e r y least i t opens the p o s s i b i l i t y t h a t m o l y b d e n u m m a y h a v e b e e n r e a s o n a b l y a b u n d a n t i n the a n c i e n t waters w h e r e l i f e s u p p o s e d l y arose. A s e c o n d a r g u m e n t against the extraterrestrial o r i g i n of l i f e w o u l d b e v a l i d if m o l y b d e n u m w e r e the o n l y a v a i l a b l e m e t a l w h i c h , w h e n i n c o r p o r a t e d i n t o a p r o t e i n s y s t e m , c o u l d c a t a l y z e c e r t a i n reactions. If this w e r e the case, t h e n e v e n i f m o l y b d e n u m w e r e r e l a t i v e l y r a r e , i t w o u l d b e w o r t h t h e effort for the m i c r o o r g a n i s m s to extract i t f r o m the e n v i r o n m e n t .
The
o r g a n i s m s w h i c h l e a r n e d h o w to use m o l y b d e n u m ( f o r e x a m p l e , to fix n i t r o g e n ) w o u l d t h e n h a v e a n e v o l u t i o n a r y a d v a n t a g e o v e r organisms w h i c h d i d not. T h e selective s u r v i v a l of the m o l y b d e n u m - u s i n g ( n i t r o g e n fixing)
species w o u l d ensure the c o n t i n u e d use of m o l y b d e n u m b y f u t u r e
generations. T h e q u e s t i o n t h e n arises as to w h a t c h e m i c a l features of m o l y b d e n u m m a k e i t u n i q u e l y s u i t a b l e for t h e b i o l o g i c a l reactions i n w h i c h i t p a r t i c i pates. I n this c h a p t e r w e first discuss s o m e of the i n f o r m a t i o n g a i n e d f r o m b i o l o g i c a l studies of m o l y b d e n u m e n z y m e s p a y i n g p a r t i c u l a r a t t e n t i o n to n i t r o g e n a s e a n d to x a n t h i n e oxidase. F o r nitrogenase, w e focus o n t h e relationship between dihydrogen, dinitrogen, a n d the enzyme w h e r e there is e v i d e n c e for s e q u e n t i a l t w o - e l e c t r o n - t w o - p r o t o n processes i n the p r o d u c t i o n of a m m o n i a f r o m d i n i t r o g e n .
F o r x a n t h i n e oxidase, w e
sum-
m a r i z e the d a t a w h i c h i m p l i c a t e p r o t o n transfer ( i n a d d i t i o n to e l e c t r o n t r a n s f e r ) as a feature of the m o l y b d e n u m site. S o m e of o u r recent results a n d some trends i n m o l y b d e n u m c o o r d i n a t i o n c h e m i s t r y h e l p to d e t e r m i n e r e a s o n a b l e p o s s i b i l i t i e s for the a c t i o n of m o l y b d e n u m i n these systems.
F i n a l l y , some of t h e m e c h a n i s t i c p r o p o s a l s are c o n s i d e r e d
and
e v a l u a t e d i n terms of the most recent results f r o m b i o l o g i c a l a n d i n o r g a n i c systems.
20.
STIEFEL E T A L .
Molybdoenzymes:
355
Molybdoenzymes
Occurrence
and Biological
Importance
N i t r o g e n a s e is t h e e n z y m e w h i c h catalyzes t h e r e d u c -
Nitrogenase.
t i o n of d i n i t r o g e n to a m m o n i a . T h e process of b i o l o g i c a l n i t r o g e n
fixation
is r e s p o n s i b l e f o r m o s t of t h e fixed n i t r o g e n i n p u t i n t o t h e b i o s p h e r e , o u t w e i g h i n g t h e e n o r m o u s a m o u n t of d i n i t r o g e n that is fixed ( c o n v e r t e d to a m m o n i a ) b y t h e H a b e r process (6).
T h e contrast b e t w e e n t h e H a b e r
process a n d t h e b i o l o g i c a l process is s t a r t l i n g . T h e f o r m e r r e q u i r e s h i g h
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
t e m p e r a t u r e , h i g h pressure,
a n d dihydrogen
as a feedstock f o r b o t h
energy a n d r e d u c i n g p o w e r ( 7 ) . T h e latter process w o r k s ( o f t e n i n a i r i n vitro) under ambient conditions a t m of d i n i t r o g e n )
(i.e., r o o m t e m p e r a t u r e a n d at 0.8
a n d uses ( u l t i m a t e l y ) solar energy as i n p u t e i t h e r
d i r e c t l y , o r i n d i r e c t l y t h r o u g h t h e c a r b o h y d r a t e s w h i c h are p r o d u c e d b y photosynthesis.
T h u s , t h e o v e r a l l b i o l o g i c a l process m a k e s u s e of r e a d i l y
a v a i l a b l e a i r , w a t e r , a n d s u n l i g h t to effect t h e d e s i r e d t r a n s f o r m a t i o n . T h e a b i l i t y to fix n i t r o g e n is e x c l u s i v e l y a p r o p e r t y o f p r o k a r y o t i c organisms—bacteria
a n d blue-green
algae
(8, 9 ) .
T h e nitrogen-fixing
b a c t e r i a i n c l u d e b o t h f r e e - l i v i n g species a n d those w h i c h l i v e s y m b i otically w i t h higher plants. strict aerobes
(such
( s u c h as Klebsiella
pneumonae),
vinelandii),
f a c u l t a t i v e anaerobes
a n d strict anaerobes ( s u c h as Clostri-
A d d i t i o n a l l y , some p h o t o s y n t h e t i c b a t c t e r i a (e.g.,
dium pasteurianum). Rhodospirullum
A m o n g t h e free l i v i n g species there are
as Azotobacter
rubrum
a n d Chromatium)
are k n o w n to fix n i t r o g e n .
T h e most p r o m i n e n t of t h e s y m b i o t i c fixing species are m e m b e r s of t h e genus Rhizobium w h i c h fix n i t r o g e n w h e n l i v i n g as b a c t e r o i d s i n t h e r o o t n o d u l e s of l e g u m i n o u s p l a n t s ( s o y b e a n s , peas, a l f a l f a ) . R e c e n t l y , some species of r h i z o b i a h a v e b e e n i n d u c e d to fix n i t r o g e n i n a f r e e - l i v i n g state (10-15),
s h o w i n g c o n c l u s i v e l y that t h e genes f o r n i t r o g e n
fixation
are
i n t h e m i c r o o r g a n i s m s a n d n o t i n t h e p l a n t . T h e r a t h e r stringent c o n d i tions r e q u i r e d to observe t h e n i t r o g e n fixation b y f r e e - l i v i n g r h i z o b i a i n c u l t u r e suggests that a d d i t i o n a l organisms m a y b e f o u n d to fix n i t r o g e n under more precisely controlled conditions. nitrogen filamentous
fixation
A m o n g t h e b l u e - g r e e n algae,
occurs i n both unicellular (such
( s u c h as Anabaena)
both photosynthetic
as Gleocapsa)
and
species ( 9 ) . T h e b l u e - g r e e n algae a r e
a n d n i t r o g e n - f i x i n g a n d are thus r e m a r k a b l y
self-
sufficient organisms. Nitrogenase
has b e e n successfully
isolated from
several bacterial
species (8) a n d seems to b e r e m a r k a b l y s i m i l a r i n a l l cases. T o date, n o p u r e p r e p a r a t i o n s of nitrogenase
have been obtained from
blue-green
algae ( 9 ) . Nitrate Reductase.
N i t r a t e r e d u c t a s e is f o u n d w i d e l y d i s t r i b u t e d
a m o n g p l a n t s a n d m i c r o o r g a n i s m s a n d catalyzes t h e r e d u c t i o n of N 0 " 3
to N 0 " (16,17,18,19). 2
T h e p h y s i o l o g i c a l r o l e of this e n z y m e d e p e n d s
356
BIOINORGANIC C H E M I S T R Y
o n the o r g a n i s m .
II
O f t e n t h e e n z y m e n i t r i t e reductase, w h i c h catalyzes
the r e d u c t i o n of N 0 " to N H , is f o u n d i n a d d i t i o n to the n i t r a t e r e d u c t a s e . 2
3
I n this case, n i t r a t e reductase p l a y s a n a s s i m i l a t o r y r o l e , b e i n g r e s p o n s i b l e for the first step i n the c o n v e r s i o n of N 0 " to N H . I n other o r g a n i s m s , 3
3
the n i t r a t e serves as the t e r m i n a l e l e c t r o n a c c e p t o r i n a n e l e c t r o n t r a n s p o r t system, s i m i l a r to 0
2
or S 0 ~ , a n d the n i t r a t e reductase p l a y s a r e s p i r a t o r y 4
2
or d i s s i m i l a t o r y r o l e . U n l i k e t h e nitrogenases, w h i c h d o n o t v a r y m u c h i n c o m p o s i t i o n
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
a n d p h y s i c a l p r o p e r t i e s w i t h the source, n i t r a t e reductases
vary
con-
s i d e r a b l y f r o m one o r g a n i s m to the next. T h e o n l y feature w h i c h t h e y a l l seem to h a v e i n c o m m o n is a n absolute r e q u i r e m e n t f o r the p r e s e n c e of molybdenum. Xanthine Dehydrogenase.
T h i s e n z y m e catalyzes the o x i d a t i o n of
x a n t h i n e to u r i c a c i d a n d is f o u n d i n v a r i o u s m i c r o o r g a n i s m s ( i n c l u d i n g b a c t e r i a a n d f u n g i ) a n d a n i m a l s ( i n c l u d i n g insects, fish, b i r d s , a n d m a m m a l s ) (19, 20,21).
I n some b a c t e r i a a n d f u n g i , x a n t h i n e c a n serve as t h e
sole n i t r o g e n source. C o u p l i n g this fact w i t h t h e presence of m o l y b d e n u m i n nitrogenase a n d n i t r a t e r e d u c t a s e , w e find that i n e a c h case a m o l y b denum enzyme
p l a y s a r o l e i n n i t r o g e n a s s i m i l a t i o n a n d i s , i n fact,
r e s p o n s i b l e for t h e first step i n this process.
M o l y b d e n u m appears
p l a y a role i n the m e t a b o l i s m of n i t r o g e n s i m i l a r to t h a t p l a y e d by
to first
t r a n s i t i o n - r o w elements ( i r o n , m a n g a n e s e , a n d c o p p e r ) i n the m e t a b o l i s m of o x y g e n . T h i s e n z y m e is v e r y closely r e l a t e d to t h e x a n -
Xanthine Oxidase.
t h i n e d e h y d r o g e n a s e systems (19, 20, 21),
a n d i n some cases, t h e oxidase
a n d d e h y d r o g e n a s e are i n t e r c o n v e r t i b l e forms of the same e n z y m e
(22).
X a n t h i n e oxidase is f o u n d i n a v a r i e t y of m a m m a l i a n systems i n c l u d i n g m a n . I n most organisms, the o x i d a t i o n of x a n t h i n e to u r i c a c i d is f o l l o w e d b y f u r t h e r d e g r a d a t i o n of the u r i c a c i d . H o w e v e r , i n m a n a n d some other p r i m a t e s , u r i c a c i d is the t e r m i n a l species i n p u r i n e c a t a b o l i s m a n d is e x c r e t e d t h r o u g h the k i d n e y s . E x c e s s a c c u m u l a t i o n of u r i c a c i d leads to t h e s y n d r o m e c a l l e d gout. N o w a d a y s , gout is often t r e a t e d w i t h i n h i b i t o r s of x a n t h i n e oxidase, a n d the n a t u r e of these i n h i b i t o r s a n d t h e i r r e a c t i o n w i t h x a n t h i n e oxidase e n z y m e (23,
has g i v e n i n s i g h t i n t o t h e f u n c t i o n i n g of
the
24).
Aldehyde Oxidase.
T h i s e n z y m e is u s u a l l y f o u n d i n s i m i l a r l o c a -
tions to x a n t h i n e oxidase or d e h y d r o g e n a s e insects, b i r d s , a n d m a m m a l s (20, 21).
a n d has b e e n i s o l a t e d f r o m
A l d e h y d e oxidase seems to b e a
p o o r c h o i c e of n a m e for this e n z y m e because, w h i l e it o x i d i z e s a l d e h y d e s to c a r b o x y l i c a c i d s , i t also accepts a v a r i e t y of p u r i n e s a n d p y r i m i d i n e s as o x i d i z a b l e substrates.
F o r e x a m p l e , a l d e h y d e oxidase catalyzes the
c o n v e r s i o n of 2 - h y d r o x y p y r i m i d i n e to u r a c i l a n d of a d e n i n e to 8 - h y d r o x y a d e n i n e (25).
It appears that x a n t h i n e oxidase a n d a l d e h y d e oxidase are
20.
STiEFEL
357
Molybdoenzymes
ETAL.
a set o f p u r i n e a n d p y r i m i d i n e h y d r o x y l a s e s w i t h a r a t h e r b r o a d r a n g e of substrate specificity. Sulfite Oxidase.
This enzyme, isolated from bovine
( 2 6 , 27) a n d
c h i c k e n fiver (28), catalyzes t h e o x i d a t i o n o f sulfite t o sulfate. T h i s i s p o s s i b l y a c r u c i a l f u n c t i o n i n a n i m a l s as S 0 ~ ( o r S 0 , i t s gaseous p r e 3
c u r s o r ) i s toxic w h i l e S 0
4
2
2
2
" is r e l a t i v e l y i n n o c u o u s . F o r e x a m p l e , o n e o f
t h e first signs o f m o l y b d e n u m d e f i c i e n c y i n rats is a g r e a t l y i n c r e a s e d susceptibility to S 0 poisoning ( 2 8 ) . I n addition, a h u m a n child b o r n 2
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
w i t h o u t sulfite oxidase a c t i v i t y d i d n o t s u r v i v e f o r v e r y l o n g ( 2 9 ) . O t h e r E n z y m e s . M o l y b d e n u m has b e e n suggested as a c o m p o n e n t of a n e n z y m e possessing C 0
2
reductase or formate dehydrogenase activity
I n t h e latter case, t h e u n i q u e o b s e r v a t i o n h a s b e e n
(30,31,32).
made
t h a t t u n g s t e n c a n substitute f o r m o l y b d e n u m w h i l e m a i n t a i n i n g a c t i v i t y (33).
This enzyme
NADPH
is also p o s t u l a t e d t o c o n t a i n s e l e n i u m (32). A
dehydrogenase
from
a mitochondrial fraction m a y contain
m o l y b d e n u m b a s e d u p o n t h e o b s e r v a t i o n of a M o ( V ) E P R s i g n a l (34). A u t h e n t i c a t i o n o f these
findings
m a y l e n g t h e n t h e list o f m o l y b d e n u m
enzymes. The Molybdenum Cofactor.
