8 Phase Separation and Mechanical Properties of an Amorphous Poly(ether-b-ester) M . P. C . W A T T S
1
and E . F. T . W H I T E
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
Department of Polymer and Fibre Science, University of Manchester, Institute of Science and Technology, Manchester, England
The dynamic mechanical properties and phase separation of a series of amorphous condensation multiblock polymers, poly(oxypropylene-b-oxypropylene studied.
oxyterephthaloyl),
Samples prepared from poly(oxypropylene)
was
with a
molecular weight of 3000 showed clear evidence of block phase separation from small angle x-ray scattering and two transition regions in torsional braid analysis. As the molec ular weight of the poly(oxypropylene)
was reduced, the
stages between clear phase separation and formation of a homogeneous mixture were observed. The size and shape of the mechanical damping peaks could be controlled by the block size, the weight fractions of the two components, and the chemical composition of the components.
T ) o l y m e r s are often used i n sound absorption a n d vibration d a m p i n g a p p l i c a t i o n s ( I ) , f o r e x a m p l e , i n r e d u c i n g h u l l noise i n ships (2) a n d i n s o u n d - p r o o f helmets
( 3 ) . T h e i r efficiency
i n these a p p l i c a t i o n s is
r e l a t e d t o t h e t a n δ o f t h e p o l y m e r i n t h e range temperatures
o f frequencies a n d
f o u n d i n the p a r t i c u l a r a p p l i c a t i o n . A m a j o r l i m i t a t i o n o f
c o n v e n t i o n a l a m o r p h o u s h o m o p o l y m e r s is that t h e r e g i o n o f h i g h t a n δ ( > 0.8) extends over o n l y 2 0 ° - 3 0 ° C , at 1 H z , i n the g l a s s - r u b b e r t r a n s i t i o n r e g i o n (4). T h e r e have b e e n m a n y attempts to b r o a d e n this d a m p i n g p e a k b y t h e a d d i t i o n of plasticizers a n d fillers, b u t w i t h o n l y l i m i t e d success (5,6).
H o w e v e r , t h e w i d t h o f the p e a k c a n b e r e a d i l y c o n t r o l l e d
i n p o l y m e r b l e n d s (7,8,9).
Recently, interpenetrating networks ( I P N )
h a v e b e e n p r e p a r e d that s h o w e x c e p t i o n a l l y b r o a d a n d h i g h t a n δ m a x i m a , Current address: Materials Research Laboratory, Polymer Science and Engineer ing, University of Massachusetts, Amherst, MA 01003. 1
0-8412-0457-8/79/33-176-153$06.50/0 © 1979 American Chemical Society
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
154
POLYMERS
MULTIPHASE
and they have properties in damping applications that are significantly better than other commercially available damping materials (5).
It is
thought that the broad maxima in tan Β observed in IPNs arises from a partial phase separation of the network chains such that regions of con tinuously varying composition are found rather than the regions of p i r e homopolymer normally observed in polymer blends. E a c h volume element with a given composition contributes to the overall properties, leading to a broad tan 8 peak. The tendency of an amorphous multicomponent polymer system to Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
phase separate is driven by the large negative enthalpy of the phaseseparated state relative to a homogeneous mixture (11), Scott-Hildebrand solution theory (10),
In terms of the
this negative enthalpy is related
to the difference in solubility parameter of the components and their molecular weight.
The tendency to phase separate is opposed by the
loss in entropy caused by the reduction in chain configurations on phase separation.
In principle, polymer blocks, grafts, blends, and IPNs could
all show partial phase separation with a suitable choice of polymers and chain topology. The remarkable properties of amorphous block polymers, particularly poly ( styrene-b-diene ), have been studied extensively in recent years. Many studies (JO, 35, 36, 37, 38) suggest that the degree of phase separa tion depends on the length of, the number of, and the chemical compo sition of the blocks. The aim of the present study was to prepare multiblock polymers having a suitable combination of these three variables so that the change between a polymer showing phase separation
to one behaving as a
homogeneous mixture could be observed in a thermoplastic.
In this
intermediate region, properties similar to those of IPNs might be expected. The properties of these materials also would be of interest in comparison with the semicrystalline multiblock polymers such as the
segmented
polyurethanes and poly ( ethcr-b-ester ) s that are available commercially. Approach A series of amorphous condensation multiblock polymers were pre pared comprising poly ( oxypropylene oxyterephthaloyl ) ( 3 I G T ) , a brittle glassy solid, as the hard block and poly ( oxypropylene ) ( P P O ) or poly( di ( oxyethylene ) oxyadipoy 1 ) ( P D E G A ) as the soft block. Polymer
Preparation
The polymerization method used was a polycondensation of terephthaloyl chloride, propane 1,2-diol, and the appropriate soft block ( Figure 1) in a 20% solution in dry 1,2-dichloroethane at 8 5 ° C for 48 hours.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
WATTS
A N D
HO-CH-CH-OH ι 2 CH
•O-CH-CH.; CH
ppo
3
155
Amorphous Poly(ether-b-ester)
WHITE
3
propane
1.2 diol
or - + O-CH^CH^O-CH^CH^O-p-fCH^CrO-} PDECA
0
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
soft block
CI
d
0
ferephrhaloyl chbride
hard block
sofr Hock MW - prepolymer MW = χ wr °fo prepolymer 25 [ 50 j 75
hard bbc* MW
~~ 2x | χ | / x
Figure 1.
2
Preparation of the multiblock polymers
T h e m o l a r r a t i o of soft b l o c k to p r o p a n e
1,2-diol a n d t e r e p h t h a l o y l
c h l o r i d e w a s A : B : ( A + Β ) X 1.01. F o u r moles of p y r i d i n e p e r m o l e of a c i d c h l o r i d e w a s a d d e d to react w i t h t h e H C L p r o d u c e d i n t h e p o l y merization.
P y r i d i n e h y d r o c h l o r i d e w a s r e m o v e d at t h e e n d of t h e
reaction b y w a s h i n g w i t h dilute H C L Multiblock polymers were prepared from P P O prepolymers
with
m o l e c u l a r w e i g h t s 400, 1000, 2000, 3000, a n d w e i g h t fractions of P P O 25, 50, a n d 7 5 % . P P O " h o m o p o l y m e r s " w e r e p r e p a r e d b y r e a c t i n g P P O p r e p o l y m e r w i t h t e r e p h t h a l o y l c h l o r i d e alone.
A s a m p l e also w a s p r e
p a r e d c o n t a i n i n g 5 0 % P D E G A of m o l w t 2550. T h e p o l y m e r s w e r e c h a r a c t e r i z e d b y v i s c o m e t r y a n d G P C analysis. T h e viscosities w e r e m e a s u r e d as 0.5 g d l " solutions i n 1,1,2,2-tetra1
chloroethane
at 2 5 ° C .
