Inorg. Chem. 1993,32, 3227-3235
3227
Monomeric Group IIA Metal @-DiketonatesStabilized by Multidendate Glymes Simon R. Drake,' Stewart A. S. Miller, and David J. Williams' Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, U.K.
Received January 4, 1993 The reaction of the oligomeric alkaline earth metal &diketonate complexes, [M(&diket)z], with a glyme ligand, yields the monomeric materials [M(&diketonate)z(L-L)]. The complexes [Ca(thd)z(triglyme)] (l), [Ca(hfa)zNMR spectroscopy, (tetraglyme)] (2), and [Ba(thd)z(triglyme)] (3), have been characterized by IR and lH and mass spectrometry, and single-crystal X-ray studies. For [Ca(thd)~(triglyme)](1) is triclinic, a = 10.378(3) A, b = 11.601(4) A, c = 15.483(3) A, CY = 84.03(3)O, @ = 71.75(2)', y = 82.61(3)', and 2 = 2; a monomeric eight-coordinatecalcium complex is observed. The complex [Cu(hfa)z(tetraglyme)] (2) is triclinic, and is also eight coordinate, binding to only four of the five available oxygen atoms of the glyme ligand, leaving a dangling uncoordinated arm: a = 9.453(2) A, b = 12.600(2) A, c = 13.215(4) A, CY = 70.30(2)O, B = 83.09(2)O, y = 76,49(2)O, and 2 = 2. The complex [Ba(thd)z(triglyme)] (3) is monoclinic, a = 10.688(2) A, b = 23.614(6) A, c = 15.650(3) A, @ = 109.1l o , and 2 = 4. The structure is similar to that of 1 in that it is also eight coordinate, binding to the two &diketonate ligands and the four oxygen atoms of the glyme ligand. The coordination geometry is markedly different, being bicapped trigonal antiprismatic compared with the square antiprismatic geometry observed for compounds 1 and 2.
Introduction In the last 5 years metal alkoxides have found extensive applications as polymerization catalysts' and as molecular precursors for metal oxide superconductorsand other speciality electroceramicmaterials, e.g. BaTi03, b.4Bao.aBiO3,and Ta02.2 Such materials find application in both sol-gel and MOCVD procegses, since they are highly soluble in organic solvents, and moreover rapidly form bimetallic species by simple mixing of the component parts. These materialsgive the possibility of accurate and selective control of metal stoichiometry at the molecular level, and allow the possibility of formation of a single source precursor of exceptionally high purity, e.g. MM'(OR),. The use of these materials as precursorsfor mixed metal oxides has several inherent advantages over traditional ceramic routes to these materials. First, multimetallicalkoxides may be prepared directly in organic solution, thus avoiding the problem of unreacted ionic impurities. These materials may be readily converted to metal oxide films by the use of chemical vapor deposition (CVD); if the films obtained are amorphous they may be converted to crystalline materials via calciningprocesses. The purity and ratio of the metal oxides are wholly dependent on the stoichiometry of the molecular alkoxide complexes. Therefore, carefully controlled CVD is extremely important as a preparative route to uniform monodispersed metal oxide films with epitaxial morphologies. Previous researchers have extensively used either (tetramethylheptane-2,4-dionato)alkaline earth metal salts, which yielded via a barium hydroxide aqueous route the pentameric aggregate Bas(OH)(thd)9(HzO)~?and from carefullycontrolled non-aqueous routes via the Lewis base adducts with either ammonia or diethyl ether, [Baz(thd)4(L)2].4With the corresponding hexafluoroacetylacetonateligand, Bradley et al. recently isolated the hydrated calcium and barium complexes, e.g. [Ca(hfa)~(H~O)~],,5 while other researchers have recently obtained the monomeric species [Ba(hfa)~(18-crown-6)]: and [Ba(hfah(1) See for example: Bradley, D. C. Chem. Rev. 1989,89,1317 and leading
references therein. Caulton, K. G.; Hubert-Pfalzgraf, L. G. Chem. Rev. 1990,90,969. (2) Smith, J. S.,11; Dollof, R. T.; Mazdiyasni, K. S.J . Am. Ceram. SOC. 1969,52, 523;Ihid, 1970,53,91. (3) Turnipseed,S.B.; BarWey, R. B.; Sievers, R. E. Inorg. Chem. 1991,30, 1164.
.'
