Moving Atoms and Small Molecules out of Open Containers

Mar 8, 2013 - C40H20 (C40) was constructed from C60 with a constriction at both ... H2O@C40, charge analysis reveals an interesting charge transfer at...
1 downloads 0 Views 3MB Size
Article pubs.acs.org/JPCA

Moving Atoms and Small Molecules out of Open Containers Michael L. McKee* Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Alabama 36849, United States S Supporting Information *

ABSTRACT: Density functional theory with the M05-2X exchange/correlation functional is used to study the barriers for expulsion of atoms and small molecules (N2, CO, H2, Ar, Kr, Xe, H2O) out of open fullerenes (I20) and related molecular containers (C40H20, [5]beltene, cucurbit[5]uril). The reactions are examples where dispersion plays a critical role in determining the barrier heights. Calculations are compared with experimental kinetic data for N2@I20, CO@I20, and Xe@cucurbit[5]uril (Xe@CB[5]). Comparing the four molecular containers, the activation barriers for escape of an atom or small molecule correlate with the binding energies. A new open-fullerene model container C40H20 (C40) was constructed from C60 with a constriction at both ends formed by five methylene groups around the rim. The activation barriers for escape of N2 and CO from the model container are similar to those from the I20 open-cage fullerene. In the case of H2O@C40, charge analysis reveals an interesting charge transfer at the transition state as the escaping guest is “squeezed” out of the host container.



For “loose-fitting” substrates within the endohedral complexes, computed frequencies could be CO ∼ N2 > Kr > Xe.

H 2O@CB[5](aq) + Xe(g) → Xe@CB[5](aq) + H 2O(l) (1)

Thus, whereas the calculations do not provide quantitative agreement with experiment in water, they do predict that Xe will bind significantly with CB[5] in water at 298 K (eq 1, ΔG(aq) = 0.1 kcal/mol) and that exchange in water (Xe@[CB5](aq) → CB[5](aq) + Xe(g)), should be slow ΔG‡(aq) = 27.8 kcal/mol).



CONCLUSIONS Escape of atoms and molecules from OCFs are examples of dispersion-controlled reactions. Density functional theory with dispersion-aware exchange/correlation functions such as M052X is necessary to compute realistic activation barriers. From the transition structures and thermodynamic parameters, equilibrium constants can be computed for moving atoms and small molecules into and out of open cages. Four OCF have been considered, I20, C40, [5]beltene, and CB[5], where substrates include N2, CO, Ar, Kr, Xe, H2, and H2O. Calculations of N2@I20, CO@I20, and Xe@CB[5] (in water) have been compared with experimental results.



ASSOCIATED CONTENT

S Supporting Information *

Table S1 contains total energies, zero-point energies, heat capacity corrections, and BSSE for the OCF species. Table S2 contains the Cartesian coordinates optimized at the M05-2X/631G(d) level. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We acknowledge the Alabama Supercomputer Center for providing time. This article is dedicated to Professor Peter Politzer, who had made numerous contributions to the analysis and interpretation of wave functions.



REFERENCES

(1) Cram, D. J., Cram, J. M. Container Molecules and Their Guests; Royal Society of Chemistry: Cambridge, England, 1994. (2) Warmuth, R. The Inner Phase of Molecular Container Compounds as a Novel Reaction Environment. J. Inclusion Phenom. Macrocyclic Chem. 2000, 37, 1−38.

Figure 6. Curbit[5]uril (CB[5]) with N2, CO, H2, and Kr inside. The plot of Xe@CB[5] (not shown) looks very similar to Kr@CB[5]. 2370