B a s e d o n genetic evidence, C o v e a n d
P a t e m a n ( 3 5 ) suggested t h a t x a n t h i n e d e h y d r o g e n a s e a n d n i t r a t e r e d u c -
Cyt+
Cyt*
3
2
NADPH
FAD-*-Cyt -*b
NADP
"Mo
cofactor"
Figure 1. Nitrate reductase from Neurospora crassa —composition and presumed electron transfer sequence (16, 18) tase o f t h e f u n g u s Aspergillus
nidulans h a v e a c o m m o n
molybdenum-
c o n t a i n i n g u n i t . T h e w o r k of N a s o n a n d c o - w o r k e r s w i t h t h e nit-1 m u t a n t of Neurospora
crassa also p o i n t s t o a " m o l y b d e n u m c o f a c t o r " c o m m o n t o
a l l m o l y b d e n u m - c o n t a i n i n g e n z y m e s (36, 37, 38). T h e Neurospora n i t r a t e r e d u c t a s e , as s h o w n s c h e m a t i c a l l y i n F i g u r e 1, catalyzes t h e r e d u c t i o n of N 0 " b y N A D P H 3
a n d contains F A D a n d a b - t y p e c y t o c h r o m e i n
a d d i t i o n t o m o l y b d e n u m . T h e f u l l e n z y m e also has N A D P H : c y t o c h r o m e c r e d u c t a s e a c t i v i t y . T h e nit-1 m u t a n t p r o d u c e s a n e n z y m e t h a t c a n n o t
358
BIOINORGANIC C H E M I S T R Y
reduce activity.
N 0 " b u t s t i l l possesses the N A D P H : c y t o c h r o m e c 3
II
reductase
S i g n i f i c a n t l y , the f u l l e n z y m e a c t i v i t y t o w a r d s n i t r a t e (as w e l l
as other properties of the e n z y m e ) c a n b e r e s t o r e d b y t r e a t m e n t of nit-1 extracts w i t h the n e u t r a l i z e d , a c i d - h y d r o l y s i s p r o d u c t of a n y of the a b o v e m e n t i o n e d m o l y b d e n u m e n z y m e s . T h e s e e n z y m e s donate a m o l y b d e n u m c o n t a i n i n g g r o u p (38)
w h i c h leads to the i n v i t r o a s s e m b l y of the i n t a c t
a n d a c t i v e n i t r a t e reductase. S i m p l e m o l y b d e n u m complexes are u n a b l e to activate the nit-1 extracts n o r are n e u t r a l i z e d a c i d - h y d r o l y s i s p r o d u c t s
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
of n o n - m o l y b d e n u m e n z y m e s . T h e d o n a t e d m o l y b d e n u m - c o n t a i n i n g f a c tor c a n arise f r o m e n z y m e s i s o l a t e d f r o m m a m m a l s o r b a c t e r i a . I n studies u s i n g b a c t e r i a l extracts, the f a c t o r w a s
d i a l y z a b l e (39)
p r e s u m e d to b e a l o w m o l e c u l a r w e i g h t m o l y b d e n u m
a n d is t h u s
compound.
R u s s i a n w o r k e r s c l a i m to h a v e i s o l a t e d l o w m o l e c u l a r w e i g h t m o l y b d e n u m - c o n t a i n i n g p e p t i d e s f r o m nitrogenase a n d x a n t h i n e oxidase w h i c h are a c t i v e i n the r e c o n s t i t u t i o n of the nit-1 m u t a n t (40, 41).
Zumft
(42)
also c l a i m s to h a v e s e p a r a t e d t w o l o w m o l e c u l a r w e i g h t m o l y b d e n u m c o n t a i n i n g fractions f r o m nitrogenase w h i c h also s h o w r e c o n s t i t u t i n g activity.
U n f o r t u n a t e l y , at present, the d e t a i l e d n a t u r e of the m o l y b -
d e n u m - c o n t a i n i n g fractions is v i r t u a l l y u n k n o w n , a l t h o u g h t h e R u s s i a n w o r k e r s c l a i m t h a t i t is ( a t least p r e d o m i n a n t l y ) a s m a l l p e p t i d e . theless, the m e r e existence of a c o m m o n cofactor i n d i c a t e s a s t r u c t u r a l feature i n a l l m o l y b d o e n z y m e s
None-
common
a n d opens the p o s s i b i l i t y t h a t
t h e m o l y b d e n u m sites i n t h e v a r i o u s e n z y m e s operate i n a m e c h a n i s t i c a l l y similar manner. R e c e n t l y , B r i l l a n d c o - w o r k e r s (43,44) h a v e i s o l a t e d m u t a n t strains of Azotobacter ponent.
vinelandii
This component
w h i c h produce a n inactive nitrogenase can be
reactivated b y
treatment w i t h
comthe
n e u t r a l i z e d a c i d - h y d r o l y s i s p r o d u c t s of other nitrogenases ( w h i c h t h e m selves b e c o m e i n a c t i v e o n s u c h a t r e a t m e n t ) b u t n o t a p p a r e n t l y w i t h any
other m o l y b d e n u m e n z y m e s .
T h i s m a y e i t h e r reflect a
difference
b e t w e e n the c o f a c t o r i n nitrogenase a n d other m o l y b d e n u m e n z y m e s or m a y b e c a u s e d b y the r e c o n s t i t u t i o n c o n d i t i o n s u s e d w h i c h m a y n o t h a v e been
sufficiently v a r i e d to a l l o w f o r different m o l y b d e n u m
oxidation
states to b e a t t a i n e d . I n a n y event, the c h e m i c a l c h a r a c t e r i z a t i o n a n d a u t h e n t i c a t i o n of t h e m o l y b d e n u m c o f a c t o r s h o u l d r e v e a l s o m e of the i n t i m a t e details of the m o l y b d e n u m site. Biochemistry
of
Nitrogenase
General Considerations.
T h e nitrogenase enzyme
consists of
separately isolable proteins—the m o l y b d e n u m - i r o n protein I, F r a c t i o n I, molybdoferredoxin)
two
(Component
a n d the i r o n p r o t e i n ( C o m p o n e n t I I ,
F r a c t i o n I I , a z o f e r r e d o x i n ). T h e m o s t recent w o r k o n nitrogenase c o m -
20.
STiEFEL
359
Molybdoenzymes
ET AL.
ponents f r o m a v a r i e t y of organisms indicates great s i m i l a r i t y i n m o l e c u l a r w e i g h t , n u m b e r of s u b u n i t s , a n d m o l y b d e n u m , i r o n a n d i n o r g a n i c sulfide contents.
F o r Azotobacter vinelandii, the o r g a n i s m f o r w h i c h w e present
o u r e x p e r i m e n t a l results, the m o l y b d e n u m - i r o n p r o t e i n has a m o l e c u l a r w e i g h t of 226,000, f o u r s u b u n i t s , t w o m o l y b d e n u m , r o u g h l y 24 i r o n , a n d 22 l a b i l e sulfide ions p e r m o l e c u l e ( 4 5 ) . T h e i r o n p r o t e i n has a m o l e c u l a r w e i g h t of a r o u n d 65,000 w i t h f o u r i r o n a n d f o u r l a b i l e sulfide ions p e r m o l e . W i t h Azotobacter vinehndii
( a n d to date o n l y for this o r g a n i s m ) ,
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
it is possible to isolate a 1:1 c o m p l e x of the i r o n a n d m o l y b d e n u m - i r o n p r o t e i n s b y a v o i d i n g t h e use of D E A E c e l l u l o s e d u r i n g t h e p r e p a r a t i o n . T h i s nitrogenase
complex
studies d i s c u s s e d b e l o w .
has b e e n
e x c l u s i v e l y u s e d f o r the r e a c t i o n
Its p r e p a r a t i o n has b e e n d e s c r i b e d i n d e t a i l
elsewhere (46, 4 7 ) . A n i n p u t - o u t p u t scheme f o r nitrogenase is s h o w n i n F i g u r e 2.
The
m a t e r i a l i n the b o x represents the c a t a l y t i c e n t i t i e s — t h e i r o n p r o t e i n , the m o l y b d e n u m - i r o n p r o t e i n , a n d M g
Figure 2.
2 +
ions. I n p u t consists of a r e d u c -
Nitrogenase—input-output diagram (7, 8, 9, 52)
i n g agent, A T P , a n d a source of protons ( H 0 ) . 2
b e f e r r e d o x i n or nite ( S 0 2
4
2
flavodoxin
T h e r e d u c i n g agent c a n
i n v i v o , b u t i n assay systems i n v i t r o , d i t h i o -
" ) i n v a r i a b l y serves this f u n c t i o n , b e i n g o x i d i z e d i n the process
b y t w o electrons to S 0 " . 3
2
T h e A T P is h y d r o l y z e d d u r i n g nitrogenase
t u r n o v e r to A D P a n d P j . U n d e r o p t i m a l ( i n v i t r o ) c o n d i t i o n s , 4 - 5
moles
of A T P are h y d r o l y z e d p e r m o l e of e l e c t r o n p a i r s p a s s i n g t h r o u g h t h e enzyme
(48).
A n u n u s u a l feature of nitrogenase w h i c h c o n t r i b u t e s to
t h e d i f f i c u l t y i n its s t u d y is t h e f a c t that i t does not r e q u i r e a r e d u c i b l e substrate. I n the absence of r e d u c i b l e substrate ( v i d e i n f r a ) , t h e e n z y m e system turns over a n d evolves d i h y d r o g e n v i a t h e s o - c a l l e d " A T P - d e p e n d ent h y d r o g e n
e v o l u t i o n " r e a c t i o n w h i c h r e q u i r e s the same i n p u t s as
n i t r o g e n fixation ( 4 9 ) .
T h u s , nitrogenase is n o t e a s i l y s t u d i e d i n a f u l l y
360
BIOINORGANIC C H E M I S T R Y
II
r e d u c e d state b e c a u s e this state w i l l g i v e r i s e t o d i h y d r o g e n e v o l u t i o n . P e r h a p s i n t h e f u t u r e , r a p i d d e t e c t i o n t e c h n i q u e s w i l l a l l o w some g l i m p s e of this k e y state. T h e o u t p u t for nitrogenase consists o f d i h y d r o g e n a n d ( as a p p r o p r i a t e ) r e d u c e d substrate. T h e presence o f r e d u c i b l e substrates c u r t a i l s the d i h y d r o g e n e v o l u t i o n r e a c t i o n ( a l t h o u g h often not c o m p l e t e l y )
(50,51,
52, 53 ) a n d d i v e r t s electrons f r o m d i h y d r o g e n p r o d u c t i o n t o substrate reduction.
T h e n a t u r a l substrate i s d i n i t r o g e n w h i c h undergoes
a six-
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
e l e c t r o n r e d u c t i o n t o a m m o n i a . O t h e r substrates h a v e also b e e n f o u n d , a n d t h e i r reactions are l i s t e d i n T a b l e I . T h e r e d u c i b l e substrates (52, 53)
i n c l u d e m o l e c u l e s w i t h t r i p l e b o n d s (acetylenes, n i t r i l e s , i s o n i t r i l e s ,
and
cyanide)
or reactive double
nitrous oxide, aliène).
( o r potentially triple) bonds
(azide,
S i g n i f i c a n t l y , t h e acetylenes are r e d u c e d b y a
t w o - e l e c t r o n process t o ethylenes ( w i t h n o trace o f e t h a n e ) .
If D 0 2
replaces H 0 as the p r o t o n source, t h e n d i d e u t e r i u m is e v o l v e d , N D is 2
3
f o r m e d f r o m d i n i t r o g e n , a n d acetylene dideuteroethylene
is r e d u c e d
e x c l u s i v e l y t o cis-
(54).
Table I.
Substrate N
2
N H 2
4
Half-Reactions
+6H
+
+ 6e--*2NH
3
+2H
+
+ 2e"->2NH
3
H C N + 6 H + 6e"
CH + N H
+
N 0
+2H
+
HN
+2H
+
2
3
RNC
f o r Nitrogenase
4
3
+ 2e--*N + H 0 2
+ 2e--+N
+ 6 H + 6e"
2
+ N H
2
3
RNH
2
+ CH
4
R C N + 6 H + 6e" -> R C H
3
+ N H
3
+
+
C H 2
2
+2H 2H
+
+
+
2e-^C H
+ 2e - ^ H
2
Mg ->
4
2
2 +
[ATP + H 0 2
A D P + Pi] 2nd International Conference on Chemistry and Uses of Molybdenum
Dihydrogen Reactions of Nitrogenase.
O n e o f the p u z z l e s w h i c h
n i t r o g e n a s e has p r e s e n t e d lies i n its reactions i n v o l v i n g d i h y d r o g e n . I n e a r l y studies, d i h y d r o g e n w a s c o n s i d e r e d a r e d u c i n g agent for d i n i t r o g e n , a n d t h e nitrogenase e n z y m e w a s t h o u g h t t o c a t a l y z e the H a b e r process r e a c t i o n ( R e a c t i o n 1 ) . F o r e x a m p l e , c r u d e cell-free extracts o f 3H
2
+ N
2
-» 2NH
3
Clostri(1)
20.
STIEFEL E T A L .
361
Molybdoenzymes
c o u l d i n d e e d use d i h y d r o g e n as t h e r e d u c t a n t f o r
dium pasteurianum
d i n i t r o g e n ( 5 5 ) . H o w e v e r , i t is n o w clear that this process d e p e n d s u p o n the presence of t h e e n z y m e h y d r o g e n a s e H
2
+ 2Fd
o x
->2H
+
( 5 6 ) w h i c h catalyzes R e a c t i o n + 2Fd
(2)
r e d
2. H e r e , d i h y d r o g e n reduces o x i d i z e d f e r r e d o x i n ( F d ) o x
to F d
r e d
which
c a n t h e n serve as t h e e l e c t r o n d o n o r f o r t h e n i t r o g e n a s e - c a t a l y z e d r e d u c -
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
t i o n of d i n i t r o g e n to a m m o n i a ( F i g u r e 2 ). T h u s , R e a c t i o n 1 is c a t a l y z e d only w h e n hydrogenase,
nitrogenase, a n d f e r r e d o x i n a r e present a n d
r e q u i r e s A T P h y d r o l y s i s as a c o - r e a c t i o n . W h e n p u r i f i e d nitrogenase is i n c u b a t e d u n d e r d i n i t r o g e n a n d d i hydrogen, the dihydrogen surprisingly inhibits nitrogen
fixation
( 57, 58,
59, 60 ). K i n e t i c studies seem to d i s p l a y a c o m p e t i t i v e i n h i b i t i o n p a t t e r n , a l t h o u g h m o r e d e t a i l e d studies i n progress i n o u r l a b o r a t o r y i n d i c a t e that t r u e c o m p e t i t i v e i n h i b i t i o n is n o t present h e r e (57, 58, 59, 60). the appearance
of H D i n t h e gas
phase w h e n nitrogenase t u r n s over i n t h e presence
A r e l a t e d o b s e r v a t i o n concerns
of d i n i t r o g e n a n d
dideuterium i n H
2
0 (58, 59, 60). L i k e w i s e , nitrogenase t u r n o v e r i n D
2
0
w i t h d i h y d r o g e n a n d d i n i t r o g e n i n t h e gas phase causes H D f o r m a t i o n . T h i s process has u n i f o r m l y b e e n c a l l e d " H D e x c h a n g e " a l t h o u g h there is n o e v i d e n c e f o r t h e f o r m a t i o n of H D O i n t h e aqueous phase ( 5 8 , 5 9 , 61 ). T h e f o r m a t i o n of H D a b s o l u t e l y d e p e n d s o n the presence of d i n i t r o gen, w i t h l o w levels of d i n i t r o g e n sufficing to g i v e m o d e r a t e amounts of H D . I t w o u l d a p p e a r f r o m the k i n e t i c d a t a (58, 59, 60) that d i n i t r o g e n i s , i n a sense, a catalyst f o r t h e H D f o r m a t i o n r e a c t i o n . N o o t h e r substrate leads to H D f o r m a t i o n n o r does H D f o r m a t i o n o c c u r i n t h e absence of r e d u c i b l e substrates. Electron Balance Studies on the Dihydrogen Reactions of N i t r o genase. A c o n t i n u i n g project at t h e K e t t e r i n g L a b o r a t o r y is t h e d e t a i l e d analysis of t h e i n p u t s a n d t h e outputs f o r nitrogenase.