(tetraglyme)] However, their behavior at high temperature is poor, and sample decomposition is often the norm. In the course of our research directed toward volatile single source CVD precursors we have used the metal ethoxides [M(OEt)z(HOEt)4], {M = Ca, Sr or.Ba) as soluble sources of these metals.* We and others have observed a facile reaction with these metal ethoxides and a range of p-diketonatesin hexane at room temperature, analogous to the previous work of Bradley et a1.5Jo (4) (a) Kuznetsov, F.A.; Igumenov, I. K.; Danilovich, V. S . Physicu C 1991, 185, 1957. (b) Rossetto, G.; Benetollo, P. F.; Porchia, M.; Zanella, P. Polyhedron 1992,II,979. (c) Rees, W. S.,Jr.; Cams, M. W. Inorg. Chem. 1991, 30, 4479. Other invaluable contributions include the following: (d) Timmer, K.; Spee, C. I. M. A,; Mackor, A,; Meimena, H. A.; Spek, H. L.; Van der Sluis, P. Inorg. Chim.Acra 1991,190,109. (e) Gardiner, R.; Brown, D. W.; Kirlin, P. S.;Rheingold, A. L. Chem. Murer. 1991, 3, 1053. (f) [Ba(thd)2(MeOH)+MeOH: Gleizes, A.; Sans-Lenan,S.;Medus, D.; Morancho, R. C. R. Acad. Sci.,Ser. 2 1991, 312,983. (5) Bradley, D.C.; Hasan, M.; Hursthouse, M. B.;Motevalli, M.; Khan, 0.F. Z.;Pritchard,R. G.; Williams,J.0.J. Chem.Soc., Chem.Commun. 1992,575. (6) Norman, J. A. T.;Pez,G. P. J. Chem. Soc., Chem. Commun. 1991,971. Norman, J. A. T.; Pez, G. P. Volatile crown ligand /3-diketonate alkaline earth metal complexes. Eur. Pat. Appl. EP. 460,627. (7) (a) Spee, C. I. M. A.; Makor, A. In Science and Technology of Thin Film Superconducfors,McConnell, R. D., Wolf, S.A., Eds.; Plenum: New York, 1989;pp 281-84. (b) vander Sluis, P.; Spee, A. L.; Timmer, K.;Meinema,D.A.AcfaCrysrallogr.,C1990,46,1741. (c)Malandnno, G.; Richeson, D. S.;Marks, T. J.; DeGrwt, D. C.; Schindler, J. L.; Kannewurf, C. R.; Appl. Phys. Lerf. 1991,58,182. (d) Zhang, J. N.;
Wessels,B.W.;Richeson,D.S.;Marks,T.J.;Ddjrwt,D.C.;Kannewurf, C. R.; Appl. Phys. Letf. 1991,69,2743;(e) Duray, S.J.; Buchholz, D. B.;Song, S.N.; Richeson, D. S.;Ketterson, J. B.; Marks, T. J.; Chang,
R. P. H. Appl. Phys. Loft. 1991,59,1503;(f) Spee, C. I. M. A.; van der Zouwen-Assink, E. A.; Timmer, K.; Mackor, A.; Meimena. H. A. J. Phys. 1991,4,C2/295. (8) (a) Arunasalam, V. C.; Drake, S.R.; Otway, D. J.; Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Chem. Commun., submitted for publication. (b) Drake,S. R.; Chisholm, M. H.; Caulton, K. G.; Folting, K.J . Chem. Soc.,Chem. Commun. 1990,1349and 1498 and references therein. (c) Lutz, H. 2.Anorg. Allg. Chem. 1967,353,207;1968,356, 132. (d) Staeglich, H.; Weiss, E. Chem. Ber. 1978, 1 1 1 , 901. (e) Novoselova, A. V.; Ya Turova, N.; Turevskaya,E. P.; Yanovskaya, M. I.; Kozunov, V. A.; Koslova, N. I. Izu.Adu. Nauk SSSR, Ne0r.g. Mater. 1979,15,1055. (9) Arunasalam, V. C.; Drake, S. R.; Otway, D. J.; Hursthouse, M. B.; Malik. K. M. A. J . Chem.Soc..Dalton Trans.,submittedfor publication. (IO) Bradley, D. C.; Gauer, D.: Mehrotra. R. C. Metal Alkoxidei;Academic Press: New York, 1978.
0020-1669/93/1332-3227$04.00/0 0 1993 American Chemical Society
Drake et al.