dx.doi.org/10.1021/jp400231h | J. Phys. Chem. A 2013, 117, 2365−2372

The Journal of Physical Chemistry A

Article

(3) Warmuth, R. Inner-Phase Stabilization of Reactive Intermediates. Eur. J. Org. Chem. 2001, 423−437. (4) Lee, T. B.; McKee, M. L. Endohedral Hydrogen Exchange Reactions in C60 (nH2@C60, n = 1,5): Comparison of Recent Methods in a High-Pressure Cooker. J. Am. Chem. Soc. 2008, 130, 17610− 17619. (5) Warmuth, R.; Yoon, J. Recent Highlights in Hemicarcerand Chemistry. Acc. Chem. Res. 2001, 34, 95−105. (6) Warmuth, R. Reactions Inside Carcerands. In Molecular Encapsulation: Organic Reactions in Constrained Systems; Brinker, U. H., Mieusset, J., Eds.; John Wiley: Chippenham, Wiltshire, 2010; Chapter 9, pp 227−268. (7) Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Open-Cage Fullerenes: Towards the Construction of Nanosized Molecular Container. Chem. Soc. Rev. 2010, 39, 817−844. (8) Yu, Y.; Shi, L.; Yang, D.; Gan, L. Molecular Containers with a Dynamic Orifice: Open-Cage Fullerenes Capable of Encapsulating Either H2O or H2 under Mild Conditions. Chem. Sci. 2013, 4, 814− 818. (9) (a) Komatsu, K.; Murata, M.; Murata, Y. Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis. Science 2005, 307, 238−240. (b) Murata, M.; Murata, Y.; Komatsu, K. Synthesis and Properties of Endohedral C60 Encapsulating Molecular Hydrogen. J. Am. Chem. Soc. 2006, 128, 8024−8033. (10) Kurotobi, K.; Murata, Y. Single Molecule of Water Encapsulated in Fullerene C60. Science 2011, 333, 613−616. (11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C. et al. Gaussian 09; Gaussian, Inc.: Pittsburgh, PA, 2009. (12) Hohenstein, E. G.; Chill, S. T.; Sherrill, C. D. Assessment of the Performance of the M05-2X and M06−2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. J. Chem. Theory Comput. 2008, 4, 1996−2000. (13) Hobza, P., Müller-Dethlefs, K. Non-Covalent Interactions: Theory and Experiment. In RSC Theoretical and Computational Chemistry Series; Royal Society of Chemistry: Cambridge, England, 2010. (14) Marenich, A.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378−6396. (15) Hernández-Rojas, J.; Ruiz, A.; Bretón, J.; Llorente, J. M. G. Free and Hindered Rotations in Endohedral C60 Fullerene Complexes. Int. J. Quantum Chem. 1997, 65, 655−663. (16) (a) Cross, R. J. Vibration−Rotation Spectroscopy of Molecules Trapped inside. C60. J. Phys. Chem. A 2008, 112, 7152−7156. (b) Cross, R. J. Does H2 Rotate Freely Inside Fullerenes? J. Phys. Chem. A 2001, 105, 6943−6944. (17) Xu, M.; Sebastianelli, F.; Bačić, Z.; Lawler, R.; Turro, N. J. Quantum Dynamics of Coupled Translational and Rotational Motions of H2 inside C60. J. Chem. Phys. 2008, 128, 011101. (18) Xu, M.; Sebastianelli, F.; Bačić, Z.; Lawler, R.; Turro, N. J. H2, HD, and D2 inside C60: Coupled Translation-Rotation Eigenstates of the Endohedral Molecules from Quantum Five-Dimensional Calculations. J. Chem. Phys. 2008, 129, 064313. (19) (a) Waller, M. P.; Kruse, H.; Mück-Lichtenfeld, C.; Grimme, S. Investigating Inclusion Complexes Using Quantum Chemical Methods. Chem. Soc. Rev. 2012, 41, 3119−3129. (b) Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem.Eur. J. 2012, 18, 9955−9964. (20) Whitener, K. E., Jr. Theoretical Studies of CH4 Inside an OpenCage Fullerene: Translation-Rotation Coupling and Thermodynamic Effects. J. Phys. Chem. A 2010, 114, 12075−12082. (21) Iwamatsu, S.-I.; Uozaki, T.; Kobayashi, K.; Re, S.; Nagase, S.; Murata, S. A Bowl-Shaped Fullerene Encapsulates a Water into the Cage. J. Am. Chem. Soc. 2004, 126, 2668−2669.