G e l permeation chromatograms
were
measured
i n d i m e t h y l a c e t a m i d e s o l u t i o n at 8 0 ° C . A t y p i c a l c h r o m a t o g r a m of 3 I G T h o m o p o l y m e r is g i v e n i n F i g u r e 2. T h e r e is a s m a l l s e c o n d a r y p e a k at h i g h e l u t i o n v o l u m e . T h i s s e c o n d a r y p e a k a p p e a r e d i n a l l of t h e p o l y m e r s p r e p a r e d f r o m t e r e p h t h a l o y l c h l o r i d e , a n d t h e e l u t i o n v o l u m e of t h e m a x i m u m w a s constant, i n d e p e n d e n t secondary
of the presence of P P O . T h i s
peak is t h o u g h t to b e a t t r i b u t a b l e
to r e s i d u a l
terephthalic
a c i d a n d c y c l i c d i m e r a n d t r i m e r that are f o r m e d i n the e a r l y stages of polycondensation
reactions
(15).
T h e simple construction
shown i n
F i g u r e 2 w a s u s e d to r e m o v e the l o w - m o l e c u l a r - w e i g h t peak, a n d t h e c h r o m a t o g r a m s w e r e c o n v e r t e d to p o l y ( s t y r e n e ) m o l e c u l a r w e i g h t u s i n g a c o m p u t e r p r o g r a m s u p p l i e d b y t h e D e p a r t m e n t of C h e m i s t r y , U n i v e r sity of M a n c h e s t e r . A l l results are g i v e n i n T a b l e I. T h e o v e r a l l m o l e c u l a r w e i g h t of these p o l y m e r s is estimated as 12,000-20,000 f r o m v i s c o s i t y
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
156
MULTIPHASE POLYMERS
T a b l e I.
Data
Soft Block
Polymer
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
PPO/3IGT
( approx wt frac)
Wf o
Wj
400
100 75 50 25
0.720 0.526 0.421 0.215
0.280 0.420 0.500 0.637
2.03 1.53 1.17
1000
100 75 50 25
0.869 0.678 0.469 0.226
0.131 0.266 0.415 0.584
1.65 1.22 1.08
2000
100 75 50 25
0.930 0.724 0.548 0.314
0.070 0.216 0.341 0.511
1.35 1.15 1.06
3000
100
0.951
0.049
75 50 25
0.680 0.486 0.255
0.242 0.380 0.544
1.18 1.08 1.03
100 50
0.944 0.55
0.059 0.329
1.11
0
0.718
(mol wt)
2550 3IGT/C β 6
PP
TR
s
Τ of 3IGT homopolymer with the same molecular weight as the hard block. Single-point viscosities 0.5 g · dl" in tetrachlorethane at 25°C. g
1
Elution volume
Detector response
Figure 2.
GFC chromatogram of 3IGT prepared using terephthaloyl chloride (3IGT/C)
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
WATTS AND WHITE
157
Amorphous Poly(ether-b-ester)
for the Polymers Hard
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
g
Block HrT
T /°C g
a
Tetrachloroethane 0.5/dl g- » (M 1
n
GPC in DMA" X 10~3 MJMJ
Tç/K
(tan δ max)
2.04 2.96 7.39
536 728 1640
8 13 12
0.401 0.615 0.548 0.375
56 71 59 29
2.03 2.26 2.18 1.97
251 271 283 315
2.59 5.54 16.39
643 1260 3607
9 32 71
0.550 0.842 0.556 0.455
92 63 54
1.49 2.61 2.28
229 248 267 308
3.98 8.38 21.84
926 1820 4553
22 46 78
0.423 0.502 0.490 0.413
34 49 39
2.03 2.46 2.22
0.425 0.398 0.494 0.391
30 (14.30) 33 52 64
0.415 0.425
31 37
0.319
51
7.13 15.77 43.02
1566 3368 8852
10.25
2199
c d
41 68 90
a
1.83 (2.99) * 2.06 2.29 2.12 1.74 2.16
221 235 260 308 219 234
—.
317
241 261 363 (DSC)
G P C in dimethyl acetamide solution at 80°C, poly(styrene) calibration. G P C in dimethyl acetamide solution at 80°C, poly(oxyethylene) calibration.
a n d G P C d a t a (16,17). T h e ratio of M / M ^ i n terms of p o l y ( s t y r e n e ) m o l e c u l a r w e i g h t w a s 1.7/2.6; a s i m i l a r range has b e e n r e p o r t e d f o r p o l y ( oxytetramethylene oxyterephthaloyl-co-oxysebacoyl) random co polymers ( 2 2 ) . w
Naming
System
T h e m u l t i b l o c k p o l y m e r s are d i s t i n g u i s h e d b y soft-block t y p e , t h e m o l e c u l a r w e i g h t of t h e soft b l o c k , a n d the a p p r o p r i a t e w e i g h t f r a c t i o n of t h e soft b l o c k . T h e r e f o r e , P P O 3000/50 refers to a P P O / 3 I G T b l o c k p o l y m e r , p r e p a r e d f r o m a P P O p r e p o l y m e r w i t h m o l e c u l a r w e i g h t of 3000 a n d c o n t a i n i n g a p p r o x i m a t e l y 5 0 % b y w e i g h t of P P O . P P O 3000/ 100 represents a P P O " h o m o p o l y m e r " p r e p a r e d b y l i n k i n g a P P O p r e p o l y m e r m o l w t 3000 w i t h t e r e p h t h a l o y l c h l o r i d e . 3 I G T / C refers t o 3 I G T p r e p a r e d f r o m t e r e p h t h a l o y l c h l o r i d e a n d 3 I G T / M to m e l t - p o l y m e r i z e d 3 I G T u s i n g d i m e t h y l terephthalate.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
158
MULTIPHASE POLYMERS
Block Molecular
Weights
T h e s e q u e n c e d i s t r i b u t i o n o f m o n o m e r residues i n c o p o l y c o n d e n s a t i o n reactions of this t y p e has b e e n s t u d i e d i n d e t a i l b y P e e b l e s
(18,39).
If a l l monomers are assumed to have e q u a l reactivity a n d i f the reaction has g o n e t o c o m p l e t i o n , t h e n u m b e r - a v e r a g e
sequence length
of 3 I G
r e s i d u e s ( g ) is g i v e n b y :
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
__ g=
1
[3IG] + [PPOIo rpprvi 0
, . ... , , . Jo = i n i t i a l c o n c e n t r a t i o n
r
+
[
Similarly, for P P O residues: S
[3IG]
0
+
[PPO]o
[3IG]
0
T h e s e q u e n c e lengths f o l l o w a "most p r o b a b l e " d i s t r i b u t i o n ; v a l u e s o f s~ a n d g f o r e a c h p o l y m e r a r e g i v e n i n T a b l e I . B e c a u s e o f t h e h i g h m o l e c u l a r w e i g h t o f P P O , ~s is g e n e r a l l y less t h a n t w o , so t h e m o l e c u l a r w e i g h t o f t h e soft b l o c k w i l l b e t a k e n as t h e m o l e c u l a r w e i g h t o f t h e PPO
prepolymer.