3228 Inorganic Chemistry, Vol. 32, No. 15, 1993 [M(OEt),(EtOH),],
+ 2P-diket-H
-
[M(B-diket),],
Table I. Crystallographic Data for Complexes 1-3
+ 6 EtOH
M = Ca, Sr, or Ba; 0-diket = acac, Ph2acac, tfa, hfa, and thd A notable feature of these metals is their strong Lewis acidity, which ensures that in the absence of Lewis base solvents they generally form polymeric insoluble materials. But, on the addition of Lewis base solvents to Group IIA organometallics, the polymeric ensembles are cleaved to yield simpler molecular species.1l A wide variety of molecular geometries are available, provided that judicious choice of hydrocarbyl ligands (or other organic substrates) and or Lewis bases are used to achieve coordinative saturation of the large M2+ cations, to reduce potential polymerization processes. For such a strategy a precedent is available, with the prior use of macrocyclic ligands, e.g. crown ethers and cryptandsag We consider that the formally "unsaturated" group IIA metal &diketonate complexes may show reactivity similar to the previously studied pentamethylcyclopentadienyl complexes with ethers, phosphines, halides, nitriles, etc." We report in this paper a general synthetic route to monomeric complexes of the type [M(@-diket)~(L-L)],by the use of multidendatechelatingglyme ligands and the molecular structures of [Ca(thd)z(triglyme)] (l), [Ca(hfa)~(tetraglyme)](2), and [Ba(thd)z(triglyme)] (3). Experimental Section General. The manipulations of all reactants and products were carried out under a nitrogen atmosphere (Schlenk line), under an argon atmosphere (glovebox), or in uucuo, with rigorous exclusion of moisture and air. The solvent n-hexane was predried and then distilled prior to use and stored over 4A molecular sieves under an atmosphere of nitrogen in a glass storagevessel fitted with a Youngs highvacuum PTFE stopcock. Physical Techniques. Infrared spectra were recorded on a PerkinElmer 1720 FT-IR spectrometer as either nujol or hexachlorbutadiene mulls, in the region 4000-400 cm-I. The NMR spectra were recorded on a Jeol GS 270 at 270 MHz in dry and oxygen-free benzene-& or dimethyl-& sulfoxide as appropriate, using the protio impurities of the deuterated solvents as a reference for 'H NMR and the I3C NMR resonances of the solvent as a reference for I3CNMR. Elemental analyses were performed by Imperial College and Butterworth Laboratories, and all compounds were handled in an inert atmosphere. Mass spectroscopic data were obtained on a Kratos MS30 by the Royal School of Pharmacy Mass Spectrometry Service, University of London. The melting points recorded are uncorrected values. Synthesis. All reactions were performed using standard Schlenk techniques with dry oxygen-free solvents, stored over 4A molecular sieves. 2,2,6,6-tetramethyl-3,5-heptanedione,1,1,1,6,6,6-hexafluoro-3,5-pentanedione, were obtained from Inorgtech of Mildenhall, Suffolk, U.K. The metal ethoxides, [M(OEt)2(EtOH),Im and &diketonates [M(j3diket)~],were prepared according to the literature procedure^.^-^ Synthesisof [Ca(tM)2(triglyme)] (1). [Ca(OEt)2(EtOH)4], (2.78 g, 8.87 mmol) was weighed into a Schlenk tube and n-hexane (30 mL) added. To theresultingclear solution was added thd-H (3.18 om3, 17.74 mmol) and the reaction was left to stir for 5 min, and then triglyme (1.6 cm3, 8.87 mmol) was added and the reaction mixture left for a further 10 min. The solvent and liberated ethanol were then removed under vacuum to yield a white solid, which was redissolved in n-hexane (15 cm3) and left to crystallize at 0 OC. Yield: 4.2 g, 81 %. IR (hexachlorobutadiene; Y, cm-I): 2948 (vs), 1590 (vs), 1534 (vs), 1505 (s), 1429 (vs), 1386 (s), 1356 (s), 1261 (s), 1224 (m), 1098 (vs), 1024 (s), 731 (w), 594 (w). MS (electron impact, positive ion amu): 813 [Ca~(thd),],3%; 727 [Ca(thd)2(ButCOCHCOCMeH)(triglyme)], 12.5%; 629 [Ca(thd)2(triglyme)EtOH], 85%; 422 [Ca(thd)z(HzO)], 18%; 349 [Ca(thd)(ButCOCHCO)], 56%; 321 [Ca(thd)(ButCOCH)], 17%; 223 [Ca(thd)], 100%. Synthesis of [Ca(hfa)2(tetraglyme)](2). [Ca(OEt)2(EtOH)4Im(2.78 g, 8.87 mmol) was weighed into a Schlenk tube and n-hexane (20 mL) ( 1 1)
Hanusa, T. P. Polyhedron 1990, 9, 1345.