(22) Iwamatsu, S.-I.; Stanisky, C. M.; Cross, R. J.; Saunders, M.; Mizorogi, N.; Nagase, S.; Murata, S. Carbon Monoxide Inside an Open-Cage Fullerene. Angew. Chem., Int. Ed. 2006, 45, 5337−5340. (23) Whitener, K. E., Jr.; Frunzi, M.; Iwamatsu, S.-I.; Murata, S.; Cross, R. J.; Saunders, M. Putting Ammonia into a Chemically Opened Fullerene. J. Am. Chem. Soc. 2008, 130, 13996−13999. (24) Stanisky, C. M.; Cross, R. J.; Saunders, M. Putting Atoms and Molecules into Chemically Opened Fullerenes. J. Am. Chem. Soc. 2009, 131, 3392−3395. (25) Whitner, K. E., Jr.; Cross, R. J.; Saunders, M.; Iwamatsu, S.-I.; Murata, S.; Mizorogi, N.; Nagase, S. Methane in an Open-Cage [60]Fullerene. J. Am. Chem. Soc. 2009, 131, 6338−6339. (26) Gan, L.; Yang, D.; Zhang, Q.; Huang, H. Preparation of OpenCage Fullerenes and Incorporation of Small Molecules Through Their Orifices. Adv. Mater. 2010, 22, 1498−1507. (27) Frunzi, M.; Baldwin, A. M.; Shibata, N.; Iwamatsu, S.-I.; Lawler, R. G.; Turro, N. J. Kinetics and Solvent-Dependent Thermodynamics of Water Capture by a Fullerene-Based Hydrophobic Nanocavity. J. Phys. Chem. A 2011, 115, 735−740. (28) Schneider, H.-J. Perturbed [12]annulenes. Derivatives of Dibenzo[cd,gh]pentalene. Angew. Chem., Int. Ed. 2009, 48, 3924− 3977. (29) Trost, B. M.; Kinson, P. L. Open-Cage Fullerene Derivatives Suitable for the Encapsulation of a Hydrogen Molecule. J. Am. Chem. Soc. 1975, 97, 2438−2449. (30) Iwamatsu, S.-I.; Murata, S.; Andoh, Y.; Minoura, M.; Kobayashi, K.; Mizorogi, N.; Nagase, S. Switchable Open-Cage Fullerene for Water Encapsulation. J. Org. Chem. 2005, 70, 4820−4825. (31) Zhang, Q.; Pankewitz, T.; Liu, S.; Klopper, W.; Gan, L. Heating a Bowl of Single-Molecule-Soup: Structure and Desorption Energetics of Water-Encapsulated Open-Cage [60] Fullerenoid Anions in the Gas-Phase. Angew. Chem., Int. Ed. 2010, 49, 9935−9938. (32) Hampe, O.; Karpuschkin, T.; Vonderach, M.; Weis, P.; Yu, Y.; Gan, L.; Klopper, W.; Kappes, M. Heating a Bowl of Single-MoleculeSoup: Structure and Desorption Energetics of Water-Encapsulated Open-Cage [60] Fullerenoid Anions in the Gas-Phase. Phys. Chem. Chem. Phys. 2011, 13, 9818−9823. (33) Schröder, A.; Mekelburger, H.-B.; Vögtle, F. Belt-, Ball-, TubeShaped Molecules In Topics in Current Chemistry; Springer-Verlag: Heidelberg, 1994; Vol. 172, pp 180−201. (34) Gleiter, R.; Hellbach, B.; Gath, S.; Schaller, R. J. From Superphanes to Beltenes. Pure Appl. Chem. 2006, 78, 699−706. (35) Gleiter, R.; Esser, B.; Kornmayer, S. C. Cyclacenes: HoopShaped Systems Composed of Conjugated Rings. Acc. Chem. Res. 2009, 42, 1108−1116. (36) Nakamura, E.; Tahara, K.; Matsuo, Y.; Sawamura, M. J. Synthesis, Structure, and Aromaticity of a Hoop-Shaped Cyclic Benzenoid [10]Cyclophenacene. J. Am. Chem. Soc. 2003, 125, 2834−2835. (37) Eisenberg, D.; Shenhar, R.; Rabinovitz, M. Synthetic Approaches to Aromatic Belts: Building up Strain in Macrocyclic Polyarenes. Chem. Soc. Rev. 2010, 39, 2879−2890. (38) Chuang, S.-C.; Murata, Y.; Murata, M.; Komatsu, K. An OrificeSize Index for Open-Cage Fullerenes. J. Org. Chem. 2007, 72, 6447− 6453. (39) See http://www.csgnetwork.com/areairregpolycalc.html for calculating areas (accessed March 6, 2013). (40) (a) Carravetta, M.; Murata, Y.; Murata, M.; Heinmaa, I.; Stern, R.; Tontcheva, A.; Samoson, A.; Rubin, Y.; Komatsu, K.; Levitt, M. H. Solid-State NMR Spectroscopy of Molecular Hydrogen Trapped Inside an Open-Cage Fullerene. J. Am. Chem. Soc. 2004, 126, 4092− 4093. (b) Sawa, H.; Wakabayashi, Y.; Murata, Y.; Murata, M.; Komatsu, K. Floating Single Hydrogen Molecule in an Open-Cage Fullerene. Angew. Chem., Int. Ed. 2005, 44, 1981−1983. (41) (a) Rafailov, P. M.; Thomsen, C.; Bassil, A.; Komatsu, K.; Bacsa, W. Inelastic Light Scattering of Hydrogen Containing Open-Cage Fullerene ATOCF. Phys. Status Solidi B 2005, 242, R106−R108. (42) Kim, J.; Jung, I.-S.; Kim, S.-Y.; Lee, E.; Kang, J.-K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Syntheses, Isolation, Characterization, and X2371