T h e molecular weight
of the h a r d block
(Hn) is
given b y :
# n = 2O6 0 + 148 206 = m o l w t of repeat u n i t 148 = m o l w t of o x y t e r e p h t h a l o y l residue T o a first a p p r o x i m a t i o n , a m u l t i b l o c k p o l y m e r p r e p a r e d f r o m P P O w i t h molecular weight χ containing 5 0 % P P O b y weight w i l l have a h a r d b l o c k m o l e c u l a r w e i g h t o f x; o n e c o n t a i n i n g 2 5 % w i l l h a v e a h a r d - b l o c k m o l e c u l a r w e i g h t o f 2x; a n d o n e c o n t a i n i n g 7 5 % P P O a h a r d - b l o c k of x/2 ( F i g u r e 1 ) . Melt Polymerization
of 3IGT
Low-molecular-weight 3 I G T homopolymers
(1000-8000) were pre
p a r e d b y m e l t p o l y c o n d e n s a t i o n (19) u s i n g d i m e t h y l t e r e p h t h a l a t e , a n d t h e T s w e r e m e a s u r e d u s i n g D S C . M o l e c u l a r w e i g h t s u p t o 4000 w e r e g
m e a s u r e d b y e n d - g r o u p analysis, h i g h e r m o l e c u l a r w e i g h t s w e r e e s t i m a t e d b y e x t r a p o l a t i o n o f t h e T / m o l w t curves (16,17). g
A n attempt w a s m a d e
to p r e p a r e P P O 3000/50 b y t h e same m e t h o d , b u t t h e P P O f o r m e d a separate l a y e r i n t h e m e l t b e f o r e h i g h - m o l e c u l a r - w e i g h t p o l y m e r w a s f o r m e d a n d the attempt was abandoned.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
WATTS AND WHITE
Mechanical
159
Amorphous Poly(ether-b-ester)
Testing
T h e r o o m - t e m p e r a t u r e p r o p e r t i e s of the p o l y m e r s v a r i e d f r o m v i s c o elastic l i q u i d s f o r 1 0 0 % P P O t h r o u g h soft ( 5 0 % P P O ) a n d t o u g h ( 2 5 % P P O ) solids to a b r i t t l e glass ( 3 I G T ) . u s e d as t h e d y n a m i c m e c h a n i c a l - t e s t
A torsional b r a i d p e n d u l u m was method, because only w i t h a sup
p o r t e d s a m p l e c o u l d of t h e p o l y m e r s b e t e s t e d o n o n e a p p a r a t u s , a n d o n l y s m a l l a m o u n t s of the p o l y m e r s w e r e a v a i l a b l e .
T h e torsional pen
d u l u m was based o n Gillham's design ( 2 0 ) , w i t h the inertia disc m o t i o n
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
being detected b y a Hall-effect device.
T h e glass substrate c o n s i s t e d of
t w o glass r o v i n g s t w i s t e d a r o u n d e a c h other b y " d o u b l i n g " to g i v e a u n i f o r m b u n d l e of 1680 filaments t h a t a c t e d as s u p p o r t f o r t h e p o l y m e r , w i t h t h e ends of t h e glass t r a p p e d i n c r i m p tags. T h e p o l y m e r w a s cast onto t h e b r a i d as a 3 0 % s o l u t i o n i n a s u i t a b l e solvent, a n d t h e s o l v e n t r e m o v e d s l o w l y at a t m o s p h e r i c pressure a n d u n d e r v a c u u m to l e a v e a c o m p o s i t e c o n s i s t i n g of a p o l y m e r m a t r i x a n d the glass s u p p o r t .
The
volume fraction of polymer i n the b r a i d ( φ ) was calculated f r o m the ρ
w e i g h t p e r u n i t l e n g t h of the b r a i d , k n o w i n g the a m o u n t of glass p r e s e n t a n d a s s u m i n g a p o l y m e r d e n s i t y of 1.0. T h e b r a i d s w e r e tested f r o m — 1 0 0 ° C u p w a r d s at a h e a t i n g rate of 1 ° C m i n " a n d a f r e q u e n c y of « 1
Χ
1 H z , u s i n g a n i n e r t i a l w e i g h t of 4.55
10" k g m . T h e d a m p e d sine w a v e s w e r e p r o c e s s e d b y h a n d t o g i v e 5
2
log decrement
a n d m o d u l u s . T h e r a d i u s of t h e s a m p l e w a s c a l c u l a t e d
f r o m the w e i g h t p e r u n i t l e n g t h , as above, w i t h t h e a d d i t i o n a l a s s u m p t i o n that the s a m p l e w a s a r i g h t c i r c u l a r c y l i n d e r a n d that t h e r e w e r e n o voids i n the sample.
The
Torsional Braid as a Composite
Material
I n a n y d i s c u s s i o n o f t h e results f r o m t o r s i o n a l b r a i d analysis i t is important
to establish
what
p r o p e r t i e s of t h e c o m p o s i t e .
c o n t r i b u t i o n t h e glass w i l l m a k e
to t h e
T h e p r i n c i p a l effects o f t h e glass a r e i l l u s
t r a t e d i n F i g u r e 3. T h e m o d u l u s a n d l o g - d e c r e m e n t curves f o r a s a m p l e of p o l y ( s t y r e n e )
a n d a b r a i d of p o l y ( s t y r e n e )
w e r e cast f r o m a t o l u e n e
s o l u t i o n a n d tested u s i n g t w o different i n e r t i a w e i g h t s . pure
poly(styrene)
pendulum
(21).
w a s tested o n a c o n v e n t i o n a l
a g r e e m e n t at l o w temperatures between
t h e curves.
that at h i g h temperatures constant
limiting
torsional
T h e m o d u l u s a n d d a m p i n g curves a r e i n f a i r l y close a n d i n t h e first p a r t o f t h e t r a n s i t i o n
region b u t b e y o n d the m a x i m u m i n l o g decrement, differences
T h e sample of
inverted
value.
there are
t h e m o d u l u s of t h e c o m p o s i t e Above
major
M o s t i m p o r t a n t is i n t h e o b s e r v a t i o n t h e glass-transition
tends
temperature,
to a the
m o d u l u s of t h e p o l y ( s t y r e n e ) m a t r i x b e c o m e s v e r y s m a l l , so this l i m i t i n g
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
160
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
MULTIPHASE POLYMERS
Figure 3 . A comparison between the mechanical properties of poly (styrène) and a poly(styrene) braid. (Φ) Compression-molded sample of PS. PS braid cast from toluene, φρ = 0.78. (Ο) Il—4.55 Χ J O " kg m' . (+) 12—8.8 X J O " kg m'K 5
2
6
modulus must correspond to the torsional rigidity of the glass trapped between the two crimp tags.
T h e damping of the braid also tends to a
low constant value at high temperatures for the same reason. T h e effect of the different inertia weights (II, 12) is probably a result of the change in tension i n the sample, altering the configuration of the glass.