2
3
C20H24Ca09F12 676.5 clear blocks 0.21 X 0.33 X 0.33 triclinic 9.453(2) 12.6OO(3) 13.2 15(4) 70.30(2) 83.09(2) 76.49(2) 1439.2(7) P- 1 2 1.561 1.54178 (Cu) 30.3 688
C3oHssBaO8 682.1 clear blocks 0.12 X 0.23 X 0.43 monoclinic 10.668(2) 23.614(6) 15.650(3)
3725.0( 14) P21/c 4 1.216 0.71073 (Mo) 11.1 1424
3857 3616
6561 3926
1
(i) formula mol wt color and habit cryst size/"
C3oHwCaO8 584.8 clear blocks 0.32 X 0.37 X 0.50 triclinic 10.378(3) syst 11.601(4) blA 15.483(3) c/A 84.03(3) ff/deg Bldeg 7 1.75( 2) rldeg 82.61(3) viA3 1751.7(10) space group P- 1 Z 2 D d d (g ~ m - ~ ) 1.109 1.54178 (Cu) x/A p1cm-l 18.8 F(000) 640 transm factors: 0.5004; 0.6066 max; min no. of unique data 4716 no. of obsd data 4 146 with F > 4u(F) scan type w 28 range/de 0-1 16 final &/(e W-l) 0.49 final A/u 0.112 R = ~ w ( F ~ - F , ) ~5.41 RW 5.96' temp/K 29 1
Yit
109.11(2)
0
w
0-1 16 0.61 0.045 7.07 8.43' 29 1
4-50 1.12 0.000 5.02 4.71' 293
The form of the weighting function is wl = &(F)
+ 0.0005F.
added. To the resulting clear solution was added hfa-H (2.51 cm3, 17.76 mmol) and the reaction left to stir for 5 min, and then tetraglyme (1.96 cm3, 8.87 mmol) was added and the reaction mixture worked up as for 1. Yield: 3.4 g, 64.2%. IR (hexachlorobutadiene; Y, cm-I): 2949 (s), 1978 (w), 1590 (s), 1534 (s), 1505 (s), 1425 (s), 1356 (s), 1224 (m), 1100 (s), 1023 (m), 748 (m), 731 (m), 594 (w). MS (electron impact, positive ion amu): 716 [Ca(hfa)2(tetraglyme)], 26%; 646 [Ca(hfa)(CF3COCHCO)(tetraglyme)]+, 8%; 509 [Ca(hfa)(tetraglyme)]+, 3 % 247 [Ca(hfa)]+, 15%. Synthesis of [Ba(thd)2(triglyme)] (3). [Ba(OEt)z(EtOH)& (3.28 g, 7.98 mmol) was weighed into a Schlenk tube and n-hexane (20 mL) added. To the resulting clear solution was added thd-H (3.35 cm3,15.96 "01) and the reaction left to stir for 5 min, and then triglyme (1.O cm3, 7.98 mmol) was added and the reaction mixture worked up as for 1. Yield: 4.43 g, 81.6%. IR (hexachlorobutadiene; Y , cm-I): 2949 (s), 1425 (s), 1356 (s), 1223 (m), 1100 (s), 1022 (m),748 (m), 731 (m), 592 (w). MS (electronimpact,positiveionamu):824 [Ba2(thd)3], 38%;727 [Ba(thd)2(triglyme)(EtOH)],17%; 680 [Ba(thd)~(triglyme)],5%; 321 [Ba(thd)], 100%. Single-Crystal X-ray Analysis. Single crystals of complexes 1-3 were obtained directly from saturated n-hexane solutions. All of the crystals were subsequently mounted onto glass fibers with epoxy resin and were coated with epoxy to reduce any possible crystal decomposition during data collection. The accurate unit cell parameters for each compound were obtained by means of least-squares analysis of between 18 and 25 centered reflections. Data for compounds 1 and 2 were collected on a Siemens P3/PC diffractometer using graphite monochromated Cu K a radiation. Data for 3 were measured on a SiemensP4/PC diffractometer with graphite monochromated Mo Ka radiation. A summary of the crystallographic data and data collection and refinement parameters is given in Table I. The intensity data were collected according to the options specified in Table I. Two standard reflections were monitored every 50 and showed no significant variation over the data collection. The structures of 1 and 2 were solved by direct methods and that of 3 was solved by the heavy-atom method and refined with the full-matrix leastsquares technique, using anisotropic thermal parameters for non-hydrogen atoms.20 In complex 1, one of the rert-butyl groups [that attached to C(l8)l displays rotational disorder, and two discrete orientations with occupancies of 0.75 and 0.25 were refined. The minor occupancy atoms were refined isotropically.