A remarkable
o b s e r v a t i o n a b o u t nitrogenase is that its t u r n o v e r rate is i n d e p e n d e n t of the d e t a i l e d n a t u r e of t h e o u t p u t of t h e e n z y m e
( 5 0 ) . A s discussed
a b o v e , electrons m o v i n g t h r o u g h nitrogenase c a n cause d i h y d r o g e n e v o l u tion,
acetylene
reduction, nitrogen
fixation,
or, d e p e n d i n g
upon the
c o n d i t i o n s , v a r i o u s c o m b i n a t i o n s of these a c t i v i t i e s . H o w e v e r , t h e u t i l i z a t i o n rate of S 0 ~ ( r e d u c t a n t ) a n d t h e h y d r o l y s i s rate of A T P a r e e a c h 2
4
2
t o t a l l y i n d e p e n d e n t of t h e d i s t r i b u t i o n of electrons i n these
products.
F u r t h e r m o r e , e v e n i n a d i h y d r o g e n - i n h i b i t e d n i t r o g e n - f i x i n g system, t h e t u r n o v e r rate ( a s m e a s u r e d b y S 0 " o r A T P u t i l i z a t i o n ) is unaffected. 2
4
2
T h e s e d a t a s t r o n g l y suggest t h a t the r a t e - d e t e r m i n i n g step f o r nitrogenase t u r n o v e r occurs p r i o r to substrate r e d u c t i o n . D i h y d r o g e n i n h i b i t i o n t h e r e fore affects t h e d i s t r i b u t i o n of p r o d u c t s b u t n o t t h e t u r n o v e r rate of t h e
362
BIOINORGANIC C H E M I S T R Y
enzyme.
II
I n order to p r o b e the n a t u r e of the d i h y d r o g e n i n h i b i t i o n r e a c -
t i o n , c a r e f u l e l e c t r o n b a l a n c e studies h a v e b e e n p e r f o r m e d o n the n i t r o genase c o m p l e x
f r o m A.
T h e p r e l i m i n a r y results of
vinefondii.
studies h a v e b e e n b r i e f l y d i s c u s s e d (46, 47, 58, 59),
such
a n d the e x p e r i m e n t a l
details a n d b u l k of the d a t a w i l l a p p e a r elsewhere
(60).
T h e e x p e r i m e n t a l d e s i g n is s i m p l e . A g i v e n s a m p l e of
nitrogenase
e q u i p p e d w i t h a n A T P - g e n e r a t i n g system, M g , a n d r e d u c t a n t is a l l o w e d 2 +
to t u r n over w i t h o u t substrate (case I ) , a n d the d i h y d r o g e n p r o d u c t i o n is
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
monitored.
T h e a m o u n t of d i h y d r o g e n p r o d u c e d is f o u n d to b e e q u a l
( w i t h i n e x p e r i m e n t a l e r r o r ) to the d i t h i o n i t e o x i d i z e d ( 5 0 ) .
Therefore,
the e l e c t r o n b a l a n c e e q u a t i o n is : 2[H ]=2[S 0 2
2
4
2
"]
(3)
w h e r e the b r a c k e t s enclose the v a r y i n g n u m b e r of moles of i n d i c a t e d p r o d u c t f o r m e d or r e d u c t a n t o x i d i z e d p e r u n i t t i m e . U s i n g the same nitrogenase p r e p a r a t i o n , d i n i t r o g e n is a d d e d to the r e a c t i o n flask, a n d d i h y d r o g e n e v o l u t i o n a n d a m m o n i a p r o d u c t i o n m e a s u r e d i n the same r e a c t i o n vessel. U n d e r these c i r c u m s t a n c e s
are
(case
2 ) , the e l e c t r o n b a l a n c e E q u a t i o n 4 o b t a i n s : (4)
3[NH ] + 2[H ] = 2[S 0 1 3
2
2
4
2
T h i s is i n f u l l agreement w i t h the n e e d for six electrons to r e d u c e
each
d i n i t r o g e n , i.e., three p e r a m m o n i a f o r m e d . I n case 3, a g a i n w i t h the same p r e p a r a t i o n , a g i v e n a m o u n t
of
d i h y d r o g e n is i n t r o d u c e d i n t o the r e a c t i o n flask i n a d d i t i o n to the d i n i t r o g e n . W h e n d i h y d r o g e n is present, the e q u a t i o n for e l e c t r o n b a l a n c e r e m a i n s the same as a b o v e [ E q u a t i o n 4 ] . H o w e v e r , at the same d i n i t r o g e n l e v e l , less a m m o n i a a n d m o r e d i h y d r o g e n are p r o d u c e d p e r u n i t t i m e c o m p a r e d w i t h case 2 above. C a s e 3 is, of course, the d i h y d r o g e n i n h i b i t i o n r e a c t i o n , a n d as expected, it is f o u n d to shift electrons f r o m a m m o n i a to the f o r m a t i o n of d i h y d r o g e n . T h e c l u e to w h a t is h a p p e n i n g comes i n case 4, w h e n the r e a c t i o n is a n a l y z e d at a l e v e l of d i d e u t e r i u m e q u a l to that of d i h y d r o g e n u s e d i n case 3. H e r e , the H D , d i h y d r o g e n , a n d a m m o n i a p r o d u c e d are m e a s u r e d i n the flask. It is f o u n d that t h e a m m o n i a l e v e l i n case 4 is the same as i n case 3. T h u s , as expected, d i d e u t e r i u m a n d d i h y d r o g e n are e q u i v a l e n t i n t h e i r a b i l i t y to i n h i b i t r e d u c t i o n ( a m m o n i a f o r m a t i o n ) .
However,
d i h y d r o g e n p r o d u c e d is f o u n d to b e the same as i n case 2, w h e n
the no
d i h y d r o g e n or d i d e u t e r i u m is present. T h u s , the presence of d i d e u t e r i u m a n d b y i n f e r e n c e d i h y d r o g e n does not effect the A T P - d e p e n d e n t d i h y d r o g e n e v o l u t i o n r e a c t i o n , a n d o n l y d i n i t r o g e n r e d u c t i o n is effected.
How-
20.
STIEFEL
ET AL.
363
Molybdoenzymes
ever, for case 4, w e find t h a t E q u a t i o n 4 does n o t b a l a n c e .
However,
E q u a t i o n 5 does b a l a n c e , m e a n i n g that one e l e c t r o n is r e q u i r e d for t h e 3[NH ] + 2[H ] + 3
2
1[HD] -
2[S 0 "] 2
4
(5)
2
f o r m a t i o n of e a c h m o l e c u l e of H D . O v e r a w i d e r a n g e of d i d e u t e r i u m a n d d i n i t r o g e n pressures, e l e c t r o n b a l a n c e c a n b e a c h i e v e d o n l y b y a d d i n g this t e r m i n H D .
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
I n s u m m a r y , the k e y e x p e r i m e n t a l findings a r e : 1. N i t r o g e n a s e t u r n o v e r rate ( e l e c t r o n flow) is i n d e p e n d e n t of r e d u c i b l e substrate, e l e c t r o n d i s t r i b u t i o n a m o n g a m i x t u r e of substrates, or the p r e s e n c e of d i h y d r o g e n . 2. O n l y d i n i t r o g e n r e d u c t i o n is i n h i b i t e d b y d i h y d r o g e n or d i d e u terium. 3. I n the presence of d i d e u t e r i u m a n d d i n i t r o g e n , H D is p r o d u c e d i n a r e a c t i o n w h i c h uses one e l e c t r o n to f o r m e a c h H D . 4. D e u t e r i u m does not affect d i h y d r o g e n e v o l u t i o n i n either t h e p r e s e n c e or absence of d i n i t r o g e n . T h e s e results t a k e n together suggest s t r o n g l y that d i h y d r o g e n a n d d i d e u t e r i u m d i v e r t electrons f r o m d i n i t r o g e n r e d u c t i o n , w h i c h i n t h e f o r m e r case leads to d i h y d r o g e n p r o d u c t i o n , b u t i n the latter case leads to H D f o r m a t i o n .
T h u s , i t appears that the d i h y d r o g e n i n h i b i t i o n
of
d i n i t r o g e n r e d u c t i o n a n d the d i n i t r o g e n - d e p e n d e n t H D f o r m a t i o n r e a c tions of nitrogenase are manifestations of the same p h e n o m e n o n . finding
This
is i n t e r p r e t e d o n a m o l e c u l a r l e v e l i n the f o l l o w i n g section.
Intermediates in the Fixation of Dinitrogen.
T h e r e are s t i l l
no
s p e c t r o s c o p i c a l l y d e t e c t e d i n t e r m e d i a t e s i n the r e d u c t i o n of d i n i t r o g e n to ammonia. nitrogenase
W e b e l i e v e , h o w e v e r , that the e l e c t r o n b a l a n c e studies w i t h under
dinitrogen/dihydrogen
and
dinitrogen/dideuterium
atmospheres p o i n t to the existence of s u c h i n t e r m e d i a t e s . T h e s t o i c h i o m e t r y for the H D f o r m a t i o n r e a c t i o n as d e t e r m i n e d e x p e r i m e n t a l l y is s h o w n i n R e a c t i o n 6.
A t first glance, this resembles 2H
+
+ 2e" +
D
2
the substrate
-> 2 H D
( T a b l e I ) , a n d at one t i m e i t w a s t h o u g h t (62)
reactions (6)
that d i d e u t e r i u m w a s i n
fact a nitrogenase substrate. H o w e v e r , the k e y fact r e m a i n s that d i n i t r o g e n , at least i n c a t a l y t i c a m o u n t s , is r e q u i r e d for H D f o r m a t i o n a n d t h a t i n the process, the r e d u c t i o n of d i n i t r o g e n to a m m o n i a is i n h i b i t e d ( 5 7 61, 63).
T o e x p l a i n these features, w e suggest that a t w o - e l e c t r o n r e d u c -
t i o n p r o d u c t of d i n i t r o g e n is r e a c t i v e t o w a r d s d i h y d r o g e n or d i d e u t e r i u m . I n a n a l o g y to the r e d u c t i o n of acetylene i n D 0 to d s - C H D , this p r o d 2
2
2
2
u c t is p o s t u l a t e d to b e a b o u n d c i s - d i i m i d e species ( 4 5 ) . A s s h o w n i n F i g u r e 3, t h e first step i n d i n i t r o g e n r e d u c t i o n c o u l d i n v o l v e b i n d i n g of d i n i t r o g e n to the e n z y m e , w i t h the m o d e of b i n d i n g
364
BIOINORGANIC CHEMISTRY
left u n s p e c i f i e d .
II
I n a n a l o g y to the r e d u c t i o n of acetylene to e t h y l e n e ,
r e d u c t i o n b y t w o electrons a n d t w o protons is p o s t u l a t e d to p r o d u c e bound
d s - d i i m i d e species
w i t h somewhat
exposed
N - H bonds.
a
The
b o u n d d i i m i d e c o u l d t h e n react w i t h d i h y d r o g e n i n a six-center r e a c t i o n to r e f o r m d i n i t r o g e n ( b o u n d or u n b o u n d ) dihydrogen molecule.
a n d generate a n a d d i t i o n a l
T h e r e a c t i o n , as expressed i n R e a c t i o n 7, is effec-
E-N H 2
2
+ H
2
-» Ε + N
2
+ 2H
t i v e l y the d e c o m p o s i t i o n of b o u n d d i i m i d e to its elements. Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
(7)
2
T h i s process
is e x o t h e r m i c for free d i i m i d e b y r o u g h l y 35 k c a l / m o l e . T h e r e a c t i o n of dihydrogen with d s - N H 2
is a l l o w e d b y o r b i t a l s y m m e t r y considerations.
2
T h e r e g e n e r a t i o n of d i n i t r o g e n is significant i n t w o respects.
First, it
shows that d i n i t r o g e n is n o t r e d u c e d to a m m o n i a , a n d so a m m o n i a p r o d u c t i o n is i n h i b i t e d .
S e c o n d , i t means that d i n i t r o g e n is effectively
a
catalyst i n the p r o d u c t i o n of d i h y d r o g e n b y a route w h i c h is not i d e n t i c a l to the s i m p l e A T P - d e p e n d e n t d i h y d r o g e n e v o l u t i o n r e a c t i o n .
Figure 3.
Nitrogenase—scheme of H and HD production reactions
inhibition
2
T h e r e a c t i o n w i t h d i d e u t e r i u m is s h o w n i n the l o w e r p a r t of F i g u r e 3. H e r e , the i n h i b i t i o n of n i t r o g e n fixation leads to the p r o d u c t i o n of
HD
a c c o r d i n g to R e a c t i o n s 8 a n d 9. C l e a r l y , the o v e r a l l process agrees p r e E-N
E-N H 2
+ 2e" + 2 H -> E - N H +
2
2
+
D
2
Ε +
2
N
2
2
+ 2HD
c i s e l y w i t h t h e e l e c t r o n b a l a n c e studies w h i c h i m p l i c a t e t w o p e r p a i r of H D m o l e c u l e s f o r m e d .
(8) (9) electrons
T h u s , the m e c h a n i s m i n v o l v e s t h e
20.
STiEFEL E T AL.
365
Molybdoenzymes
d i v e r s i o n of electrons f r o m N H 2
to d i h y d r o g e n or H D i n agreement w i t h
2
experiment. T h e p o s t u l a t i o n of the N H - l e v e l i n t e r m e d i a t e c l e a r l y i m p l i e s that 2
2
nitrogenase f u n c t i o n s i n a stepwise m a n n e r , w i t h h y d r a z i n e
therefore
i m p l i c a t e d as t h e s e c o n d e n z y m e - b o u n d i n t e r m e d i a t e . T h e q u e s t i o n t h e n arises as to w h e t h e r h y d r a z i n e is a r e d u c i b l e substrate f o r nitrogenase. A t p H 7.2-7.4, t h e n o r m a l
Reduction of Hydrazine by Nitrogenase. assay c o n d i t i o n s , nitrogenase
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
at o n l y a v e r y s l o w rate.
c a n c a t a l y z e t h e r e d u c t i o n of h y d r a z i n e
H o w e v e r , at these p H v a l u e s , h y d r a z i n e is
present l a r g e l y as t h e h y d r a z i n i u m i o n , N H 2
+
5
, a n d i t is possible t h a t this
c a t i o n i c species cannot serve as a substrate. T o test this i d e a , t h e p H of t h e s o l u t i o n was r a i s e d i n steps to p H 8 w h e r e t h e e n z y m e r e m a i n s a c t i v e , and
s u b s t a n t i a l amounts of n e u t r a l N H 2
4
are present.