As a
result of the change in the damping curves at high temperatures, the T
g
as defined by the maximum in log decrement has been shifted down in
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
WATTS AND WHITE
161
Amorphous Poly(ether-b-ester)
t e m p e r a t u r e b y a b o u t 5 ° C . T h e i m p o r t a n t c o n c l u s i o n o f this d i s c u s s i o n is that b e l o w t h e m a x i m u m i n l o g d e c r e m e n t t h e results f r o m t h e b r a i d are c o m p a r a b l e w i t h a s a m p l e of p u r e p o l y m e r , b u t a b o v e t h e m a x i m u m the p r o p e r t i e s of t h e glass substrate d o m i n a t e t h e c o m p o s i t e b r a i d . T h e v a l u e of t h e m o d u l u s of t h e p o l y ( s t y r e n e ) b r a i d at l o w t e m p e r a t u r e is s m a l l e r t h a n t h e s a m p l e of p u r e p o l y ( s t y r e n e ) b e c a u s e t h e crosss e c t i o n of the b r a i d is r a t h e r i r r e g u l a r , a n d t h e a p p r o x i m a t i o n o f a n i r r e g u l a r cross-section b y a c i r c u l a r o n e w i l l i n e v i t a b l y l e a d t o a n u n d e r estimate of m o d u l u s (21).
F o r this reason, t h e a b s o l u t e v a l u e s o f t h e
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
m o d u l u s of t h e m u l t i b l o c k p o l y m e r s i n F i g u r e s 4 - 1 0 a r e u n r e l i a b l e . It s h o u l d b e n o t e d that a T
L i L
w o u l d n o t b e e x p e c t e d i n this p o l y -
( styrene ) b r a i d s a m p l e b e c a u s e of its h i g h m o l e c u l a r w e i g h t ( a p p r o x i m a t e l y 100,000 ) (46).
A l s o , this analysis of t h e c o m p o s i t e s t r u c t u r e of
the b r a i d s u p p o r t s N i e l s e n ' s (47)
s u g g e s t i o n that T , L arises s o l e l y f r o m L
the r e s i d u a l elasticity o f t h e glass. T
L f
T h e torsional p e n d u l u m , braid, a n d
L w i l l be discussed i n more detail elsewhere
Properties of the Multiblock
(16,17).
Polymers
F i g u r e 4 shows t h e p r o p e r t i e s of P P O 3000/50 cast f r o m m e t h y l e t h y l ketone two
( M E K ) a n d toluene.
T h e s a m p l e cast f r o m M E K shows
e q u a l - s i z e d peaks i n l o g d e c r e m e n t b u t i n t h e s a m p l e cast f r o m
t o l u e n e , t h e h i g h - t e m p e r a t u r e p e a k is m u c h l a r g e r t h a n t h e l o w - t e m p e r a ture peak.
T h e s e v a r i a t i o n s are t y p i c a l of a t w o - p h a s e c o m p o s i t e i n
w h i c h t h e m o r p h o l o g y is c o n t r o l l e d b y t h e c a s t i n g solvent (21).
A l l of
t h e o t h e r samples w e r e cast f r o m solutions i n M E K . T h e results f o r a l l o f the o t h e r samples a r e s u m m a r i z e d i n F i g u r e s 5, 6, 7, 8, a n d 9. T h e series of p o l y m e r s p r e p a r e d f r o m P P O m o l w t 400 a l l s h o w e d a s h a r p t r a n s i t i o n region similar to p o l y (styrene).
A s a m p l e of m e l t p o l y m e r i z e d 3 I G T of
m o l w t 2750 also is s h o w n . A s t h e b l o c k m o l e c u l a r w e i g h t increases, t h e t r a n s i t i o n r e g i o n b e c o m e s p r o g r e s s i v e l y b r o a d e r u n t i l i n P P O 3000/50 a d o u b l e p e a k is f o r m e d . samples
T h e b r e a d t h of t h e t r a n s i t i o n r e g i o n i n t h e
p r e p a r e d f r o m h i g h - m o l e c u l a r - w e i g h t P P O m a y b e t a k e n as
e v i d e n c e of some f o r m of phase s e p a r a t i o n . Small Angle
X-Ray
Results
S m a l l angle x - r a y p i c t u r e s of m e l t - p r e s s e d films of P P O 3000/50 a n d 3000/25 cast f r o m M E K s h o w e d a w e l l - d e f i n e d d i f f r a c t i o n r i n g g i v i n g a m e a s u r e of the size of t h e i n h o m o g e n e i t i e s i n t h e m a t e r i a l . A M E K - c a s t film
of P P O 3000/50 gave i d e n t i c a l results.
A s a m p l e o f P P O 2000/25
g a v e a diffuse s c a t t e r i n g after t h r e e times t h e e x p o s u r e
of t h e P P O
3000/50, i n d i c a t i n g t h e p r e s e n c e of i r r e g u l a r i n h o m o g e n e i t i e s w i t h less difference i n e l e c t r o n d e n s i t y b e t w e e n t h e s c a t t e r i n g regions ( F i g u r e 1 0 ) .
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Figure 4.
-80
-60
0
·
-40
·
-20 0 T/°C
···»··
20
• °
0
40
0
60
%
The effect of casting solvent on the properties of PPO 3000/50. (O) Cast from MEK, φρ 0.87. (Φ) Cast from toluene, φρ = 0.66.
005
0-1
0-5
50
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
m
o r
S
to
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
*g SXIHAV ONV SXXVAV (*d}Sd-q'i9iii9)fi\o^ snoi[dxoiuy
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Figure 6. The properties of polymers prepared from PPO of mol wt 1000. (χ) PPO 1000/100, φρ — 0.79. (+) PPO 1000/75, φρ = 0.86. (Φ) PPO 1000/50, φρ = 0.85. (Ο) PPO 1000/25, φρ = 0.79.
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
W
Ο
W
β
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Figure 7. The properties of polymers prepared from PPO of mol wt 2000. (χ) PPO 2000/100, φρ — 0.65. (+) PPO 2000/75, φρ = 0.81. (Φ) PPO 2000/50, φρ = 0.82. (Ο) PPO 2000/25, φρ = 0.85.
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Figwre 8. T/ie properties of polymers prepared from PPO of mol wt 3000. (x) PPO 3000/100, φρ = 0.68. (+) PPO 3000/75, φρ ΝΑ. (Φ) PPO 3000/50, φρ = 0.87. (Ο) PPO 3000/25, φρ = 0.79.
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
CO
»
Νί
r
hi Ο
Μ
Μ
σ>
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Figure 9.
The properties of polymers prepared from PDEGA of mol wt 2550. (X) PDEGA φρ = 0.74. (*) PDEGA 2550/50, φρ = 0.79.