Group IIA Metal 8-Diketonates
Inorganic Chemistry, Vol. 32, No. IS, 1993 3229
Table II. Atomic Coordinates (X104) and Equivalent Isotropic Displacement Coefficients (A2 X 103) X
705( 1) -737(4) 495(2) 1646(4) 2856(4) 2970(2) 4110(3) 4101(3) 2908(2) 2813(4) 1556(5 ) 436(2) -842(4) 2074(3) 3192(3) 268 3(4) 1510(4) 1013(3) 1479(2) -370(3) -1 406(3) 16 1O( 4) 3640(1) 2375(7) 3593(4) 49 15(6) 5976(5) 6072(3) 7076(4) 70 12(4) 5566(3) 5366(5) 3852(5) 2908(3) 1418(4) 1255(5) -190(3) -455(6) 785(4) 899(6) 257(9) -2 14(5 ) 438(10) 959(8) -37 1(6) 2170(4) 2062(3) 3338 (4)
V
z
4930( 1) 6427 (4) 5788(2) 6 199(4) 5364(4) 5326(2) 4572(3) 4534(3) 4054(2) 3980(4) 3445(4) 4162(2) 3872(4) 1152(2) 1148(3) 1349(3) -22(3) 2196(2) 3 167(2) 2035(3) 2923(2) 9686(3)
2407( 1) 4322(3) 3847(2) 3977(3) 3578(3) 2646(2) 2188(3) 1243(3) 126l(2) 377(3) 484(3) 1035(2) 1043(3) 3381(2) 2460(3) 4127(3) 3585(3) 3328 (2) 3085(1) 3556(2) 3505(2) 754(3)
7653(1) 6648(6) 7010(3) 6683(5) 733 1(4) 7212(2) 7851(4) 7747(4) 8295(2) 8235(4) 8789(4) 8242(3) 8463(4) 7609(4) 7841(4) 7031(6) 49 14(3) 3882(4) 49 18(8) 5509(6) 4606( 11) 40 13(7) 5548(6) 5398(3) 6320(2) 4795(3)
2551(1) 5175(4) 4508(2) 5053(4) 4379(3) 3328 (2) 2612(4) 1528(4) 1164(2) 131(3) -140(3) 693(2) 414(4) -1 17(4) -368(3) -798(6) 2991(3) 2992(7) 3932(5) 2325(5) 2239(8) 38 30(7) 3251(9) 2693(3) 2870(2) 2257(3)
UfWV
X
Complex 1 45(1) O(l6) 99(2) C(17) 70( 1 C(171) 92(2) C(172) 84(2) C(173) 64(1) C(18) 74(2) C(181) 75(2) C(182) 64(1) C(183) 95(2) C(184) 99(2) C(185) 73(1) C(185) 102(2) C(186) 56(1) C(19) 74(2) O(19) 81(2) C(20) 73(2) C(21) 47(1) O(21) 54(1) C(22) 59(1) C(221) 50(l) C(222) 75M Complex 2 (319) o(i9j C(20) F(201) F(202) F(203) F(204) F(205) F(206) C(21) F(211) F(212) F(213) F(214) F(215) F(216) C(22) O(22) C(23) C(24) O(24) C(25) F(251) F(252) F(253)
2176(1) 1364(5) 1681(3) 1982(7) 2 177(5) 2442(3) 2638(4) 2943(4) 2549(2) 2766(4) 2295(4) 2088(2) 1590(4) 140(3) 205(7) 163(4) -425(4) 652(3) 1122(2) 568(3)
4290( 1) 4123(10) 3526(5) 2883(9) 2183(7) 2549(3) 1856(6) 2318(6) 2863(3) 3259(6) 37 14(7) 4432(4) 4805(6) 37 12(6) 3352(11) 2922(7) 4155(8) 4327(5) 3960(3) 523 l(5)
In complex 2, there is rotational disorder in three of the CF3 groups: those attached to C(16), C(20), and C(21). The occupancies for the orientations of the CF3 group on C(16) are 0.6 and 0.4 and for C(20)
z
-1208(2) -2908( 3) -3 195(4) -3846(4) -3224(4) -2826(3) -31 11(7) -3785(5) -3 1lO(5) -3354(25) -2928(27) -2928(27) -3650(22) -1339(3) -1 169(2) -284(3) 1073(3) 1537(2) 2 149(3) 3303(4) 2700(4)