T h e production
of a m m o n i a closely p a r a l l e l e d t h e increase i n p H . A t p H 8, h y d r a z i n e is r e d u c e d at ~ 2 0 % of t h e rate of d i h y d r o g e n e v o l u t i o n . I n a l l respects, the r e d u c t i o n of h y d r a z i n e b e h a v e s l i k e that of other substrates, w i t h A T P and S 0 2
4
2
" b e i n g r e q u i r e d a n d d i h y d r o g e n e v o l u t i o n b e i n g decreased b y
an a m o u n t c o m m e n s u r a t e w i t h t h e a m o u n t of h y d r a z i n e r e d u c e d ( 4 5 ) . T h u s , h y d r a z i n e is r e d u c i b l e b y nitrogenase, a n d a l t h o u g h there is s t i l l n o d i r e c t e v i d e n c e , this result establishes t h e p o t e n t i a l of a b o u n d h y d r a z i n e i n t e r m e d i a t e i n t h e o v e r a l l process of d i n i t r o g e n r e d u c t i o n . F i n a l l y , t h e h y d r a z i n e r e d u c t i o n r e a c t i o n is unaffected
b y either
d i h y d r o g e n or d i d e u t e r i u m , i.e., u n d e r either, there is n o i n h i b i t i o n of a m m o n i a f o r m a t i o n , a n d u n d e r d i d e u t e r i u m , there is n o H D p r o d u c t i o n . A s s u m i n g that b o u n d h y d r a z i n e reacts i n t h e same m a n n e r as a d d e d h y d r a z i n e , t h e n t h e d i h y d r o g e n a n d d i d e u t e r i u m effects m u s t o c c u r p r i o r to t h e f o r m a t i o n of b o u n d h y d r a z i n e , a n d a g a i n a d i i m i d e - l e v e l species is i m p l i c a t e d . In
short, t h e e l e c t r o n
balance
strongly implicate b o u n d N H 2
of d i n i t r o g e n b y nitrogenase.
2
and hydrazine reduction
and bound N H 2
4
studies
i n the catalytic reduction
I n this respect, t h e k e y site of nitrogenase
is s h o w n to b e a t w o - e l e c t r o n t w o - p r o t o n reagent. A s e l a b o r a t e d b e l o w , this
finding
points to a p o s s i b l y greater s i m i l a r i t y b e t w e e n
nitrogenase
a n d other m o l y b d e n u m enzymes t h a n m i g h t b e o t h e r w i s e t h o u g h t . Biochemistry
of Xanthine
Oxidase and Other Molybdenum
General Considerations.
Much
Oxidases
e x p e r i m e n t a l i n f o r m a t i o n is a v a i l -
a b l e c o n c e r n i n g t h e r o l e of m o l y b d e n u m i n x a n t h i n e oxidase ( 1 9 , 2 0 ) . I n early w o r k ( p r i o r to 1 9 7 0 ) , there w a s m u c h c o n f u s i o n i n t h e l i t e r a t u r e b e c a u s e of t h e presence of v a r i o u s i n a c t i v e forms of t h e e n z y m e .
I t is
n o w k n o w n that b o t h d e m o l y b d o a n d desulfo forms of x a n t h i n e oxidase w e r e present i n most e a r l y p r e p a r a t i o n s a n d r e m a i n present i n m a n y c u r r e n t p r e p a r a t i o n s as w e l l ( 2 0 , 6 4 ) .
366
BIOINORGANIC
CHEMISTRY
II
A m a j o r a d v a n c e i n t h e e l i m i n a t i o n o f c a t a l y t i c site i n h o m o g e n e i t y i n n e w p r e p a r a t i o n s c a m e w i t h t h e d e v e l o p m e n t of a n affinity c h r o m a t o g r a p h i c m e t h o d ( 6 5 ) for p u r i f y i n g t h e e n z y m e .
T h i s m e t h o d m a d e use
of t h e k n o w n h i g h affinity of x a n t h i n e oxidase f o r a l l o x a n t h i n e w h e n t h e e n z y m e is i n a f u l l y r e d u c e d state. B y a t t a c h i n g a l l o x a n t h i n e to a p o l y m e r i c m a t r i x , a selective a b s o r p t i o n of active e n z y m e w a s a c h i e v e d . Evidence Concerning the Molybdenum Site.
Despite
considerable
debate, there is at present a g o o d d e a l of a g r e e m e n t as to t h e o v e r a l l
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
m o d e of f u n c t i o n i n g of x a n t h i n e oxidase (20, 65-70). EPR
spectroscopic
properties
Furthermore, the
i n d i c a t e that t h e m o l y b d e n u m
a l d e h y d e oxidase a n d ( t o a s o m e w h a t lesser extent)
sites i n
sulfite oxidase a r e
v e r y s i m i l a r i n n a t u r e to t h a t i n x a n t h i n e oxidase. S e v e r a l lines of e v i d e n c e i n d i c a t e that t h e m o l y b d e n u m oxidases u s e m o l y b d e n u m i n t h e o x i d a t i o n states V I , V , a n d I V . I n t h e o x i d i z e d ( o r resting i n oxygen)
e n z y m e , there is g e n e r a l l y n o E P R s i g n a l .
Upon
r e d u c t i o n w i t h less t h a n s t o i c h i o m e t r i c amounts of substrate ( o r r e d u c t a n t ) , a M o ( V ) E P R s i g n a l appears w h i c h disappears r e d u c t a n t is a d d e d
(20).
when
A reasonable i n t e r p r e t a t i o n i n v o k e s
further Mo(VI)
as b e i n g present i n t h e r e s t i n g oxidase a n d M o ( V ) as a n i n t e r m e d i a t e state i n t h e r e d u c t i o n process.
A s e c o n d l i n e of e v i d e n c e f o r M o ( V I )
concerns t h e w e l l k n o w n a n t a g o n i s m w h i c h t u n g s t e n d i s p l a y s f o r m o l y b d e n u m i n a v a r i e t y of systems. W 0
4
2
" , w h e n u s e d i n p l a c e of M o 0
i n c u l t u r e m e d i a , p l a n t f o o d , o r a n i m a l f e e d , causes either a d e m o l y b d o e n z y m e
4
2
~
the formation of
or a t u n g s t e n - s u b s t i t u t e d p r o t e i n
(71,72).
I n sulfite oxidase, t h e t u n g s t e n - s u b s t i t u t e d p r o t e i n has b e e n c h a r a c t e r i z e d (72).
I t t o t a l l y lacks e n z y m a t i c a c t i v i t y a n d , i n v i e w of t h e greater
difficulty i n r e d u c i n g W ( V I ) c o m p a r e d w i t h M o ( V I ) , u n d o u b t e d l y c o n tains W ( V I ) .
T h e t u n g s t e n p r o t e i n is i m m u n o l o g i c a l l y i d e n t i c a l to its
m o l y b d e n u m a n a l o g . Substrate ( S 0 sten to a n E P R - a c t i v e state b u t S 0 2
3
4
2
2
" ) cannot s i g n i f i c a n t l y r e d u c e t u n g " ( a more powerful reductant) can
p r o d u c e a f u l l y E P R - a c t i v e W ( V ) state. S i g n i f i c a n t l y , t h e W ( V ) E P R s i g n a l w i l l n o t d i s a p p e a r w h e n excess r e d u c t a n t is present. T h e i n a b i l i t y to a c h i e v e t h e ( I V ) state m a y b e r e s p o n s i b l e f o r t h e i n a b i l i t y of t h e t u n g s t e n - p r o t e i n to t u r n over c a t a l y t i c a l l y , w h i c h i n t u r n i m p l i c a t e s a M o ( I V ) state i n t h e c a t a l y t i c c y c l e . T h e r e is, h o w e v e r , m o r e d i r e c t e v i d e n c e f o r t h e presence of M o ( I V ) i n t h e c y c l e of x a n t h i n e oxidase. m e n t s of M a s s e y a n d c o - w o r k e r s
T h i s e v i d e n c e comes f r o m t h e e x p e r i (24) w h o u s e d a l l o x a n t h i n e ( l ) t o
t r a p t h e e n z y m e i n its r e d u c e d state. A s t r o n g c o m p l e x is f o r m e d b e t w e e n t h e r e d u c e d e n z y m e a n d a l l o x a n t h i n e , a n d excess a l l o x a n t h i n e a n d r e d u c tant c a n be removed.
T h e e n z y m e is t h e n r e o x i d i z e d w i t h F e ( C N )
6
3
",
a n d t w o electrons p e r m o l y b d e n u m center a r e f o u n d after t h e electrons r e q u i r e d f o r t h e r e o x i d a t i o n o f t h e i r o n - s u l f u r a n d flavin g r o u p i n g s are
20.
STIEFEL
E T
a c c o u n t e d for.
Molybdoenzymes
AL.
367
If the o x i d i z e d m o l y b d e n u m state is M o ( V I ) , t h e n M o
( I V ) is i m p l i c a t e d as the r e d u c e d state. A n a d d i t i o n a l c r u c i a l p i e c e of i n f o r m a t i o n emerges f r o m t h e a l l o x a n t h i n e s t u d y (24).
T h u s , i t w a s s h o w n t h a t one a l l o x a n t h i n e b i n d s to the
e n z y m e p e r a c t i v e m o l y b d e n u m site. T h i s result c l e a r l y i m p l i e s t h a t the m o l y b d e n u m site is m o n o n u c l e a r . I f a d i n u c l e a r site w e r e i n v o l v e d , t h e n it w o u l d b e u n l i k e l y to r e q u i r e t w o a l l o x a n t h i n e m o l e c u l e s for i n h i b i t i o n a n d w o u l d b e e x p e c t e d to b e at least p a r t i a l l y i n h i b i t e d w i t h one a l l o x a n -
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
thine/two molybdenum.
A l s o , a difference i n b i n d i n g constant w o u l d
b e e x p e c t e d for the s e c o n d c o m p a r e d w i t h the first b o u n d a l l o x a n t h i n e , b u t n o n e is f o u n d .
T h i s result, c o u p l e d w i t h the l a c k of e v i d e n c e
for
M o ( V ) - M o ( V ) s p i n - s p i n i n t e r a c t i o n s i n the E P R s p e c t r a , c l e a r l y i m p l i cates
a mononuclear
site, a n d it w o u l d seem
that xanthine
oxidase
possesses t w o f u l l c a t a l y t i c u n i t s , e a c h c o n t a i n i n g one m o l y b d e n u m , one flavin, a n d two F e S 2
2
u n i t s (20).
O t h e r m o l y b d e n u m oxidases also c o n -
t a i n p a i r e d p r o s t h e t i c groups a n d s u b u n i t s , a n d i t is l i k e l y t h a t t h e y each have two catalytic units per molecule.
(1)
(2)
E l e c t r o n s p i n resonance s p e c t r o s c o p y has g i v e n t r e m e n d o u s i n s i g h t i n t o t h e n a t u r e of the o v e r a l l x a n t h i n e oxidase reactions as w e l l as i n t o t h e n a t u r e a n d f u n c t i o n of the m o l y b d e n u m site (19, 20).
During turn-
over, t h e E P R s i g n a l f r o m a single M o ( V ) g r o u p appears i n the s p e c t r a of a l l m o l y b d e n u m oxidases. T h e g a n d A values i m p l i c a t e at least one s u l f u r a t o m i n the m o l y b d e n u m c o o r d i n a t i o n sphere, (73, 74)
but until more
definitive m o d e l s b e c o m e a v a i l a b l e , t h e d e t a i l e d n a t u r e of the site m u s t remain obscure.
O n e v e r y i m p o r t a n t feature of the M o ( V ) E P R s i g n a l
f r o m t h e oxidases is t h e n e a r - i s o t r o p i c p r o t o n s u p e r h y p e r f i n e s p l i t t i n g of 1 0 - 1 4 gauss. T h e p r o t o n r e s p o n s i b l e f o r this s p l i t t i n g is e x c h a n g e a b l e as e v i d e n c e d b y t h e r a p i d c o l l a p s e of t h e s p l i t t i n g w h e n D 0 2
H 0 as t h e solvent. T h e p r o t o n has a n a p p a r e n t p K 2
a
replaces
of ~ 8 i n x a n t h i n e
oxidase. F o r sulfite oxidase, w h e r e the E P R s p e c t r a are r e l a t i v e l y s i m p l e , a c l e a r t i t r a t i o n c u r v e is seen w i t h a p K of 8.2. F i n a l l y , B r a y a n d K n o w l e s a
(75)
were able to demonstrate using 8-deuteroxanthine
(2)
that the
BIOINORGANIC
368
CHEMISTRY
II
p r o t o n r e s p o n s i b l e f o r t h e h y p e r f i n e s p l i t t i n g originates i n the 8 - p o s i t i o n of the substrate x a n t h i n e . T h i s p r o t o n seems to b e t r a n s f e r r e d to t h e e n z y m e i n c o n j u n c t i o n w i t h the t w o - e l e c t r o n transfer process.
I n v i e w of the p r o m i n e n c e of t h e
p r o t o n , its p o s s i b l e l o c a t i o n o n the e n z y m e is of c o n s i d e r a b l e i m p o r t a n c e . T h e fact t h a t its s p l i t t i n g of the m o l y b d e n u m s i g n a l is n e a r l y i s o t r o p i c suggests that i t is u n l i k e l y to b e a m o l y b d e n u m h y d r i d e .
Nevertheless,
this p o s s i b i l i t y has not b e e n
as n o t e d
t o t a l l y r u l e d out because,
by
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
E d m o n d s o n et a l . ( 7 6 ) , i t is p o s s i b l e t h a t this i s o t r o p y is a p p a r e n t a n d not real.
I f the c o m p o n e n t s
of the h y p e r f i n e c o u p l i n g tensor differ i n
s i g n a n d i f t h e i s o t r o p i c s p l i t t i n g is exactly h a l f the a n i s o t r o p i c s p l i t t i n g , the a p p a r e n t i s o t r o p y w o u l d b e e x p l a i n e d .
O n the other h a n d , p r o t o n s
o n p r o t e i n atoms d i r e c t l y b o u n d to m o l y b d e n u m m a y b e r e s p o n s i b l e for the observed
s p l i t t i n g , a n d i n v i e w of m e c h a n i s t i c considerations
recent w o r k o n i n o r g a n i c systems c o n s i d e r e d b e l o w ,
this seems
and most
reasonable.
Electron
Transfer
and Substrate Half-Re actions
E a c h of the m o l y b d e n u m e n z y m e s is a c o m p l e x e n t i t y c o n t a i n i n g m o l y b d e n u m a n d other r e d o x - a c t i v e p r o s t h e t i c groups. are d e s i g n e d
to c a t a l y z e r e d o x
These
enzymes
reactions b y p r o v i d i n g a l o w
p a t h w a y for electrons to transfer f r o m r e d u c t a n t to o x i d a n t .
energy I n most
cases, a n d c e r t a i n l y i n the p h y s i o l o g i c a l r e a c t i o n , the electrons enter a n d leave t h e e n z y m e at different sites. I n the s i m p l e r cases l i k e sulfite o x i dase, a definite s e q u e n c e of e l e c t r o n transfer w i t h i n t h e p r o t e i n c a n formulated.
be
H o w e v e r , m o r e s o p h i s t i c a t e d treatments for the other p r o -
teins r e v e a l that the e l e c t r o n carriers w i t h i n the p r o t e i n a c h i e v e a d i s t r i b u t i o n of
electron occupancy
depending
u p o n their inherent potentials
a n d the t o t a l e l e c t r o n i c c h a r g e of the e n z y m e (69).