dx.doi.org/10.1021/jp400231h | J. Phys. Chem. A 2013, 117, 2365−2372

The Journal of Physical Chemistry A

Article

ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 2000, 122, 540−541. (43) Gerasko, O. A.; Samsonenko, D. G.; Fedin, V. P. Supramolecular Chemistry of Cucurbiturils. Russ. Chem. Rev. 2002, 71, 741− 760. (44) Das, D.; Scherman, O. A. Cucurbituril: At the Interface of Small Molecule Host-Guest Chemistry and Dynamic Aggregates. Isr. J. Chem. 2011, 51, 537−550. (45) (a) Masson, E.; Ling, X.; Joseph, R.; Kyeremeh-Mensah, L.; Lu, X. Cucurbituril Chemistry: A Tale of Supramolecular Success. RSC. Adv. 2012, 2, 1213−1247. (b) Lü, J.; Lin, J.-X.; Cao, M.-N.; Cao, R. Cucurbituril: A Promising Organic Building Block for the Design of Coordination Compounds and Beyond. Coord. Chem. Rev. 2013, 257, 1334−1356. (46) Miyahara, Y.; Abe, K.; Inazu, T. “Molecular” Molecular Sieves: Lid-Free Decamethylcucurbit[5]uril Absorbs and Desorbs Gases Selectively. Angew. Chem., Int. Ed. 2002, 41, 3020−3023. (47) Biedermann, F.; Uzunova, V. D.; Scherman, O. A.; Nau, W. M.; De Simone, A. Release of High-Energy Water as an Essential Driving Force for the High-Affinity Binding of Cucurbit[n]urils. J. Am. Chem. Soc. 2012, 134, 15318−15323. (48) Huber, G.; Legrand, F.-X.; Lewin, V.; Baumann, D.; Heck, M.P.; Berthault, P. Interaction of Xenon with Cucurbit[5]uril in Water. ChemPhysChem 2011, 12, 1053−1055. (49) Sundararajan, M.; Sinha, V.; Bandyopadhyay, T.; Ghosh, S. K. Can Functionalized Cucurbituril Bind Actinyl Cations Efficiently? A Density Functional Theory Based Investigation. J. Phys. Chem. A 2012, 116, 4388−4395.

2372

dx.doi.org/10.1021/jp400231h | J. Phys. Chem. A 2013, 117, 2365−2372