3942(2) 2638(3) 1678(4) 3713(4) 2298(5) 7899(3) 8454(9) 6982(5) 8803(6) 7892(25) 7892(25) 9190(21) 7239(20) 7317(3) 6273(2) 7991(3) 7570(2) 6528(2) 8404(3) 8237(3) 8055(4)
3212(2) 3819(2) 4579(3) 4156(4) 2998(3) 2383(2) 3239(5) 2473(7) 1642(4) 1735(17) 1735(17) 253 l(2 1) 3300(15) 2 109(2) 2352(2) 1615( 2) 1285(2) 1376(1) 753(2) 1186(3) -222(3)
4646(4) 498 l(3) 5893(4) 6726(6) 5465(4) 6750(5) 7086(9) 6089(12) 6253( 11) 3930(3) 4069(7) 5241(4) 326 l(4) 4306( 12) 3141(11) 5212(7) 3148(4) 3959(3) 1675(4) 856(4) 1284(3) -786(5) -1 271 (3) -1253(4) -1 493 (3)
5134(3) 5982(2) 4383(3) 3647(5) 3790(3) 4983(3) 441 1(11) 327 5 (4) 4929(10) 11025(3) 1184l(4) 10562(4) 11588(3) 10630(10) 12039(6) 11029(10) 10176(3) 9445(2) 10317(3) 9624(3) 8778(2) 9909( 5 ) 10823(4) 9047(4) 10062(3)
2004(3) 2113(2) 1532(3) 2290(3) 1020(3) 835(3) 1922(10) 2024(10) 538(5) 32 14(3) 2306(3) 3554(7) 3859(3) 42 1O(4) 3147(11) 2737(9) 3055(3) 2682(2) 3287(3) 3 105(3) 2794(2) 3323(4) 3603(5) 4063(3) 2440(3)
997(3) 15 12(2) 835(4) 201(4) 1128(5) 1066(5) 3361(4) 3546(7) 2824(5) 3787(6) 3252(3) 276 l(2) 368 l(3) 3667(3) 3232(2) 4198(3) 4023(4) 44 14(5) 4647(4)
5872(5) 5709(3) 6835(5) 6993(7) 7009(7) 7491(6) 5574(6) 4795(9) 5916(11) 6312(9) 5289(5) 5001(4) 5317(5) 503l(5) 4719(4) 5090(6) 5452(9) 4170(7) 5729(8)
Complex 3 52(1) C(16) 3184(7) 151(8) O(16) 3020(5) 112(4) C(17) 4044(8) 151(8) C(171) 4275(11) 5 368(9) 102(5) C(172) 80(3) C(173) 3386(10) 6394(8) 97(5) C(18) 6728( 10) 89(4) C(181) 7129(10) 74(2) C(182) 6860(10) 83(4) C(183) 4898(7) 94(5) C(19) 74(2) O(19) 4536(5) 4031 (7) 94(5) C(20) 2664(7) 79(4) C(21) 1992(4) 223(11) O(21) 1866(8) 133(7) C(22) 734(11) 242(13) C(221) 1258(14) 64(4) C(222) 2646(10) 77(2) C(223) 70(4) a Equivalent isotropic U defined as one-third of the trace of the orthogonalized Uij tensor. 2353(1) 5152( 12) 4187(7) 4428(13) 33 18 ( 10) 2405(6) 1241(10) 415(8) 13(5) -914(9) -1 356(9) -282(5) -619(9) 1286(10) -1 76( 13) 1810(11) 1606(19) 1867(8) 1573(6) 2627(8)
V
UfeaW
are 0.7 and 0.3, and for C(21), 0.7 and 0.3 occupancies were refined. The minor occupancy fluorine atoms on C(20) and C(21) were refined isotropically.
Drake et al.
3230 Inorganic Chemistry, Vol. 32, No. 15, 1993 Table III. Bond Lengths (A) and Angles (deg)
Ca-0(2) Ca-0(8) Ca-O( 17) Ca-0(22) C(1)-0(2) C(3)-C(4) 0(5)-~(6) C(7)-0(8) C(9)-C( 10) O(1l)-C( 12) C( 13)-0( 14) C(16)-F(161) C(16)-F(163) C( 16)-F( 165)
2.471(3) 2.578(2) 2.365(2) 2.348(2) 1.416(4) 1.491(5) 1.416(4) 1.4 12(4) 1.472(7) 1.406(6) 1.529(6) 1.542(4)