T h e inherent redox
p o t e n t i a l of a g i v e n g r o u p m a y b e c h a n g e d b y the presence of substrate or p r e s u m a b l y b y a c o n f o r m a t i o n a l c h a n g e i n the p r o t e i n . T h e q u e s t i o n w h i c h concerns us here is t h e i n t e r a c t i o n of the m o l y b d e n u m site w i t h t h e e x t e r n a l m e d i u m . A l t h o u g h the q u e s t i o n has n o t b e e n a n s w e r e d to t o t a l satisfaction i n a l l cases, i t seems c l e a r t h a t f o r the
molybdenum
oxidases, the m o l y b d e n u m site of the e n z y m e is the one w h i c h interacts w i t h the o x i d i z a b l e substrate. I n contrast, i n the m o l y b d e n u m
reductases
( a l t h o u g h here the e v i d e n c e is not s t r o n g ) , the m o l y b d e n u m site interacts w i t h the r e d u c i b l e substrate. I n e i t h e r event, the m o l y b d e n u m site i n t e r acts w i t h the n a m e d substrate for the r e a c t i o n a n d e i t h e r accepts or donates electrons.
I n a sense, the s i n g l e site of the e n z y m e is l i k e t h e
electrode of a n e l e c t r o c h e m i c a l c e l l w h i c h ( w i t h respect to the m e d i u m ) carries out a c h e m i c a l h a l f - r e a c t i o n . T h u s , to c o m p r e h e n d t h e r o l e w h i c h
20.
STiEFEL
369
Molybdoenzymes
ET AL.
m o l y b d e n u m p l a y s i n e n z y m e s , s c r u t i n y of t h e substrate h a l f - r e a c t i o n s is a p p r o p r i a t e . T h e substrate h a l f - r e a c t i o n s are d i s p l a y e d i n T a b l e s I a n d I I .
In
e a c h case, a t w o - e l e c t r o n process seems to b e i n v o l v e d . O n l y i n n i t r o genase are greater n u m b e r s of electrons t r a n s f e r r e d , a n d the d i s c u s s i o n e a r l i e r i n this p a p e r s u m m a r i z e s the e v i d e n c e t h a t these processes o c c u r i n t w o - e l e c t r o n steps. T h e t w o - e l e c t r o n r e a c t i o n of the m o l y b d e n u m site n e v e r appears to b e s i m p l y a n e l e c t r o n transfer r e a c t i o n . I n the case of
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
nitrogenase, e a c h substrate takes u p a n e q u a l ( o r g r e a t e r ) n u m b e r of protons to f o r m the p r o d u c t . I n t h e other m o l y b d e n u m e n z y m e s , p r o t o n transfer a n d a d d i t i o n or r e m o v a l of H 0 are also r e q u i r e d . I n e a c h case, 2
h o w e v e r , t h e r e is at least one p r o t o n t r a n s f e r r e d i n the same d i r e c t i o n as the p a i r of electrons.
These data, taken i n conjunction w i t h the E P R
e v i d e n c e for p r o t o n transfer f r o m the substrate to the a c t i v e site i n x a n t h i n e oxidase, suggest t h a t the m o l y b d e n u m site i n a l l the e n z y m e s Table II.
(74)
Substrate Half-Reactions for Molybdoenzymes
N i t r a t e reductase N 0 - + 2 H + 2e"
N0 " +
+
3
2
H 0 2
X a n t h i n e oxidase X a n t h i n e + H 0 - » uric acid + 2 H +
2e"
+
2
0
+
H 0 -> x a n t h i n e + 2 H + 2e~ +
2
H Hypoxanthine A l d e h y d e oxidase RCHO + H 0 2
N ^ N
+
RCOOH + 2H + +
2e"
+
H 0 2
HO
OH
HO'
Sulfite oxidase S0 " + H 0 3
2
2
S0
4
2
" + 2H + +
2e"
2H + +
2e"
370
BIOINORGANIC CHEMISTRY
II
is i n some w a y r e s p o n s i b l e for b o t h p r o t o n a n d e l e c t r o n transfer p r o c esses (66). Molybdenum
Coordination
Chemistry
C o m p a r e d w i t h o t h e r t r a n s i t i o n metals i n b i o l o g i c a l r e d o x systems, the o x i d a t i o n states l i k e l y to b e u s e d b y m o l y b d e n u m are v e r y h i g h
(74).
A s d i s c u s s e d p r e v i o u s l y , the I V , V , a n d V I states are a l i k e l y set of
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
p a r t i c i p a n t s i n m o l y b d e n u m oxidases, a n d w h i l e the I I a n d I I I states r e m a i n v i a b l e f o r m o l y b d e n u m reductases, i t nevertheless seems l i k e l y t h a t h i g h e r o x i d a t i o n states w i l l b e f o u n d i n these e n z y m e s
as w e l l .
I n d e e d , the s u b s t i t u t i o n of t u n g s t e n for m o l y b d e n u m i n b o t h n i t r a t e r e d u c t a s e a n d n i t r o g e n a s e i n d i c a t e s this l i k e l i h o o d as i t is m u c h m o r e difficult to o b t a i n the l o w e r o x i d a t i o n states of t u n g s t e n . W h e n w e e x a m i n e the o x i d a t i o n states of m o l y b d e n u m , there are s o m e k e y trends w h i c h b e c o m e a p p a r e n t (74).
F i r s t , the h i g h e r o x i d a -
t i o n states are a l w a y s f o u n d to b e c o o r d i n a t e d b y d e p r o t o n a t e d l i g a n d s . I n the most c o m m o n case, these l i g a n d s are w a t e r s , w h i c h w h e n f u l l y T h e compounds
of M o ( I V ) ,
M o ( V ) , a n d M o ( V I ) w i t h d i t h i o c a r b a m a t e s (74, 77, 78, 79)
d e p r o t o n a t e d , are d e s i g n a t e d oxo groups.
nicely illus-
trate the s t r u c t u r a l v a r i e t y as w e l l as the presence of oxo g r o u p s . T h u s t h e complexes
( 3 , 4 , 5 , 6) s h o w the p r e s e n c e of a s i n g l e oxo g r o u p i n t h e
< 7 ) - L
20.
STiEFEL
371
Molybdoenzymes
ET AL.
ΔΗ Values for Reactions of Dithiocarbamate Complexes of Molybdenum"
Table III.
Reaction Mo0 (dtc)
2
+ S0
Mo0 (dtc)
2
+ C H C H 0 - + MoO(dtc)
2
2
MoO(dtc)
MoO(dtc) a
3
2
- - * MoO(dtc)
+ S0
2
3
+ H 0 - » Mo0 (dtc)
2
3MoO(dtc) Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
ΔΗ
2
2
2
+ N
2
2
2
3
2
+ N0 "-> Mo0 (dtc) s
2
D a t a f r o m R e f . 87,
-28.5 ±
5.5
-32.0 ±
4.0
+ 3 0 . 1 db 4.2
2
+ 3 H 0 - * 3Mo0 (dtc) 2
"
+ CH C00H
2
+ H
2
4
+ 2NH
2
+51.7 ±
3
+ N0 "
2
(kcal/mol)
12.4
-4.4 ±
2
4.2
d e r i v e d f r o m e x p e r i m e n t a l v a l u e s i n 1,2-dichloroethane
at
25°C.
M o ( I V ) species (3) a n d t w o i n the M o ( V I ) species (6).
T h i s result suggests
the p o s s i b i l i t y of o x y g e n a t o m transfer reactions (80, 81) w i t h M o ( I V )
-
e x t r a c t i n g a n oxo f r o m a substrate (e.g., N 0 ~
[0]
3
> N 0 " ) or M o ( V I ) 2
[O]
d o n a t i n g a n oxo (e.g., S O 3 > S O 4 ). T h e n i t r a t e r e d u c t i o n serves as a d i s t i n c t m o d e l for n i t r a t e r e d u c t a s e , b u t M o ( I I ) ( 8 2 ) , M o ( I I I ) 2
(83), and M o ( V )
2
(84, 85, 86)
compounds
c a n also r e d u c e n i t r a t e to
n i t r i t e . So at present, s u c h m o d e l reactions offer no h e l p i n our d e l i b e r a tions a b o u t m o l y b d e n u m e n z y m e s . Recently,
thermodynamic
studies
have
been
c a r r i e d out
in
our
l a b o r a t o r y ( 8 7 ) to evaluate the p o s s i b l e p a r t i c i p a t i o n of these complexes i n m o d e l reactions.
T h e ΔΗ values for r e l e v a n t reactions are l i s t e d i n
Table III. The M o ( I V ) - M o ( V I )
couple w i t h dithiocarbamate ligands
w o u l d e x o t h e r m i c a l l y execute the S 0 conversions.
3
2
/S0
4
2
- or
CH CHO/CH COOH 3
3
O n the other h a n d , there is a h i g h l y e n d o t h e r m i c r e a c t i o n
w h e n the M o ( I V ) / M o ( V I )
c o u p l e is u s e d to effect the p r o d u c t i o n of
d i h y d r o g e n f r o m w a t e r or the p r o d u c t i o n of a m m o n i a f r o m d i n i t r o g e n . I n t h e case of the N 0 ~ / N 0 ~ c o n v e r s i o n , there is a v e r y s m a l l exother3
2
m i c i t y associated w i t h the r e a c t i o n . T h e s e results s h o w that the d i t h i o c a r b a m a t e complexes c o u l d b e u s e d to m o d e l the sulfite oxidase o r a l d e h y d e oxidase reactions b u t not the nitrogenase r e a c t i o n .
H o w e v e r , the
r e d o x p r o p e r t i e s of the M o ( I V ) / M o ( V I ) c o u p l e v a r y s u b s t a n t i a l l y w i t h l i g a n d ( 8 8 ) , a n d these results therefore d o not v i t i a t e the p o s s i b i l i t y of a n M o ( I V ) / M o ( V I ) c o u p l e b e i n g present i n n i t r o g e n a s e w i t h a different set of d o n o r atoms. A n o t h e r aspect of the d e p r o t o n a t e d ( a c i d i c ) l i g a n d effect manifests itself w h e n the oxo g r o u p s are r e m o v e d . tetradentate l i g a n d ( 7 )
F o r e x a m p l e , r e a c t i o n of the
with M o 0 ( C H 0 ) 2
5
7
2
2
gives a M o ( V I )
complex
of the f o r m M 0 O 0 L ( 8 9 ) , analogous to the d i t h i o c a r b a m a t e c o m p l e x of Mo (VI).
I n contrast, the r e a c t i o n of M o 0
4
2
" w i t h o-aminobenzenethiol
372
BIOINORGANIC C H E M I S T R Y
M0O4- + 3
|+2H
2
II
+
EtOH-H 0 2
HS
H N+
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
Mo|
(10)
4H 0 2
p r o c e e d s (67, 68, 89) a c c o r d i n g to R e a c t i o n 10. T h e p r o d u c t is f o r m a l l y a Mo (VI) amine.
c o m p l e x w h e r e i n the c o o r d i n a t e d l i g a n d is a
deprotonated
T h e f o r m a t i o n of this p r o d u c t is u n d e r s t o o d i n t h e l i g h t of t h e
p r e s e n c e of M o ( V I ) a n d its a c i d i t y - e n h a n c i n g p r o p e r t i e s (67, 68).
Thus,
w h e n the m o r e a c i d i c a q u o l i g a n d s ( oxos ) are r e m o v e d f r o m t h e c o o r d i n a t i o n sphere, the a c i d i t y manifests itself i n t h e i o n i z a t i o n of a c o o r d i n a t e d a m i n e l i g a n d w h i c h o r d i n a r i l y w o u l d n o t b e c o n s i d e r e d as a p o t e n t i a l l y i o n i z a b l e g r o u p i n g . T h e r e are n u m e r o u s examples i n c o o r d i n a t i o n c h e m i s t r y w h i c h s h o w t h e effect of o x i d a t i o n n u m b e r o n l i g a n d a c i d i t y . C o n s i d e r a t i o n of a l a r g e n u m b e r of examples ( 9 0 )
reveals that the p K
of a
a
c o o r d i n a t e d l i g a n d a t o m decreases b y a b o u t 6 - 1 0 u n i t s p e r u n i t c h a n g e i n the o x i d a t i o n n u m b e r of the m e t a l a t o m . T h i s effect is i l l u s t r a t e d i n m o l y b d e n u m c h e m i s t r y b y the a q u o ions (74).
In M o ( V I )
chemistry
i n s t r o n g a c i d solutions, t h e p r i n c i p a l species is t h o u g h t to b e (H 0) ] 2
4
present.
2 +
[Mo0 2
w h i l e for M o ( I I I ) i n a c i d s o l u t i o n , the i o n [ M o ( H 0 ) ] 2
S i m i l a r l y , for M o ( I I I ) , the species
6
3 +
[Mo( ( N H ) C H ) ] 2
2
6
4
3
3 +
is is
f o r m e d i n contrast to the r e s u l t f o r M o ( V I ) d i s c u s s e d a b o v e w h e r e t h e c o m p a r a b l e species M o ( N H S C H ) 6
4
3
w a s f o u n d . T h e results f r o m c o o r d i -
n a t i o n c h e m i s t r y i l l u s t r a t e t h a t l i g a n d s c o o r d i n a t e d to m o l y b d e n u m c a n e n g a g e i n p r o t o n transfer reactions w h i c h , t h r o u g h t h e effect of o x i d a t i o n state o n p K , c a n b e c o u p l e d to e l e c t r o n transfer reactions. a
HS
20.
STiEFEL
ET AL.
Molybdoenzymes
373
R e c e n t e l e c t r o n s p i n resonance studies i n o u r l a b o r a t o r y a d d w e i g h t to the n o t i o n that protons o n c o o r d i n a t e d n i t r o g e n p a r t i c i p a t e i n c a t a l y t i c steps.
R e a c t i o n 11 w a s d i s c o v e r e d
Mo(S CNEt2)(NHSC6H )2. 2
4
(91), l e a d i n g t o t h e i s o l a t i o n o f
The monomeric
Mo(V)
complex
formed
d i s p l a y s s u p e r h y p e r f i n e s p l i t t i n g ( 9 2 ) f r o m t w o e q u i v a l e n t n i t r o g e n atoms as w e l l as t w o e q u i v a l e n t h y d r o g e n atoms as i l l u s t r a t e d i n F i g u r e 4. T h e c o u p l i n g constants w h i c h h a v e b e e n c o n f i r m e d b y p r e p a r a t i o n o f t h e N-CH
3
a n d N - D complexes are A
N
= 2.4 a n d A
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
p r e p a r a t i o n o f the N - d e u t e r o c o m p l e x
H
= 7.4 gauss. T h e f a c i l e
f r o m its N - p r o t e o
analog and
C H O D attests t o t h e e x c h a n g e a b i l i t y o f t h e p r o t o n i n q u e s t i o n . 3
s i g n a l , w i t h its r e l a t i v e l y l a r g e v a l u e o f A the possibility of N - H groups enzymes.