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
2550/100
-4
h-* Φ
& CL
cr
sa *î*
«"•«
Ο
r
•a
ο
M
>
CO
>
00
168
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
MULTIPHASE POLYMERS
Figure 10. Small angle x-ray pictures of the multiblock polymers, (top) PPO 3000/25, 24-hr exposure, (middle) PPO 3000/50, 24-hr exposure, (bottom) PPO 2000/25, 50-hr exposure.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
WATTS AND WHITE
169
Amorphous Poly(ether-b-ester)
Discussion The small angle x-ray results show that regular inhomogeneities were present in samples P P O 3000/50 and 3000/25.
T h e crucial question i n
any study of this type is what sort of phase separation has occurred in these polymers? T h e blocks, whole chains with slightly different compo sition, or low-molecular-weight impurities could have separated out. It is well established that the size of the inhomogeneities produced by phase separation of the blocks i n a block copolymer are controlled b y the
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
molecular weight of the blocks (24, 25) because the joints between the blocks must lie in the interfacial region between the domains ( Figure 11).
Β
Α
Β
A
Interfacial volume fraction
Β
f= D *0B-2X A
Figure 11.
Diagram of phase separation of a multiblock polymer
Table II shows the Bragg spacing and the sum of the unperturbed block dimensions for P P O 3000/50 and 3000/25, < r > was estimated 0
from the values for P P O , and poly ( oxyethylene oxyterephthaloyl ) given in the literature (26).
As the average block molecular weight increased,
the Bragg spacing also increased and is the same order of magnitude as the unperturbed block dimensions. This can be taken as a clear indication that phase separation of the blocks has occurred i n P P O 3000/50 and 3000/25.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
170
MULTIPHASE POLYMERS
Table II. Small Angle Scattering Data
Polymer
PPO (mol wt)
SIGT ( mol wt)
Average (mol wt)
P P O 3000/50 P P O 3000/25
3000 3000
3368 8852
3184 5926
° R = po
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
0
P
3iG ;
+
Τg/Composition
T
Mi
~
Bragg Spacing
R° 10.09 n m 13.3 n m
14.4 n m 19.2 n m
0.087 nm.
Relation
If t h e p o l y m e r s d o n o t s h o w p h a s e s e p a r a t i o n they c a n b e c o n s i d e r e d as r a n d o m c o p o l y m e r s .
The T
g
of a r a n d o m c o p o l y m e r solely
depends
o n c o m p o s i t i o n i f t h e m o l e c u l a r w e i g h t is sufficiently h i g h f o r T
g
to b e
i n d e p e n d e n t of m o l e c u l a r w e i g h t ( 2 7 ) . I t has b e e n e s t a b l i s h e d that t h e m o l e c u l a r w e i g h t o f 3 I G T / C is h i g h e n o u g h t o m a k e t h e T
g
of m o l e c u l a r w e i g h t (16,17). monomers appear.
independent
I n these c o p o l y m e r s t h e residues of t h r e e
T o define t h e c o m p o s i t i o n of a l l o f t h e P P O - b a s e d
c o p o l y m e r s b y o n e w e i g h t f r a c t i o n , t h e c o n t r i b u t i o n s o f t h e other t w o c o m p o n e n t s m u s t b e a d d e d together.
-^0-ΟΗ -(ρ-]-
-[Lo-CH -CH-J-
2
C H
3
2
CH
n
P P O residue
^0-c7oVc4 ο
8
propane-1,2-diol
Ο
oxyterephthaloyl
residue
residue
D e f i n i n g T b y t h e m a x i m u m i n t a n δ, a p l o t o f T v s . w e i g h t - f r a c t i o n g
PPO dues
g
residues ( W f (Wf
T R
)
P P 0
)
and T
g
vs. weight-fraction oxyterephthaloyl resi
c a n b e c o m p a r e d i n F i g u r e 12. T h e p l o t against
Wf
T R
s h o w s t h e m a j o r i t y of t h e p o i n t s l y i n g o n a c u r v e ; those l y i n g off t h e c u r v e a r e i n d e x e d a n d c o r r e s p o n d to those p o l y m e r s w i t h u n s y m m e t r i c a l m a x i m a i n l o g decrement.
T h e points l y i n g o n t h e l i n e are those w i t h
single, s h a r p m a x i m a i n l o g d e c r e m e n t have
symmetrically
broadened
peaks
a n d the 5 0 % copolymers i n l o g decrement.
that
T h e simple
Tg-composition relationship f o r polymers w i t h a single sharp m a x i m a i n log
decrement
is e v i d e n c e
random copolymers.
that t h e y
are behaving
like
homogeneous
S i m i l a r l y , those p o l y m e r s that d o n o t l i e o n t h e l i n e
m u s t b e p h a s e s e p a r a t e d b e c a u s e t h e regions p r o d u c i n g t h e m a x i m a i n l o g d e c r e m e n t h a v e a different c o m p o s i t i o n t o t h e o r i g i n a l p o l y m e r . T h e
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
WATTS AND WHITE
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
Amorphous Poly(ether-b-ester)
• • 2 1
3
00
02
_J
0-4
l_
Wf
06
08
10
r p o
Figure 12. T against copolymer composition defined by weight fraction oxyterephthaloyl and PPO residues. (1) PPO 3000/25, (2) PPO 2000/25, (3) PPO 1000/25, (4) g
PPO 2000/75, (5) PPO 3000/75.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
172 T
G
MULTIPHASE
POLYMERS
of p o l y ( 1 , 4 p h e n y l e n e t e r e p h t h a l o y l ) has b e e n r e p o r t e d as 540 Κ
A l l of the points c o u l d not b e
fitted
b y the general
(41).
Τ J composition
f o r m u l a b y W o o d ( 2 7 ) , even w h e n t h e T o f p o l y ( o x y t e r e p h t h a l o y l ) w a s G
a l l o w e d to float. I f t h e p o i n t f o r 3 I G T w a s o m i t t e d , t h e rest of t h e p o i n t s w e r e fitted b y t h e F o x e q u a t i o n ( 40 ), s h o w n as a d a s h e d l i n e i n F i g u r e 12.
1
W ' rp
rp
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
1
The T
g
S
1
t
gl
i*
Wg rp 1
g2
against w e i g h t - f r a c t i o n P P O - r e s i d u e s g r a p h shows a general
T / c o m p o s i t i o n curve w i t h significantly more g
scatter t h a n t h e W f
T R
p l o t ( F i g u r e 1 2 ) . I n d e f i n i n g the c o p o l y m e r b y W f p , t h e T is a s s u m e d P 0
G
i n d e p e n d e n t o f v a r i a t i o n s i n t h e ratio of t e r e p h t h a l o y l - t o - d i o l I n t h e case o f W f
T R
, the T
G
residues.
is a s s u m e d i n d e p e n d e n t of variations i n t h e
r a t i o of P P O to d i o l b y w e i g h t . B e c a u s e P P O a n d p r o p a n e 1,2-diol h a v e the same r e p e a t i n g u n i t , t h e i r c o n t r i b u t i o n to c h a i n same a n d h e n c e W f
flexibility
w i l l be the
p r o v i d e s t h e best m e a s u r e o f t h e c o m p o s i t i o n o f
T R
the p o l y m e r s .