Ca-0(5) Ca-O( 11) Ca-0( 16) Ca-0(21) 0(2)-~(3) C(4)-0(5) C(6)-C(7) 0(8)-C(9) C( 10)-0( 11) C( 13)-C( 131) C(13)-C(133) C( 14)-0( 14)
2.434(3) 2.493(3) 2.401(3) 2.4 1O(3) 1.428(7) 1.465(7) 1.439(5) 1.438(5) 1.467(6) 1.439(5) 1.386(6) 1.278(7) 1.285(7) 1.285(8)
Ca-0(5) Ca-O(ll) Ca-0( 19) Ca-0(24) 0(2)-C(3) C(4)-0(5) C(6)-C(7) 0(8)-C(9) C(l0)-0(ll) C( 12)-C( 13) O(14)-C( 15) C(16)-F(162) C(16)-F( 164) C( 16)-F( 166)
2.856(9) 2.889(5) 2.624(5) 2.622(5) 1.364( 13) 1.402(15) 1.432(10) 1.421(12) 1.478(14) 1.410(11) 1.5 15( 16)
O(2)-Ca-0( 5) 0(5)-Ca-0(8) 0(5)-Ca-0(11) O(2)-Ca-0( 14) 0(8)-Ca-0(14) 0(2)-Ca-0(16) 0(8)-Ca-0( 16) O(14)-Ca-0( 16) 0(5)-Ca-0(19) O(ll)-Ca-0(19) 0(16)-Ca-O( 19) O(5)-Ca-0( 2 1) O(ll)-Ca-0(21) 0(16)-Ca-0(21) Ca-0(2)-C( 1) C(1)-0(2)-C(3)
0(2)-Ca-0(5)
O(5)-Ca-0( 8) 0(5)-Ca-O( 11) 0(2)-Ca-0(17) 0(8)-Ca-0(17) 0(2)-Ca-O( 19) O(S)-Ca-O( 19) O(17)-Ca-O( 19) O(5)-Ca-O(22) O( 1l)-Ca-0(22)
64.0( 1) 64.2(1) 126.7(1) 85.9(1) 71.7( 1) 87.6(1) 126.2(1) 71.9(1) 128.2(1) 85.4(1) 75.7(1) 72.8(1) 83.9(1) 146.4( 1) 120.5( 3) 111.7(3) 107.0(3) 113.6(2) 108.3(3) 114.5(2) 11233)
65.5(1) 67.4( 1) 131.9(1) 82.4(1) 135.5(1) 103.3(1) 73.1(1) 71.5(1) 74.4( 1) 101.7(1)
Complex 1 2.594(3) C(14)-C(15) 2.492(3) C(16)-0(16) 2.355(2) C(17)-C(171) 2.379(2) C(17)-C(173) 1.419(6) C( 18)-C( 182) 1.416(5) C( 18)-C( 184) 1.472(6) C(18)-C(186) 1.415(5) C( 19)-O( 19) 1.431(5) C(20)-C(21) 1.531(4) C(21)-C(22) 1.5 16(4) C(22)-C(222) 1.258(3) Complex 2 2.497(3) C( l6)-C( 17) 2.449(3) C( 17)-C(18) 2.402( 3) C( 19)-0( 19) 2.395(3) C(20)-F(201) 1.423(7) C(20)-F(203) 1.436(6) C(20)-F(205) 1.490(8) C(Zl)-F(211) 1.429(6) C(21)-F( 213) 1.423(5) C(21)-F(215) 1.513(9) C(2l)-C(22) 1.404(10) C(22)-C(23) 1.284(8) C(24)-O( 24) 1.283(14) C(25)-F(251) 1.280(8) C( 25)-F(253) Complex 3 2.814(6) C( 13)-C( 14) 2.900(6) C(14)-C(15) 2.621(5) C( 16)-0( 16) 2.643(5) C( 17)-C(17 1) 1.325(18) C( 17)-C(173) 1.426( 14) C( 18)-C( 182) 1.495(15) C(18)-C( 19) 1.422( 12) C( 19)-C(20) 1.404(10) C(21)-0(21) 1.483(16) C(22)-C(221) 1.490(13) C(22)-C(223)
Bond Angles Comulex 1 0(2)-Ca-0( 8) 127.1( 1) C(132)4(13)-C(133) 0(2)-Ca-0( 11) 169.0(1) C( 132)-C(13)-C(14) 0(8)-Ca-0(11) 63.8(1) C( 13)-C(14)-0(14) 0(5)-Ca-O( 14) 74.8(1) O(14)-C( 14)-C(15) 99.0( 1) C( 14)-C( 15)-C( 16) O( 1l)-Ca-O( 14) 137.3(1) C( 15)-C( 16)-C( 17) 0(5)-Ca-0(16) O(1l)-Ca-O( 16) 84.7(1) Ca-O( 16)-C( 16) 85.1(1) C( 16)-C( 17)-C(172) 0(2)-Ca-0( 19) 0(8)-Ca-0(19) 137.0(1) C( la)&( 17)-C(173) O(14)-Ca-0(19) 146.7(1) C( 172)-C( 17)-C(173) 98.5( 1) C( 181)-C( 18)-C(183) O(2)-Ca-0(2 1) 75.3(1) C( 184)-C(18)-C( 185) 0(8)-Ca-O( 