W h i l e these
H
N
being coordinated
compounds
This
a n d l o w v a l u e for A , reaffirms to molybdenum i n
d o n o t represent m o d e l s
for the
m o l y b d e n u m site o f e n z y m e s , t h e y nevertheless i l l u s t r a t e that t h e k e y p r o t o n ( s ) i n v o l v e d i n t h e c a t a l y t i c step m a y b e associated w i t h l i g a n d a t o m ( s ) b o u n d d i r e c t l y to m o l y b d e n u m .
Journal of the American Chemical Society
Figure 4. EPR signal for Mo(S CN(C H ) )(SNHC H\) -displaying proton and nitrogen superhyperfine splitting (92) 2
2
5
2
6
2
Mechanistic
Considerations
M e c h a n i s t i c speculations about the molybdoenzymes
must b e con-
s i d e r e d t o b e i n t h e i r i n f a n c y w i t h the p o s s i b l e e x c e p t i o n of those f o r x a n t h i n e oxidase.
A l t h o u g h the d e t a i l e d s t r u c t u r a l n a t u r e o f the m o l y b -
d e n u m site i s u n k n o w n , t h e r e is sufficient i n f o r m a t i o n f r o m b i o c h e m i c a l a n d c o o r d i n a t i o n c h e m i s t r y studies t o a l l o w i n f o r m e d a r g u m e n t s t o b e drawn.
H e r e w e first discuss e v i d e n c e for the n u c l e a r i t y o f t h e m o l y b -
d e n u m site a n d t h e n discuss b o t h oxo-transfer a n d p r o t o n - e l e c t r o n t r a n s f e r mechanisms for m o l y b d e n u m enzymes.
A final d i s c u s s i o n considers t h e
u n i q u e aspects o f nitrogenase a n d the p o s s i b l e reasons f o r t h e use o f m o l y b d e n u m i n enzymes. M o n o n u c l e a r v s . D i n u c l e a r Sites. A l l m o l y b d e n u m e n z y m e s c o n t a i n t w o m o l y b d e n u m atoms.
Dinuclear molybdenum
complexes
are
well
374
BIOINORGANIC
CHEMISTRY
k n o w n i n the c h e m i s t r y of M o ( V I ) , M o ( I V ) , a n d M o ( I I I ) d o m i n a n t r o l e i n t h e c h e m i s t r y of M o ( V ) .
II
and play a
T h e j u x t a p o s i t i o n of
the
b i o c h e m i c a l a n d i n o r g a n i c c h e m i c a l n u m e r o l o g y has l e d to the suggestion that this m a y b e m o r e t h a n m e r e c o i n c i d e n c e a n d t h a t t h e use of d i n u c l e a r m o l y b d e n u m i n t h e c a t a l y t i c sequences r e q u i r e s that t h e content of the enzymes b e d o u b l e d .
molybdenum
F u r t h e r m o r e , t h e r e are a t t r a c t i v e
c a t a l y t i c schemes w h i c h m a k e use of M o ( V )
complexes.
In particular,
the oxo transfer r e a c t i o n u s e f u l i n the o x i d a t i o n of t e r t i a r y p h o s p h i n e s
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
( 9 3 ) l e d to the d i s c o v e r y (78, 79, 93) of R e a c t i o n 12 i n w h i c h a d i n u c l e a r Mo 0 (R2dtc) 2
Mo(V)
3
complex
*± M o 0 ( R d t c ) 2
4
disproportionates
nuclear M o ( I V )
and M o ( V I ) .
2
2
+
MoO(R dtc) 2
(12)
2
as i t dissociates to p r o d u c e
As M o (IV)
and M o (VI)
mono-
are d i r e c t l y
i n t e r c o n v e r t i b l e b y a n oxo transfer r e a c t i o n , t h e y are v i a b l e p a r t i c i p a n t s i n c a t a l y t i c cycles.
A dinuclear M o ( V )
species of this n a t u r e c a n t h u s
s u p p l y either t h e o x i d i z i n g o r r e d u c i n g m e m b e r presents
a mechanism
by
which molybdenum
r e d u c i n g or o x i d i z i n g p o w e r .
of
this c o u p l e
enzymes
can
and
channel
S e v e r a l i n o r g a n i c reactions h a v e r e c e n t l y
b e e n e x p l a i n e d u s i n g this s c h e m e (80, 81).
T o date, h o w e v e r , R e a c t i o n
12 o n l y a p p l i e s w h e n the l i g a n d is a d i t h i o c a r b a m a t e or d i t h i o p h o s p h a t e . N e v e r t h e l e s s , w e r e there k n o w n d i n u c l e a r a c t i v e sites i n e n z y m e s , this w o u l d b e a n i m p o r t a n t m e c h a n i s m to c o n s i d e r . It appears, h o w e v e r , that i n w e l l s t u d i e d systems, the e v i d e n c e
for
d i n u c l e a r sites is o u t w e i g h e d b y that f o r m o n o n u c l e a r sites. T h e case for x a n t h i n e oxidase seems most e x p l i c i t . H e r e , the t w o
molybdenum
atoms are a c c o m p a n i e d b y t w o F A D groups as w e l l as t w o e a c h of t w o different types
of
Fe S 2
2
cluster. A l l c o m p o n e n t s ,
i n c l u d i n g subunits,
a p p e a r to b e present i n p a i r s a n d most m o d e r n treatments i n v o k e t w o separate c a t a l y t i c u n i t s , e a c h i n v o l v i n g one m o l y b d e n u m , one F A D , a n d one of e a c h of t h e F e S 2
2
systems.
T h e e x p e r i m e n t a l s u p p o r t for this is
i m p r e s s i v e . F i r s t , i t is clear that e a c h m o l y b d e n u m a t o m c a n a c c e p t t w o electrons
from
substrate.
T h i s i m p l i e s t h a t i f a d i n u c l e a r site
present, i t w o u l d b e r e q u i r e d to a c c e p t f o u r electrons.
were
It is n o t clear
w h y f o u r electrons s h o u l d b e a d d e d to a site w h i c h catalyzes a t w o e l e c t r o n substrate r e a c t i o n . S e c o n d , as d i s c u s s e d p r e v i o u s l y , t h e i n h i b i t o r a l l o x a n t h i n e b i n d s to a r e d u c e d f o r m of the e n z y m e c o n t a i n i n g M o ( I V ) w i t h o n l y one v e r y t i g h t b i n d i n g constant a n d a s t o i c h i o m e t r y of p r e c i s e l y one a l l o x a n t h i n e p e r one m o l y b d e n u m . accommodate i n a dinuclear model. amount
of
Mo(V)
sites has b e e n o b s e r v e d .
E P R work, no
T h e s e d a t a are v e r y difficult to F i n a l l y , despite a n e x t r a o r d i n a r y
spin-spin broadening
interaction
T h e r e f o r e , either the M o ( V )
always accompanied b y a diamagnetic m o l y b d e n u m partner
between state is [Mo(IV)
20.
STiEFEL
375
Molybdoenzymes
ET AL.
or M o ( V I ) ] , or t h e i n d i v i d u a l m o l y b d e n u m atoms are f a r apart.
The
l a t t e r i n t e r p r e t a t i o n seems f a r m o r e l i k e l y . T h e q u e s t i o n n o w arises as to w h y x a n t h i n e oxidase has a m o l e c u l a r w e i g h t of 300,000 w h e n the size of a c a t a l y t i c s u b u n i t is o n l y
150,000.
P e r h a p s the a n s w e r lies i n its p a r t i c u l a r i n t e g r a t i o n i n t o c e l l u l a r p h y s i o l o g y or is s i m p l y c a u s e d b y the p r o c l i v i t y of the e n z y m e to m a x i m i z e the n u m b e r of active sites p e r u n i t surface area; i.e., w h e n t w o
active
m o n o m e r s j o i n together, the n u m b e r of a c t i v e sites goes f r o m one to t w o ,
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
b u t the e x p o s e d surface area increases b y a f a c t o r less t h a n t w o .
This
a r g u m e n t is a f a m i l i a r one i n heterogeneous catalysis w h e r e attempts are often m a d e to m a x i m i z e the n u m b e r of a c t i v e sites p e r u n i t surface area to p r o d u c e m o r e efficient catalysts. T h e other m o l y b d e n u m enzymes e a c h c o n t a i n d u p l i c a t e p r o s t h e t i c groups a n d p a i r e d s u b u n i t s i n a d d i t i o n to t w o m o l y b d e n u m atoms.
Many
of the experiments p e r f o r m e d for x a n t h i n e oxidase h a v e also b e e n c a r r i e d o u t w i t h a l d e h y d e oxidase a n d sulfite oxidase, a n d t h e r e is n o e v i d e n c e for c h e m i c a l M o - M o c o u p l i n g i n these e n z y m e s .
T h u s , i n oxidases, the
e v i d e n c e for m o n o n u c l e a r m o l y b d e n u m sites appears s t r o n g , a n d i n v i e w of the d u p l i c a t e s u b u n i t s a n d c o m p o s i t i o n f o u n d , i t is reasonable assume a s i m i l a r s i t u a t i o n i n reductases as w e l l .
to
H o w e v e r , at present,
insufficient i n f o r m a t i o n bars a f u l l g e n e r a l i z a t i o n . E x c e p t f o r nitrogenase,
a l l substrate
h a l f - r e a c t i o n s i n v o l v e the a d d i t i o n or r e m o v a l of o x y g e n .
O x o T r a n s f e r Mechanisms.
T h e simplest
m a n n e r of r e p r e s e n t i n g these reactions, i n v o l v e s the d i r e c t transfer of a n o x y g e n a t o m to or f r o m substrate, e.g., R e a c t i o n s 13 a n d 14. F u r t h e r m o r e , M V - * N 0 or
S0
3
2
- +
2
- +
[0]
(13)
[ 0 ] -> S 0 ~ 4
(14)
2
i t is k n o w n that, at least w i t h some reactants, v a r i o u s
molybdenum
c o m p l e x e s w i l l u n d e r g o s u c h a n a p p a r e n t l y s i m p l e oxo transfer ( 8 1 , 9 3 ) , e.g., R e a c t i o n 15. T h i s o b s e r v a t i o n suggests t h a t o x y g e n a t o m transfer Mo0 (R dtc) 2
2
+ P ( C H ) - * MoO(R dtc) 6
5
3
2
+
2
OP(C H ) 6
5
3
is a r e a c t i o n w o r t h c o n s i d e r i n g for the m o l y b d e n u m e n z y m e s ( 7 7 ) . a m e c h a n i s m f o r n i t r a t e reductase
could involve Reaction
ο ι
ο
χ 1
I
\
I —Mo (IV)-
* o
+ î
11
Such where
ο
N)
— M o (VI)—
16
(15)
(16)
376
BIOINORGANIC
cleavage
of t h e N - O b o n d
p r e s u m a b l y occurs
f o r m a t i o n of t h e m u l t i p l e M o - O b o n d .
CHEMISTRY
concertedly
II
with
the
O n e of the p r o b l e m s w i t h this
t y p e of m e c h a n i s m for n i t r a t e reductase i n v o l v e s the r e m o v a l of the oxo group
on molybdenum
to regenerate
the o p e n
site.
Heretofore,
oxo
r e m o v a l reactions g e n e r a l l y r e q u i r e d s t r o n g a c i d (74, 78, 79) or a n oxo r e m o v a l agent s u c h as a p h o s p h i n e
(74,
Recently, thiol
81, 93, 94).
l i g a n d s h a v e , u n d e r c e r t a i n c o n d i t i o n s , also r e m o v e d oxo groups (91, 95, 96, 9 7 ) .
I n most cases u n f o r t u n a t e l y , a s u l f u r - d o n o r l i g a n d r e p l a c e d the
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
oxo g r o u p . H o w e v e r , i n other instances (95, 9 6 ) , r e m o v a l of a n oxo g r o u p w i t h c o n c o m i t a n t r e d u c t i o n of M o ( V I ) to M o ( I V ) b y t w o electrons has b e e n affected b y thiols w h i c h are o x i d i z e d to the d i s u l f i d e i n the process M o (VI) 0
2
(R dtc) + 2 C H S H - »
Mo(IV)0(R dtc) 2
(Reaction 17).
2
2
6
5
+ CcH SSC6H 5
5
+
H 0 2
O x o r e m o v a l to leave a n o p e n site m i g h t b e effected i n
this m a n n e r i n enzymes p a r t i c u l a r l y u n d e r h y d r o p h o b i c c o n d i t i o n s .
The
r e l a t e d p r o b l e m i n nitrogenase m a y b e o v e r c o m e b y A T P , w h i c h m a y f u n c t i o n i n oxo r e m o v a l f r o m m o l y b d e n u m . F o r the m o l y b d e n u m oxidases, the reverse oxo transfer r e a c t i o n c a n b e p o s t u l a t e d w h e r e i n a n o x o m o l y b d e n u m ( V I ) species donates oxo substrate. F o r e x a m p l e , the o x i d a t i o n of a l d e h y d e s
/
H
R—C.
+
\
II
M o (VI)
M o (IV)
+
( R e a c t i o n 18)
R—C
/°
(18)
\
Ο
to can
O H
b e affected b y a M o ( V I ) species.
A l t h o u g h the r e a c t i o n is s t o i c h i o m e t -
r i c a l l y a c c e p t a b l e , i t is not clear h o w the a l d e h y d e C - H b o n d is a c t i v a t e d for cleavage.
A s i m i l a r p r o b l e m occurs for x a n t h i n e o x i d a t i o n . F o r this
reason, a n d to m a k e use of the e x p e r i m e n t a l e v i d e n c e for p r o t o n transfer, the schemes i n v o l v i n g c o u p l e d e l e c t r o n - p r o t o n transfer w e r e
proposed
(66, 67, 68) a n d are d i s c u s s e d b e l o w . Coupled Proton—Electron Transfer
Mechanisms.
The
suggestive
e v i d e n c e for p r o t o n transfer i n x a n t h i n e oxidase has b e e n discussed a b o v e . T h e k e y p i e c e of e x p e r i m e n t a l i n f o r m a t i o n is the p r o t o n s u p e r h y p e r f i n e s p l i t t i n g i n t h e M o ( V ) E P R s i g n a l of x a n t h i n e oxidase.
M o d e l studies
(89, 92) h a v e i n d i c a t e d that a c o o r d i n a t e d n i t r o g e n is the l i k e l y l o c a t i o n of the p r o t o n ( a l t h o u g h c o o r d i n a t e d o x y g e n is not e l i m i n a t e d ) . d i n a t i o n c h e m i s t r y f u r t h e r shows that p r o t o n transfer c a n b e
Coor coupled
to e l e c t r o n transfer t h r o u g h the effect of o x i d a t i o n state o n the p K c o o r d i n a t e d l i g a n d s (66, 67, 68).
a
of
The combined biochemical and inor-
20.
377
Molybdoenzymes
STIEFEL E T A L .
g a n i c i n f o r m a t i o n leads t o a m e c h a n i s t i c suggestion f o r x a n t h i n e oxidase w h i c h is d e p i c t e d i n F i g u r e 5. T h e e v i d e n c e f o r t h e presence o f v a r i o u s m o l y b d e n u m
oxidation
states has b e e n p r e s e n t e d p r e v i o u s l y . T h e r e s t i n g e n z y m e ( u p p e r r i g h t o f F i g u r e 5 ) is a s s u m e d t o c o n t a i n M o ( V I ) .