Analysis The
of the Mechanical
Properties
morphology a n d composition variation found i n the
phase-
separated materials c a n b e d e d u c e d f r o m t h e s h a p e a n d p o s i t i o n o f t h e d a m p i n g curves.
Two-phase
composites
are g e n e r a l l y
f o u n d i n three
b a s i c m o r p h o l o g i e s ; p h a s e 1 d i s p e r s e d i n a m a t r i x of p h a s e 2, p h a s e 2 d i s p e r s e d i n a m a t r i x of phase 1, a n d a l a m e l l a m o r p h o l o g y i n w h i c h b o t h phases are c o n t i n u o u s .
If p h a s e 1 is a r u b b e r a n d phase 2 a glass,
t h e n t h e m o d u l u s of t h e c o m p o s i t e d e p e n d s c r u c i a l l y o n t h e m o r p h o l o g y . If o n e o f t h e phases is d i s p e r s e d , t h e c o n t i n u o u s phase dominates t h e d i s p e r s e d phase, l e a d i n g to a n impact-resistant a n d a filled r u b b e r i n t h e second.
glass i n t h e first case
I n the case of a l a m e l l a m o r p h o l o g y ,
b o t h phases c o n t r i b u t e e q u a l l y to t h e m o d u l u s of t h e c o m p o s i t e l o g a r i t h m i c l a w of m i x i n g .
in a
C o n s e q u e n t l y , t h e size of t h e t a n δ peaks
c o r r e s p o n d i n g to t h e T of t h e phases also w i l l d e p e n d o n t h e m o r p h o l o g y . G
The
tan δ peak
for the continuous
phase is larger t h a n that of t h e
d i s p e r s e d phase, a n d a l a m e l l a m o r p h o l o g y w i l l l e a d t o t w o e q u a l l y s i z e d peaks.
T h i s m a y b e seen i n t h e e x p e r i m e n t a l d a t a o n p o l y ( s t y r e n e - b -
d i e n e ) p o l y m e r s (28,45) a n d f o l l o w s f r o m t h e r e l a t i o n s h i p b e t w e e n t a n δ a n d t h e d i f f e r e n t i a l of t h e l o g of t h e r e a l m o d u l u s . T h e r e l a t i o n s h i p b e t w e e n t a n δ a n d the viscoelastic f u n c t i o n s is d i s c u s s e d i n R e f s . 6, 16, 21, Ref.
a n d 44, a n d t h e properties
of composites
have been
reviewed i n
21.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
WATTS AND WHITE
173
Amorphous Poly(ether-b-ester)
T h e f o l l o w i n g assumptions are made i n a n a l y z i n g t h e m e c h a n i c a l p r o p e r t y results. I n a c o m p l e t e l y p h a s e - s e p a r a t e d system, t h e T
g
soft b l o c k is t h e same as t h e T
of the
o f t h e P P O " h o m o p o l y m e r s , " e.g., P P O
g
3000/100. T h e T o f t h e h a r d b l o c k o f a g i v e n m o l e c u l a r w e i g h t is t h e g
same as t h e T
g
of t h e free h o m o p o l y m e r w i t h same m o l e c u l a r w e i g h t .
T h e overall glass-rubber
t r a n s i t i o n is c o n s i d e r e d t o arise f r o m i n c r e -
m e n t a l c o n t r i b u t i o n s o f regions o f different c o m p o s i t i o n c o m b i n e d t o gether as i n a c o n v e n t i o n a l c o m p o s i t e .
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
PPO
400/75/50/25,
1000/75
(Figures
5 and 6)
T h e s e a l l s h o w a single s h a r p m a x i m a i n l o g d e c r e m e n t
and a
s i m p l e r e l a t i o n s h i p b e t w e e n T a n d c o m p o s i t i o n , i n d i c a t i n g that t h e y a r e g
homogeneous materials. PPO
1000/50,
2000/50
(Figures
6 and 7)
B o t h samples s h o w a s y m m e t r i c a l l y b r o a d e n e d p e a k i n l o g d e c r e m e n t . T h e w i d t h o f t h e p e a k i n P P O 2000/50 i n d i c a t e s that regions w i t h w i d e l y v a r y i n g c o m p o s i t i o n a r e present a n d t h e n a r r o w e r p e a k i n P P O 1000/50 i n d i c a t e s that less p h a s e s e p a r a t i o n has o c c u r r e d i n this s a m p l e . T h e f a c t that t h e m a x i m a o f t h e l o g - d e c r e m e n t peaks l i e o n t h e T / g
c o m p o s i t i o n c u r v e a n d these peaks a r e s y m m e t r i c a l l y b r o a d e n e d i n d i c a t e s that regions w i t h t h e same c o m p o s i t i o n as t h e o r i g i n a l p o l y m e r are m o s t c o m m o n a n d the regions of v a r y i n g c o m p o s i t i o n s a r e a r r a n g e d i n a l a m e l l a m o r p h o l o g y i n w h i c h t h e y a l l c o n t r i b u t e e q u a l l y to t h e o v e r a l l p r o p e r t i e s of t h e c o m p o s i t e . PPO
3000/50 The
(Figures
presence
4 and 8)
o f t w o peaks
i n l o g decrement
shows
that
phase
s e p a r a t i o n has d e v e l o p e d sufficiently f o r regions r i c h i n P P O a n d 3 I G T to b e most c o m m o n . T h e differences b e t w e e n t h e temperatures o f these t w o m a x i m a a n d t h e T s o f t h e b l o c k s i f c o m p l e t e phase s e p a r a t i o n h a d g
o c c u r r e d are s h o w n i n T a b l e I I I . T h e t w o peaks i n t h e M E K - c a s t s a m p l e are i n d i c a t i v e o f a l a m e l l a - l i k e m o r p h o l o g y . T h e difference i n t h e size of t h e peaks i n t h e toluene-cast
sample indicates a 3 I G T matrix con-
t a i n i n g P P O - r i c h d i s p e r s e d regions. T h i s d e p e n d e n c e o f b l o c k p o l y m e r p r o p e r t y o n c a s t i n g solvent also is seen i n p o l y ( s t y r e n e - b - d i e n e ) p o l y m e r s ( 2 8 ) . T h e o r e t i c a l w o r k ( 2 3 ) has s h o w n that t h e t h e r m o d y n a m i c a l l y m o s t stable m o r p h o l o g y f o r a d i b l o c k p o l y m e r c o n t a i n i n g 5 0 % o f e a c h c o m p o n e n t is a l a m e l l a m o r phology.
F o r this reason M E K w a s c h o s e n f o r t h e tests o n a l l o t h e r
polymers.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
MULTIPHASE POLYMERS
174
Table III.