2 1) O( 14)-Ca-0(21) 141.2(1) C( 185)-C(18)-C( 186) 72.0(1) C( 182)-C(18)-C( 19) O(19)-Ca-0(2 1) 120.0(2) C(184)-C(lS)-C(19) Ca-O( 2)-C( 3) 107.6(4) C( 186)-C(18)-C(19) 0(2)-C(3)-C(4) 112.4(2) C( 18)-C( 19)-C(20) Ca-0(5)-C(4) 112.1(3) Ca-0(19)-C(19) C(4)-0(5)-C(6) 108.4(3) C(2O)-C(2 1)-0( 2 1) C(6)-C(7)-0(8) Ca-O(8)4(9) 114.5(2) 0(21)4(21)-C(22) 0(81-C(9)-C(lO) 107.3(3) C(2 1)-C(221-C(22 1) ca-b(ii j-C(ioj i18.3(3j c(221)-d(22)-d(222) C(10)-0(11)-C(12) 113.2(3) C(221)-C(22)-C(223) C(13 l)-C( 13)-C(133) 108.8(3) Complex 2 O(2)-Ca-0( 8) 131.8( 1) F( 162)-C( 16)-C( 17) 0(2)-Ca-0(11) 162.4(1) F( 164)-C( 16)-C( 17) O(l)-Ca-O( 11) 65.7(1) F( 166)-C( l6)-C( 17) 0(5)-Ca-0(17) 125.7(1) C( 16)-C( 17)-C(18) 0(11)-Ca-0(17) 83.5(1) Ca-0(17)4(17) O(5)-Ca-0( 19) C( 18)-C( 19)-0( 19) 74.8(1) O( 1l)-Ca-0( 19) O( 19)-C( 19)-C(20) 82.1(1) C( 19)-C(20)-F(201) 0(2)-Ca-0(22) 84.8(1) 73.6( 1) O(8)-Ca-0( 22) F(20 l)-C(20)-F(202) 147.2(1) F(20 l)-C(20)-F(203) O(17)-Ca-0(22)
1.399(4) 1.240(3) 1.519(6) 1.509(7) 1.5 15 (7) 1.288(31) 1.586(20) 1.237(3) 1.38l(4) 1.549(4) 1.515(5)
C( 15)-C( 16) C( 16)-C( 17) C(17)-C(172) C( 18)-C( 181) C( 18)-C( 183) C( 18)-C( 185) C( 18)-C( 19) C(19)-C(20) C(21)-0(21) C(22)-C(221) C(22)-C(223)
1.405(4) 1.549(4) 1.5 1O( 5) 1.464(9) 1.545(7) 1.524(26) 1.549(4) 1.402(4) 1.253(3) 1.528(6) 1.520(4)
1.526(6) 1.370(5) 1.240(6) 1.306(5) 1.309(5) 1.304(6) 1.307(5) 1.303(6) 1.300(8) 1.515(6) 1.373(5) 1.234(6) 1.293(8) 1.348(7)
C( 17)-0( 17) C(18)-C(19) C(19)-C(20) C(20)-F( 202) C(20)-F(204) C(20)-F(206) C(2 1)-F(2 12) C(21)-F(214) C(21)-F(216) C(22)-0(22) C(23)-C(24) C(24)-C(25) C(25)-F(252)
1.239(5) 1.369(6) 1.540(5) 1.315(7) 1.308(12) 1.306(7) 1.302(5) 1.301(7) 1.298(8) 1.251(5) 1.385(7) 1.525(6) 1.318(6)
1.543(11) 1.395(10) 1.243(9) 1.525(14) 1.522(15) 1.495( 15) 1.532(11) 1.383(11) 1.257(8) 1.548(17) 1.507(12)
C( 14)-0( 14) C( 15)-C( 16) C( 16)-C( 17) C( 17)-C( 172) C( 18)-C( 181) C(18)-C(183) C(19)-0(19) C(20)4(21) C(21)-C(22) C( 22)-C( 222)
1.242(9) 1.4 12(10) 1.534(10) 1.515( 13) 1.444( 18) 1.490(16) 1.256(9) 1.378(10) 1.534(11) 1.465(13)
108.9(3) 107.7(3) 115.6(2) 124.0(3) 124.5(3) 119.3(3) 135.7(2) 109.8(3) 107.7(3) 107.7(4) 109.9(5) 103.3(18) 109.1(13) 109.0(3) 110.9(10) 107.8(8) 118.9(2) 135.9(2) 124.9(3) 115.0(2) 107.9(3) io9.4(3j 108.2(3)
112.1(6) 112.0(5) 118.1( 5 ) 117.7(4) 134.3(3) 128.1(4) 114.0(3) 110.7(3) 107.2(4) 105.9(4)
C( 13l)-C( 13)-C( 14) C( 133)-C(13)-C( 14) C(13)-C(14)-C(15) Ca-0( 14)-C( 14) C( 15)-C(l6)-0( 16) O(16)-C(16)-C( 17) cii 6j-Cii 7j-C:ii 7 i C(171)-C( 17)