I n this h i g h o x i d a t i o n state, a t
least s o m e o f t h e l i g a n d s o n m o l y b d e n u m m u s t b e d e p r o t o n a t e d a n d a n i t r o g e n a t o m o f t h e p r o t e i n is so d e p i c t e d xanthine c a n then coordinate
to M o ( V I )
i n the
figure.
Substrate
t h r o u g h its 9-nitrogen. T h e
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
C = N o f t h e 8- a n d 9 - p u r i n e positions is t h e n p o l a r i z e d b y t h e M o ( V I ) c a u s i n g t h e 8-carbon t o b e c o m e s u s c e p t i b l e t o n u c l e o p h i l i c attack. A l t h o u g h there is e v i d e n c e f o r a p r o t e i n b o u n d persulfide b e i n g t h e n u c l e o p h i l i c agent ( 6 5 ) , f o r s i m p l i c i t y i n this s c h e m e , O H " assumes that r o l e . ( W e r e t h e persulfide i n v o l v e d , i t w o u l d h a v e t o b e s u b s e q u e n t l y lyzed b y O H " or H
2
hydro
0 anyway. )
I n c o n j u n c t i o n w i t h t h e n u c l e o p h i l i c attack at t h e 8-carbon, t w o electrons c o u l d flow f r o m x a n t h i n e to p r o d u c e M o ( I V )
w h i c h requires
a c o n c o m i t a n t decrease i n p K o f the p r o t e i n n i t r o g e n , r e s u l t i n g i n transfer a
ο
Xanthine
Mo(IV)-N-
1st International Conference on Chemistry and Uses of Molybdenum Figure 5. Proposed coupled proton-electron transfer scheme for xanthine oxidase activity (66, 67, 68)
378
BIOINORGANIC
CHEMISTRY
II
of t h e p r o t o n t o the m o l y b d e n u m site. T h i s process c o u p l e s t h e t r a n s f e r of a p r o t o n f r o m substrate w i t h the t w o - e l e c t r o n transfer. U r i c a c i d ( o r its p e r s u l f i d o p r e c u r s o r ) is n o w c o o r d i n a t e d t o the M o ( I V ) , a n d r e a c t i v a t i o n o f the site m u s t i n v o l v e d i s s o c i a t i o n o f p r o d u c t ,
two-electron
o x i d a t i o n o f m o l y b d e n u m , a n d loss o f a p r o t o n f r o m c o o r d i n a t e d n i t r o g e n . T h e o r d e r o f these events is n o t c l e a r a n d , i n fact, m a y not b e s u s c e p t i b l e to t e m p o r a l d e s i g n a t i o n . I t is clear, h o w e v e r , that this t w o - e l e c t r o n r e a c t i v a t i o n process o c c u r s
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
i n t w o s e q u e n t i a l o n e - e l e c t r o n steps w h i c h cause t h e a p p e a r a n c e o f the M o ( V ) E P R s i g n a l . F u r t h e r m o r e , the p r o t o n ( o r i g i n a l l y f r o m substrate) m a y r e m a i n i n p l a c e o n the p r o t e i n n i t r o g e n d u r i n g o x i d a t i o n f r o m M o ( I V ) to M o ( V ) a n d m a y thus b e r e s p o n s i b l e f o r the s u p e r h y p e r f i n e s p l i t t i n g . I n s u p p o r t of this m e c h a n i s m , the use of 8 - d e u t e r o x a n t h i n e causes this s i g n a l t o a p p e a r i n i t i a l l y i n its deutero f o r m . A k e y aspect of this s i g n a l is t h e a p p a r e n t p K
a
o f 8 for this p r o t o n i n the M o ( V )
of o x i d a t i o n state o n p K
a
state. T h e effect
r e q u i r e s that i n t h e M o ( I V ) state, t h e p K o f a
this p r o t o n w o u l d b e v e r y h i g h ( p e r h a p s 14 o r g r e a t e r ) w h e r e a s i n t h e M o ( V I ) state this p K w o u l d b e q u i t e l o w ( p e r h a p s 2 o r l o w e r ) . a
Thus,
t h e ( I V ) state w o u l d c o n t a i n a s t r o n g l y b a s i c p r o t e i n n i t r o g e n i n agree m e n t w i t h its p o s t u l a t e d r o l e i n c l e a v i n g t h e C - H b o n d . f o r the M o ( V I ) state, the l o w p K
a
Furthermore,
w o u l d i n d i c a t e t h a t the c o o r d i n a t e d
n i t r o g e n w o u l d b e d e p r o t o n a t e d thus p r e p a r i n g t h e site t o re-enter t h e catalytic cycle ( F i g u r e 5 ) . T h e i n h i b i t o r a l l o x a n t h i n e b i n d s v e r y s t r o n g l y t o x a n t h i n e oxidase b u t o n l y w h e n the m o l y b d e n u m is i n the f u l l y r e d u c e d [ M o ( I V ) ] state. I n F i g u r e 6, this extra s t r o n g b i n d i n g is i n t e r p r e t e d as r e s u l t i n g f r o m t h e possession b y a l l o x a n t h i n e o f t h e f u l l r e c o g n i t i o n c a p a b i l i t y f o r the a c t i v e
ι xanthine
Figure 6. alloxanthine
alloxanthine
Suggested binding mode for to the Mo(IV) site in the xan thine oxidase
20.
STiEFEL
379
Molybdoenzymes
ET AL.
site c o u p l e d w i t h the f o r m a t i o n of a n a d d i t i o n a l h y d r o g e n b o n d w i t h t h e e n z y m e t h r o u g h t h e k e y p r o t o n . F u r t h e r m o r e , this t i g h t e n z y m e - i n h i b i t o r c o m p l e x c l e a r l y resembles t h e p r o p o s e d t r a n s i t i o n state ( i n t h e c o u p l e d p r o t o n - e l e c t r o n transfer m e c h a n i s m ) f o r the c a t a l y z e d r e a c t i o n , as m a n y s u c h complexes do. M a n y e x p e r i m e n t a l observations
o n x a n t h i n e oxidase a c t i v i t y are
c o r r e l a t e d b y this scheme, a n d at present, there a p p e a r to b e n o m a j o r inconsistencies.
T h e c o u p l e d p r o t o n - e l e c t r o n transfer s c h e m e (66,
67,
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
68 ) has b e e n successfully i n c o r p o r a t e d i n t o a n o v e r a l l m e c h a n i s t i c s c h e m e (69)
w h i c h e x p l a i n s , w i t h great e c o n o m y , a large a m o u n t of r a t h e r d e
m a n d i n g data, from both kinetic a n d electron uptake experiments. N o n e of the other m o l y b d e n u m e n z y m e s h a v e b e e n s t u d i e d as t h o r o u g h l y as x a n t h i n e oxidase, b u t b o t h a l d e h y d e oxidase a n d sulfite oxidase d i s p l a y d a t a consistent w i t h t h e i r use of t h e M o ( I V ) - M o ( V ) - M o ( V I ) t r i a d of o x i d a t i o n states d u r i n g catalysis. T h e i r M o ( V ) E P R signals are s i m i l a r to those f r o m x a n t h i n e oxidase, i n c l u d i n g the l a r g e n e a r - i s o t r o p i c s u p e r h y p e r f i n e s p l i t t i n g for a s i n g l e p r o t o n w i t h a p f C close to 8 a
(20).
T h e s e observations r e q u i r e s t r u c t u r a l s i m i l a r i t i e s of the m o l y b d e n u m sites and
suggest m e c h a n i s t i c s i m i l a r i t i e s as w e l l .
Thus, coupled
electron-
p r o t o n transfer processes h a v e b e e n suggested for b o t h a l d e h y d e oxidase a n d sulfite o x i d a t e (66, 67, 68).
F o r the f o r m e r , a m e c h a n i s m closely a k i n
to x a n t h i n e oxidase a c t i o n is suggested ( R e a c t i o n 19 ) i n w h i c h C — H b o n d R
O —Mo
R
•OIT ^
-
A,
° "
(VI)—Ν
^
0
(19)
H
Η \
— M o (IV)—Ν
b r e a k i n g is assisted b y n u c l e o p h i l i c attack ( a g a i n p o s s i b l y b y p e r s u l f i d e (97))
w i t h t h e p r o t o n b e i n g t r a n s f e r r e d to the m o l y b d e n u m
c o n j u n c t i o n w i t h the e l e c t r o n transfer process.
site i n
I n fact, x a n t h i n e oxidase
w i l l o x i d i z e a l d e h y d e s (98), a n d a l d e h y d e oxidase w i l l h a n d l e a v a r i e t y of purines (25).
T h e k e y feature of the m o l y b d e n u m site is its a b i l i t y to
abstract i n a c o n c e r t e d m a n n e r t w o electrons a n d a p r o t o n f r o m substrate c o u p l e d w i t h a n u c l e o p h i l i c attack o n the c a r b o n b e a r i n g the p r o t o n to be transferred. T h e c o u p l e d p r o t o n - e l e c t r o n transfer m e c h a n i s m c a n also b e a p p l i e d to t h e m o l y b d e n u m reductases. F o r n i t r a t e reductase, a s c h e m e s u c h as R e a c t i o n 20 is p o s s i b l e . A M o ( I V ) - M o ( V I ) c o u p l e is u s e d to i l l u s t r a t e this, a n d w h i l e s u c h a c o u p l e is v i a b l e for some n i t r a t e reductases, t h e M o ( I I ) - M o ( I V ) or the M o ( I I I ) - M o ( V ) c o u p l e c o u l d also b e
accommodated
380
BIOINORGANIC C H E M I S T R Y
0
0
"
Ν
+
OH-
(20)
Ο'
— M o (VI)
•Mo ( I V ) — Ν .
w i t h i n the p r o t o n - e l e c t r o n transfer scheme.
II
Ν.
T h i s s c h e m e is s i m p l y the
reverse of t h a t for the oxidases. T h e l o w e r o x i d a t i o n state w o u l d h a v e a Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
p r o t o n a t e d l i n g a n d ( h e r e s h o w n as n i t r o g e n ) a n d d u r i n g t w o - e l e c t r o n r e d u c t i o n of substrate, this l i g a n d w o u l d increase i n a c i d i t y a n d t r a n s f e r its p r o t o n to a n o x y g e n a t o m o n n i t r a t e , m a k i n g the o x y g e n a b e t t e r leaving group a n d facilitating nitrite production. T h i s process c a n b e c o n t r a s t e d d i r e c t l y w i t h the oxo transfer s c h e m e ( R e a c t i o n 16) d i s c u s s e d a b o v e . I n either case, the c l e a v a g e of t h e N - O b o n d is assisted b y the b i n d i n g of o x y g e n to a n e l e c t r o p h i l e ( t o m o l y b d e n u m itself i n the oxo transfer m e c h a n i s m or to p r o t o n ( s ) i n the c o u p l e d p r o t o n - e l e c t r o n transfer s c h e m e ) . A l t h o u g h t h e c o u p l e d p r o t o n - e l e c t r o n transfer m e c h a n i s m w o u l d p o s s i b l y h a v e the a d v a n t a g e of l e a v i n g a n o p e n site o n m o l y b d e n u m to restart the c y c l e , there is no s t r o n g d a t a to s u p p o r t e i t h e r of these m e c h a n i s m s at present. F o r nitrogenase, the s i t u a t i o n is less c e r t a i n .
F i r s t , the
metal(s)
present at the a c t i v e site, the o x i d a t i o n s t a t e ( s ) , a n d the s t a t e ( s )
of
a g g r e g a t i o n are v i r t u a l l y u n k n o w n at present. T h u s , a n y s u g g e s t i o n m a d e f o r nitrogenase m u s t b e v i e w e d as h i g h l y s p e c u l a t i v e a n d u s e f u l o n l y to t h e extent to w h i c h i t suggests f u r t h e r e x p e r i m e n t s o n e n z y m e s o r m o d e l systems.
W i t h this i n m i n d , c o u p l e d e l e c t r o n - p r o t o n transfer schemes
c a n b e suggested f o r nitrogenase.
Again, while a ( I V ) - ( V I )
c o u p l e is
u s e d to i l l u s t r a t e the process, other t w o - e l e c t r o n couples are also p o s s i b l e . T h e k e y step i n s u c h a process, as v i s u a l i z e d i n F i g u r e 7 a for a c e t y l e n e r e d u c t i o n , i n v o l v e s the c o u p l e d transfer of t w o p r o t o n s a n d t w o electrons to substrate. T h e k n o w n cis stereochemistry of the a d d i t i o n is consistent w i t h this p r o p o s a l . F o r d i n i t r o g e n r e d u c t i o n , a t w o - m e t a l - s i t e h y p o t h e s i s ( 52, 53, 66-68, 9 6 ) , as s h o w n i n F i g u r e 7 b , m i g h t b e i n v o k e d w i t h d i n i t r o g e n first b i n d i n g e n d - o n ( p e r h a p s to i r o n ) a n d t h e n a d d i t i o n a l l y b i n d i n g s i d e - o n to t h e same site at w h i c h a c e t y l e n e r e d u c t i o n occurs. T h e first r e d u c t i o n p r o d u c t of d i n i t r o g e n w o u l d t h e n b e a b o u n d c i s - d i i m i d e species i n a g r e e m e n t w i t h t h e i n t e r p r e t a t i o n of the d i h y d r o g e n i n h i b i t i o n a n d H D p r o d u c t i o n r e a c tions of nitrogenase d i s c u s s e d e a r l i e r . T h e m o l y b d e n u m site c o u l d t h e n be reactivated twice more, w i t h hydrazine and
finally
ammonia being
s e q u e n t i a l l y f o r m e d . F o r n i t r o g e n a s e there are c l e a r l y a d d i t i o n a l e x p e r i m e n t a l observations w h i c h r e m a i n to b e i n t e g r a t e d w i t h a n d m u s t reflect u p o n the eventual mechanistic conclusions.
20.
STiEFEL
381
Molybdoenzymes
ET AL.
N i t r o g e n a s e differs
Nitrogenase—Additional Considerations.
from
a l l other m o l y b d e n u m e n z y m e s i n s e v e r a l i m p o r t a n t w a y s . I t is t h e o n l y k n o w n m o l y b d e n u m e n z y m e to consist of t w o separately i s o l a b l e p r o t e i n s a n d to r e q u i r e A T P h y d r o l y s i s i n its c a t a l y t i c c y c l e .
Its substrate h a l f -
reactions are the o n l y ones w h i c h d o not ( i n a n y o b v i o u s w a y ) transfer of o x y g e n atoms.
T h e nitrogenase system evolves
involve
dihydrogen
w h e n s u p p l i e d w i t h A T P a n d r e d u c t a n t i n t h e absence of r e d u c i b l e s u b strate.