Values of the Phase-Separated
T
g
Regions
Maxima in Log. Dec. High Temp (°C)
Sample
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
P P O 3000/50: M E K C a s t P P O 3000/50: T o l u e n e C a s t P P O 3000/100 3 I G T / M m o l w t 3368
P P O 3000/25
(Figure
Low Temp (°C) -35 -40 -54
5 35 68
8)
P P O 3000/25 p r o d u c e s a s m a l l a n g l e x-ray d i f f r a c t i o n r i n g b u t o n l y a single m a x i m a i n l o g decrement w i t h a long, low-temperature tail. T h e c o m p o s i t i o n o f t h e regions p r o d u c i n g t h e m a x i m u m i n l o g d e c r e m e n t a r e different f r o m t h e c o m p o s i t i o n o f t h e p a r e n t p o l y m e r . T h e f a c t that a s e c o n d peak i n l o g d e c r e m e n t is n o t o b s e r v e d f o r t h e P P O - r i c h would
suggest that
t h e r e is a 3 I G T - r i c h m a t r i x t h a t
regions
dominates the
m e c h a n i c a l p r o p e r t i e s , w i t h P P O - r i c h d i s p e r s e d regions p r o d u c i n g t h e long, low-temperature component temperature
generally
tail. form
Block copolymers containing 2 5 % of one d i s p e r s e d phases
(23,29);
also,
the l o w -
t r a n s i t i o n i n P P O 3000/50 cast f r o m t o l u e n e is o n l y just
v i s i b l e , so i t is r e a s o n a b l e
that the reduction i n P P O w e i g h t fraction
w o u l d l e a d t o t h e d i s a p p e a r a n c e o f this t r a n s i t i o n .
P P O 2000/25,
1000/25
(Figures
6 and 7)
F r o m t h e same e v i d e n c e as a b o v e i t m a y b e d e d u c e d that t h e r e is a c o n t i n u o u s 3 I G T m a t r i x w i t h d i s p e r s e d P P O - r i c h r egions . T h e n a r r o w i n g o f t h e t a n δ m a x i m a i n d i c a t e s that t h e differences
i n composition
get p r o g r e s s i v e l y s m a l l e r w i t h l o w e r P P O m o l e c u l a r w e i g h t , i n l i n e w i t h the s m a l l a n g l e x-ray results.
PPO
3000/75,
2000/75
(Figures
7 and 8)
T h e s h i f t i n g o f t h e m a x i m a i n l o g d e c r e m e n t to l o w temperatures is the e v i d e n c e f o r p h a s e s e p a r a t i o n . T h e s e p o l y m e r s p r o b a b l y s h o w a l o n g l o w - t e m p e r a t u r e t a i l that has b e e n o b s c u r e d b y t h e l i m i t i n g m o d u l u s of the b r a i d .
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
WATTS AND WHITE
PDEGA
2550/50
175
Amorphous Poly(ether-b-ester)
(Figure
9)
T h i s s a m p l e s h o w s a s l i g h t l y b r o a d e n e d p e a k s i m i l a r t o P P O 1000/50. A s described i n the introduction, the d r i v i n g force f o r phase separation comes f r o m t h e l a r g e n e g a t i v e relative
to the homogeneous
enthalpy of the phase-separated mixture.
T h e enthalpy
state
( Δ Η ) can be
q u a n t i f i e d i n terms o f t h e S c o t t - H i l d e b r a n d t h e o r y f o r these m u l t i b l o c k s
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
(10,12,16);
where
M is t h e average
block molecular weight.
T h e difference i n
s o l u b i l i t y parameters f o r t h e t w o c o p o l y m e r s c a n b e c a l c u l a t e d f r o m t h e table of group contributions ( 2 6 ) . PPO/3IGT
δχ —
PDEGA/3IGT
8 - 8 2 — 1.4
C l e a r l y t h e difference
§ 2=
= s
2.5
1
i n s o l u b i l i t y parameters
is consistent
with the
difference i n b l o c k m o l e c u l a r w e i g h t r e q u i r e d to p r o d u c e p h a s e
separa
t i o n i n these t w o c o p o l y m e r s . PPO
"Homopolymers"
and 3IGT
T h e s e p o l y m e r s represent t h e h o m o l o g o u s series s h o w n i n T a b l e IV. T h e s t r o n g s e c o n d a r y r e l a x a t i o n i n 3 I G T a n d P P O 400/100 is o b s e r v e d as a s h o u l d e r i n P P O 1000/100, 2000/100, a n d 3000/100. T h e s e c o n d a r y i n t e r e p h t h a l a t e p o l y m e r s is t h o u g h t t o arise f r o m t o r s i o n a l o s c i l l a t i o n s o f the
terephthalate
o b s e r v a t i o n that
units
(30,31); this m e c h a n i s m
t h e r e l a x a t i o n gets w e a k e r
is i n l i n e w i t h t h e
for the higher-molecular-
weight P P O polymers. Table I V .
Structure of the P P O "Homopolymers
Polymer
M
3IGT P P O 400/100 P P O 1000/100 P P O 2000/100 P P O 3000/100
1 6.8 17.3 34.5 51.7
1
0.718 0.28 0.131 0.07 0.049
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
176
MULTIPHASE POLYMERS
Sources
of
Uncertainty
T h e m a j o r source of u n c e r t a i n t y i n these results comes
from the
i n f l u e n c e t h e glass substrate m i g h t h a v e o n phase s e p a r a t i o n ; p r e f e r e n t i a l a b s o r p t i o n o f o n e of the b l o c k s onto the surface o f the glass (32) w o u l d obviously
affect
phase
separation.
T h e low-molecular-weight
o b s e r v e d i n t h e G P C curves also c o u l d affect t h e results.
peak
I n so f a r as
t h e T / c o m p o s i t i o n c u r v e ( F i g u r e 12) shows a d i r e c t T / c o m p o s i t i o n g
g
relation w i t h symmetrical displacement of the 2 5 % a n d 7 5 % copoly
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
mers a b o v e a n d b e l o w t h e l i n e , there is n o e v i d e n c e to suggest these other factors a r e a f f e c t i n g phase separation.
that
T h e d e t a i l e d analysis
of t o r s i o n a l p e n d u l u m d a t a is also r a t h e r u n c e r t a i n at h i g h d a m p i n g v a l u e s ( 3 3 ) , as is the analysis o f m u l t i p h a s e systems b y s i n g l e - f r e q u e n c y i s o c h r o n a l d a t a (34). m u m i n log decrement
F o r most of t h e curves d i s c u s s e d here, t h e m a x i is a b o u t 1.0, a n d these effects a r e l i k e l y t o b e
" s e c o n d o r d e r " c o m p a r e d w i t h t h e effect o f t h e b r a i d a n d t h e l a r g e differences o b s e r v e d b e t w e e n the samples. Conclusions T h e s e q u e n c e o f curves i n F i g u r e s 5 - 1 1 shows t h e stages o f p a r t i a l p h a s e s e p a r a t i o n that o c c u r i n a n a m o r p h o u s m u l t i b l o c k p o l y m e r w i t h p o l y d i s p e r s e h a r d b l o c k s . B y s y s t e m a t i c a l l y v a r y i n g the b l o c k m o l e c u l a r weights
a n d copolymer composition, the breadth
a n d shape
of t h e
d a m p i n g peaks c h a n g e d i n a systematic a n d p r e d i c t a b l e w a y . C o n t r o l l e d p a r t i a l phase s e p a r a t i o n w o u l d a p p e a r t o b e a p o w e r f u l w a y t o t a i l o r i n g polymer properties for a particular application. T h e difference b e t w e e n these p o l y m e r s a n d c o n v e n t i o n a l H y t r e l - t y p e p o l y ( ether-b-esters ) is e m p h a s i z e d b y t h e a t t e m p t to p o l y m e r i z e P P O 3000/50 b y m e l t p o l y c o n d e n s a t i o n , the m e t h o d n o r m a l l y u s e d f o r H y t r e l (42).