A l l substrate
reactions
(but
not
ATP-dependent
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
e v o l u t i o n ) are i n h i b i t e d b y c a r b o n m o n o x i d e .
dihydrogen
T h e presence of substrate
appears to c u r t a i l the d i h y d r o g e n e v o l u t i o n r e a c t i o n b u t , f o r some s u b strates at least ( i n c l u d i n g d i n i t r o g e n ) , i t seems i m p o s s i b l e to e l i m i n a t e d i h y d r o g e n e v o l u t i o n c o m p l e t e l y (46, 58, 5 9 ) . I n this section, w e address dihydrogen
evolution
first
a n d then the A T P utilization reaction
of
nitrogenase. α
Ην
,Ν—
^
Η
MoOv)— ÎSL
Η
Ην
^
Ν —Μο(νι) —
*N =
'
Ν
N>
N^
— M o —
Ν
1
J
/
Figure 7. Proposed proton-electron transfer step for nitrogenase. (a) C H reduction to C H ; (b) N re duction to bound N H (66, 67, 68). 2
2
2
2
U
2
2
Dihydrogen Evolution Reaction. T h e d i h y d r o g e n e v o l u t i o n r e a c t i o n of nitrogenase is c e r t a i n l y a t h e r m o d y n a m i c a l l y r e a s o n a b l e one, i.e., t h e site w h i c h reduces d i n i t r o g e n s h o u l d h a v e sufficient p o t e n t i a l to dihydrogen.
evolve
T h e m o l e c u l a r m e c h a n i s m b y w h i c h this arises is t o t a l l y
u n k n o w n a l t h o u g h this w i l l n o t stop us f r o m s p e c u l a t i n g . I n v i e w of t h e l a c k of i n h i b i t i o n b y c a r b o n m o n o x i d e
a n d its A T P d e p e n d e n c e , i t is
a s s u m e d t h a t d i h y d r o g e n e v o l u t i o n i n nitrogenase occurs b y a process different f r o m t h a t w h i c h occurs i n h y d r o g e n a s e
(56).
As
hydrogenase
contains o n l y i r o n - s u l f u r clusters a n d n o m o l y b d e n u m ( 5 6 ) , t h e m o l y b d e n u m site ( t h e p r e s u m e d substrate r e d u c t i o n site) m a y b e the l o c a t i o n of t h e d i h y d r o g e n e v o l u t i o n r e a c t i o n i n nitrogenase. proton-electron
transfer scheme,
the fully
I n the
coupled
a c t i v a t e d site h a v i n g
the
382
BIOINORGANIC CHEMISTRY
p o t e n t i a l to donate t w o protons a n d t w o electrons c a n react to d i h y d r o g e n e i t h e r w i t h or w i t h o u t the a i d of w a t e r .
evolve
If water were i n -
v o l v e d , a n M o - O l i n k a g e m i g h t b e f o r m e d w i t h A T P h e l p i n g to t h a t oxo l i g a n d f r o m m o l y b d e n u m .
II
remove
A l t e r n a t i v e l y , i t is possible t h a t a
m e t a l h y d r i d e or d i h y d r i d e is i n v o l v e d w h i c h , u p o n r e d u c t i v e e l i m i n a t i o n or r e a c t i o n w i t h protons, p r o d u c e s
dihydrogen.
I t is not p o s s i b l e
to
d i s t i n g u i s h b e t w e e n these p o s s i b i l i t i e s at present. T h e q u e s t i o n n o w arises as to w h y some substrates ( l i k e
acetylene)
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
c o m p l e t e l y c u r t a i l d i h y d r o g e n e v o l u t i o n w h i l e others ( s u c h as d i n i t r o g e n ) d o not.
M o s t d a t a i n d i c a t e t h a t the e v o l t u i o n of one m o l e of d i h y d r o -
gen per mole
of
dinitrogen reduced
is a p p r o a c h e d
at h i g h levels
of
d i n i t r o g e n ( 5 2 , 5 8 ) . A r e l a t e d p r o b l e m i n v o l v e s t h e fact that a c e t y l e n e is a n o n c o m p e t i t i v e i n h i b i t o r of n i t r o g e n fixation w h i l e d i n i t r o g e n is a c o m p e t i t i v e i n h i b i t o r of acetylene
reduction
(51, 57).
Several
hypotheses
h a v e b e e n a d v a n c e d to e x p l a i n these facts. THE
sions
L E A K Y S I T E H Y P O T H E S I S ( 5 1 , 9 9 , 100).
This
hypothesis
envi-
nitrogenase as a n e l e c t r o n s i n k w h i c h m u s t b e f u l l ( a t least six
electrons ) to r e d u c e d i n i t r o g e n . H o w e v e r , a f u l l s i n k m a y not a l w a y s b e m a i n t a i n e d b e c a u s e of l i m i t a t i o n s i n e l e c t r o n flow, a n d the sink m a y t h e n leak t w o electrons to f o r m d i h y d r o g e n .
If a c e t y l e n e is present, i t c a n
a c c e p t these t w o electrons f r o m the sink. T h e a c e t y l e n e - d i n i t r o g e n
inhi-
b i t i o n studies c a n t h e n b e r a t i o n a l i z e d as f o l l o w s . A c e t y l e n e c a n o v e r c o m e the p r e s e n c e of d i n i t r o g e n b y c o n t i n u a l l y r e m o v i n g e l e c t r o n pairs f r o m t h e s i n k a n d k e e p i n g it e m p t y . H o w e v e r , d i n i t r o g e n r e q u i r e s six electrons f o r r e d u c t i o n , a n d therefore a p a r t i a l l y filled e n z y m e w o u l d r e m a i n accessible to a c e t y l e n e .
T h u s , h i g h dinitrogen concentrations
cannot
effectively
e l i m i n a t e a c e t y l e n e r e d u c t i o n . I n this m o d e l , the i n a b i l i t y of h i g h d i n i t r o g e n t o t a l l y to e l i m i n a t e either d i h y d r o g e n or a c e t y l e n e r e d u c t i o n is a t t r i b u t e d to the i n a b i l i t y of the e n z y m e to k e e p t h e s i n k f u l l . commonly
Using
the
a c c e p t e d n o t i o n t h a t the i r o n p r o t e i n s u p p l i e s electrons, this
m o d e l w o u l d p r e d i c t that as t h e c o m p o n e n t r a t i o ( [ F e ] / [ M o - F e ] ) is i n c r e a s e d a n d the s i n k is k e p t m o r e n e a r l y f u l l , t h e d i h y d r o g e n e v o l u t i o n and
a c e t y l e n e r e d u c t i o n reactions c o u l d b e m o r e n e a r l y q u e n c h e d
by
d i n i t r o g e n . H o w e v e r , as m o s t d i h y d r o g e n e v o l u t i o n a n d a c e t y l e n e r e d u c t i o n e x p e r i m e n t s h a v e b e e n c a r r i e d out u s i n g n i t r o g e n a s e c o m p l e x or a fixed
[Fe]/[Mo-Fe]
ratio, this question
still awaits an
experimental
answer. THE
HYPOTHESIS.
FOUR-ELECTRON
This
hypothesis,
apparently
f a v o r e d b y S h i l o v (101,102), postulates that nitrogenase w o r k s b y a series of t w o f o u r - e l e c t r o n processes.
I n t h e r e d u c t i o n of d i n i t r o g e n , t h e
step w o u l d b e t h e p r o d u c t i o n of N H 2
p r o d u c t i o n of 2 N H
3
and H
2
4
w h i l e the second w o u l d be
first the
w h i c h n i c e l y explains t h e 1:1 s t o i c h i o m e t r y
f o r d i n i t r o g e n a n d d i h y d r o g e n d i s c u s s e d a b o v e . T h e r e s i d u a l r e d u c t i o n of
20.
STIEFEL E T A L .
383
Molybdoenzymes
acetylene i n the p r e s e n c e of d i n i t r o g e n is e x p l a i n e d b y a s e q u e n t i a l disass o c i a t i o n of a m m o n i a a n d d i h y d r o g e n f r o m the e n z y m e w i t h the a c t i v a t e d h y d r o g e n ( or protons a n d electrons ) o n t h e e n z y m e b e i n g a b l e to r e d u c e acetylene ( b u t o n l y to e t h y l e n e ). T h i s m o d e l does n o t f u l l y e x p l a i n w h y acetylene is o n l y r e d u c e d t o e t h y l e n e b y nitrogenase i n t h e absence of d i n i t r o g e n i f t h e f o u r - e l e c t r o n process is r e a l l y t h e b a s i c step. THE
EQUILIBRATING H Y D R O G E N / N I T R O G E NM O D E L .
This
model
(52,
103) postulates, i n close a n a l o g y to i n o r g a n i c systems, t h a t a d i h y d r i d e
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
site o n t h e e n z y m e is r e a c t i v e t o w a r d s d i n i t r o g e n b i n d i n g i n a m a n n e r exactly
analogous
t o t h e reactions
of k n o w n
molybdenum
d i h y d r i d e s (e.g., R e a c t i o n s 21 a n d 2 2 ) . T h e 1:1 N : H 2
FeH (PEtPh ) 4
2
MoH (dppe) 4
2
+ N
2
+ 2N
2
3
-> F e H N ( P E t P h )
d i r e c t l y e x p l a i n a b l e i n this m o d e l .
2
2
2
Mo(N ) (dppe) 2
2
2
+ H
3
and iron
s t o i c h i o m e t r y is
2
+ 2H
(21)
2
(22)
2
A l t h o u g h the apparent
competitive
i n h i b i t i o n of n i t r o g e n fixation b y d i h y d r o g e n is also e x p l a i n a b l e i n s u c h a m o d e l , o u r recent results (60) i n d i c a t e t h e absence of t r u e c o m p e t i t i v e i n h i b i t i o n i n nitrogenase s u c h that this l a t t e r p o i n t is m o o t .
Further, if
s u c h a n e q u i l i b r i u m w e r e o p e r a t i v e , d i h y d r o g e n i n h i b i t i o n o f other s u b strate reactions w o u l d b e p r o b a b l e . H o w e v e r , i n p r a c t i c e , o n l y d i n i t r o g e n r e d u c t i o n is i n h i b i t e d , a n d t h e l i k e l y m e c h a n i s m f o r t h a t process is d e s c r i b e d e a r l i e r i n this p a p e r . THE
REDUCTIVE
ELIMINATION HYPOTHESIS.
The
1:1
stoichiometry
of d i h y d r o g e n e v o l v e d a n d d i n i t r o g e n r e d u c e d c a n also b e e x p l a i n e d i f f o r m a t i o n a n d d i s p l a c e m e n t of d i h y d r o g e n at t h e m o l y b d e n u m site w e r e a n i n t e g r a l p a r t o f d i n i t r o g e n r e d u c t i o n b u t w e r e unnecessary f o r acetyl e n e r e d u c t i o n , i.e., t w o - e l e c t r o n a n d s i x - e l e c t r o n substrates a r e r e d u c e d v i a related b u t somewhat
different c a t a l y t i c cycles
(96).
evolution might occur b y reductive elimination from
a
Dihydrogen molybdenum
d i h y d r i d e , thus m a k i n g a n e l e c t r o n p a i r o n m o l y b d e n u m a v a i l a b l e f o r substrate r e d u c t i o n . W i t h d i n i t r o g e n , this d i h y d r o g e n e h m i n a t i o n m i g h t b e r e q u i r e d to i n i t i a t e e a c h r e d u c t i o n c y c l e w h e r e a s f o r acetylene, t h e d i h y d r o g e n e v o l u t i o n is r e q u i r e d o n l y i n i t i a l l y t o p r i m e t h e site f o r m u l t i p l e acetylene
r e d u c t i o n s , i.e., t h e site r e m a i n s p r i m e d after
acetylene
r e d u c t i o n b u t r e q u i r e s r e p r i m i n g after t h e s i x - e l e c t r o n d i n i t r o g e n r e d u c t i o n . T h e reason f o r the difference m a y i n v o l v e t h e l a r g e r n u m b e r o f oxo groups p r o d u c e d o n m o l y b d e n u m d u r i n g n i t r o g e n fixation a n d the consequent requirement for their removal. cussed
below)
A T P m a y also f u n c t i o n (as d i s -
i n this site c l e a r i n g ( o x o r e m o v a l )
w h i c h results i n
d i h y d r o g e n e v o l u t i o n . T h e n o n r e c i p r o c a l n a t u r e of t h e m u t u a l i n h i b i t i o n of d i n i t r o g e n a n d acetylene c o u l d b e e x p l a i n e d b y d i n i t r o g e n r e d u c t i o n r e q u i r i n g a n i n i t i a l a c t i v a t i o n at a s e c o n d m e t a l ( i r o n ) a t t h e site, w h i l e
384
BIOINORGANIC
CHEMISTRY
II
a c e t y l e n e does not. F u r t h e r e x p e r i m e n t a l e l a b o r a t i o n is c l e a r l y n e e d e d to d i s t i n g u i s h these p o s s i b i l i t i e s . The A T P Utilization Reaction.
U n d e r o p t i m u m conditions, nitro
genase r e q u i r e s t h e h y d r o l y s i s of 4 - 5 moles of A T P p e r e l e c t r o n p a i r t r a n s f e r r e d (48, 58, 5 9 ) .
A s this represents the e x p e n d i t u r e of 100 k c a l /
m o l e p e r d i n i t r o g e n r e d u c e d , a c l e a r l y p e r t i n e n t q u e s t i o n arises as to t h e r e a s o n f o r the A T P r e q u i r e m e n t .
A m o n g the m a n y suggestions for t h e
r o l e of A T P are those i n v o l v i n g A T P i n a c o n f o r m a t i o n a l c h a n g e of either
Bioinorganic Chemistry—II Downloaded from pubs.acs.org by UNIV LAVAL on 04/09/16. For personal use only.
t h e i r o n a n d / o r m o l y b d e n u m - i r o n p r o t e i n s . W h i l e this f u n c t i o n of A T P m a y w e l l b e i m p o r t a n t , here w e focus o n those suggestions i n v o l v i n g specific c h e m i c a l i n t e r a c t i o n s b e t w e e n A T P a n d the m o l y b d e n u m site. S u c h suggestions
( w h i c h are n o t necessarily p r e c l u s i v e of a c o n c u r r e n t
c o n f o r m a t i o n a l c h a n g e ) g e n e r a l l y i n v o l v e A T P i n the g e n e r a t i o n of a n o p e n c o o r d i n a t i o n site o n m o l y b d e n u m . W e h a v e n o t e d p r e v i o u s l y that M o - O l i n k a g e s p e r v a d e the c h e m i s t r y of m o l y b d e n u m i n h i g h o x i d a t i o n states a n d that the r e m o v a l of
Mo-O
is n o t a n easy task. A T P , b y its a b i l i t y to act as e i t h e r a p h o s p h o r y l a t i n g agent or a p r o t o n source, c o u l d f a c i l i t a t e the oxo r e m o v a l r e a c t i o n .
One
p o s s i b i l i t y is that A T P couples p h o s p h o r y l a t i o n of the M o - O g r o u p w i t h r e d u c t i o n of the site b y t w o electrons. electron-phosphoryl
T h e rationale for the
coupled
g r o u p transfer is s i m i l a r to t h a t for t h e
coupled
e l e c t r o n - p r o t o n transfer w i t h the e l e c t r o p h i l i c p h o s p h o r y l g r o u p s e r v i n g i n p l a c e of the p r o t o n . 0
Il
0
T h u s , as s h o w n i n R e a c t i o n 23, M o - O
0
I I
I I
I
I
R—0—Ρ—Ο—Ρ—Ο—Ρ—Ο" +
1
ο-
could,
Ο"
0=Mo(VI)
2e"
0"
(ATP) 0
0
0
R — 0 — Ρ — 0 — Ρ — Ο " + Ό — P — 0 — M o (IV)
1
o-
I
(23)
I
o-
o-
(ADP) Pi + M o (IV)