C o m p l e t e p h a s e s e p a r a t i o n o c c u r r e d , s h o w i n g that
the incom
p a t i b i l i t y b e t w e e n P P O / 3 I G T is m u c h greater t h a n p o l y ( o x y t e t r a m e t h y l ene-b-oxytetramethylene oxyterephthaloyl). Acknowledgment O n e of us ( M . P . C . W . ) w o u l d like to thank t h e Science
Research
C o u n c i l f o r financial s u p p o r t . Literature
Cited
1. Ungar, Ε . E., Hatch, D . K., Prod. Eng. (1961) 32, 41. 2. Ball, G . L., Salyer, I. O., J. Acoust. Soc. Am. (1966) 39, 663. 3. Sperling, L . H . , Thomas, D . Α., National Technical Information Service Tech. Bull. (1975) AD/A-003 852.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
8.
WATTS AND WHITE
Amorphous Poly(ether-b-ester)
177
4. Hiejboeur, J., "Physics of Non-crystalline Solids," p. 231, J. A . Prins, E d . , North Holland, Netherlands, 1965. 5. Manson, J. Α., Sperling, L . H., "Polymer Blends and Composites," Plenum, New York, 1976. 6. McCrum, N . G . , Read, Β. E . , Williams, M . L . , "Anelastic and Dielectric Effects in Polymeric Solids," Wiley, New York, 1967. 7. Kollinsky, F., Markert, G . , "Multicomponent Polymer Systems," N . A . Platzer, E d . , ADV. C H E M . SER. (1971) 99, 175. 8. Kraus, G . , Rollman, K. W . , "Multicomponent Polymer Systems," N . A . Platzer, E d . , ADV. C H E M . SER. (1971) 99, 189. 9. Mitzumachi, J., Adhesion (1970) 2, 292. 10. Meier, D . J., Polym. Prepr. (1974) 15, 171. 11. Helfand, E., J. Chem. Phys. (1975) 62, 99. 12. Krause, S., Macromolecules (1970) 3, 84. 13. Leary, D . F., Williams, M . C., J. Polym. Sci., Polym. Phys. Ed. (1974) 12, 265. 14. Allport, D . C., James, W . H., "Block Copolymers," p. 208, Applied Science, United Kingdom, Division of Elsevier, New York, 1973. 15. Flory, P. J., "Principles of Polymer Chemistry," Cornell University, Ithaca, NY, 1953. 16. Watts, M . P. C., Ph.D. Thesis, University of Manchester, Institute of Sci ence and Technology, 1977. 17. Watts, M . P. C., White, E . F. T . , unpublished data. 18. Peebles, L . H., Macromolecules (1974) 9, 58. 19. Goodman, I., Rhys, J. H., "Polyesters," Vol. 1, IUife Books, London, 1965. 20. Gillham, J. K., A.I.Ch.E. J. (1974) 20.6, 1066. 21. Neilsen, L . E . , "Mechanical Properties of Polymers and Composites," Vol. I, Dekker, 1974. 22. Marrs, W., Still, R. H., Peters, R. H., J. Appl. Polym. Sci., in press. 23. Meier, D . J., "Block and Graft Copolymers," J. J. Burke, V . Weiss, Eds., Syracuse University, Syracuse, NY, 1973. 24. Kromer, H., Hoffmann, M . , Kampf, G . , Ber Bunsenges. Phys. Chem. (1970) 74, 859. 25. Helfand, E., Wasserman, Z. R., Polym. Eng. Sci. (1977) 17, 73. 26. "Polymer Handbook," 2nd ed., J. Brandrup, Ε . H. Immergut, Eds., Wiley -Interscience, 1975. 27. Wood, L . Α., J. Polym. Sci. (1958) 28, 319. 28. Miyamoto, S., Kodama, K., Shibayama, K., J. Polym. Sci., Polym. Phys. Ed. (1970) 8, 2095. 29. Folkes, M . J., Keller, Α., "Physics of Glassy Polymers," R. N . Howard, E d . , p. 548, Applied Science, 1973. 30. Yip, H. K., Williams, H. L . ,J.Appl.Polym. Sci. (1976) 20, 1217. 31. Sacher, E., J. Polym. Sci., Polym. Phys. Ed. (1968) 6, 1935. 32. Lipatov, Y. S., Adv. Polym. Sci. (1977) 22, 1. 33. Struick, L. C . E . , Rheol. Acta. (1967) 6, 119. 34. Tschoegl, N . W., Cohen, R. E . , 175th National ACS Meeting, California, 1978. 35. Toporowski, G . M . , Roovers, J. E . L . , J. Polym. Sci., Polym. Chem. Ed. (1976) 14, 2233. 36. Kraus, G . , Rollman, K. W . , J. Polym. Sci., Polym. Phys. Ed. (1976) 14, 1133. 37. Senich, G . Α., Macknight, W . J., ADV. C H E M . SER. (1979) 176, 97. 38. Matzner, M . , Noshay, Α., Robeson, L . M . , Merriam, N . , Barclay, R. Mc Grath, J. E., App. Polym. Symp. (1973) 22, 143. 39. Peebles, L . H., Macromolecules (1974) 7, 872. 40. Fox, T . G . , Bull. Am. Phys. Soc. (1956) 1, 123.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
178
MULTIPHASE POLYMERS
41. Frosina, V . , Levita, G . , Landis, J., Woodward, A. E . , J. Polym. Sci. (1977) 15, 239. 42. Cella, R. J., J. Polym. Sci., Part C (1973) 42, 727. 43. Sperling, L . H., "Recent Advances in Polymer Blocks, Blends and Grafts," p. 152, Plenum, New York, 1974. 44. Schwartzl, F. R., Struick, L . C . E . , Adv. Mol. Relaxation Processes (1967) 1, 210. 45. Robinson, R. Α., White, E . F. T . , "Block Copolymers," S. L . Aggarwal, E d . , p. 123, Plenum, New York, 1970. 46. Stadniki, S. J., Gillham, J. K., Boyer, R. F., J. Appl. Polym. Sci. (1976) 20, 1245.
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch008
47. Neilsen, L . E., Polym. Eng. Sci. (1977) 17, 713. RECEIVED April 14, 1978.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.