Multiphase Polymers - American Chemical Society

RICHARD J. GAYLORD ... derived by Guth and Smallwood for the Youngs modulus. ... The expression which they obtain for the Young's modulus contains the...
0 downloads 0 Views 1MB Size
12 Molecular Theories of the Interdomain

Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on September 13, 2018 at 17:58:30 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Contribution to the Deformation of Multiple Domain Polymeric Systems R I C H A R D J. G A Y L O R D Department of Metallurgy and Mining Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801

A number of theories of the

contribution

of

interdomain

polymeric material to the stress-strain, modulus, and swelling

behavior

of

block

copolymers

polymers are examined. The mathematical

details of

and

semicrystalline

conceptual foundation and

each theory are

the

summarized.

critique is then made of each theory in terms of the

A

validity

of the theoretical model, the mathematical development of the theory, and the ability of the theory to explain experimental findings.

À

n u m b e r of p o l y m e r i c systems e x h i b i t d o m a i n f o r m a t i o n . T h i s results i n some p o l y m e r i c m a t e r i a l b e i n g c o n f i n e d i n regions b e t w e e n

domains.

the

T h e d e f o r m a t i o n p r o p e r t i e s of these systems d e p e n d o n

the

types of p o l y m e r chains l y i n g b e t w e e n the d o m a i n s , as w e l l as o n the shape a n d spatial arrangement

of the d o m a i n s .

S e v e r a l theories

have

b e e n p r o p o s e d to date f o r the c o n t r i b u t i o n of the i n t e r d o m a i n m a t e r i a l to different d e f o r m a t i o n properties i n s e m i c r y s t a l l i n e p o l y m e r s a n d b l o c k c o p o l y m e r s . W e w i l l present a n d a n a l y z e these theories h e r e i n . Semicrystalline Modulus.

Polymers Jackson

et a l . ( I )

calculate

the c o n t r i b u t i o n of

amor-

p h o u s m a t e r i a l to the shear m o d u l u s of a s e m i c r y s t a l l i n e p o l y m e r

by

a s s u m i n g that o n l y tie chains ( chains w h o s e ends are a t t a c h e d to different crystallites ) c o n t r i b u t e G a u s s i a n statistics.

to t h e m o d u l u s a n d that these chains

follow

T h e y assume that the chains d e f o r m affinely.

p r e d i c t e d m o d u l u s values

are

lower than

the

observed

values.

0-8412-0457-8/79/33-176-231$05.00/0 © 1979 American Chemical Society

Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

The The

232

MULTIPHASE POLYMERS

authors note three possible effects w h i c h w e r e n e g l e c t e d i n t h e i r treatment:

(a)

medium.

the

crystallites

act

as

rigid

inclusions

within

an

shape, a n d t h e i r d i s p e r s i o n i n the s u r r o u n d i n g m e d i u m ; ( b ) m o l e c u l e s are h i g h l y e x t e n d e d statistics;

elastic

T h i s effect d e p e n d s o n the v o l u m e f r a c t i o n of crystals, t h e i r

(c)

a n d therefore

the

tie

d o not f o l l o w G a u s s i a n

t h e crystals i n t r o d u c e interfaces w h i c h are

impenetrable

to the a m o r p h o u s chains a n d t h e r e b y l i m i t their configurations. N i e l s o n a n d S t o c k t o n (2) crystallites as r i g i d Jackson

fillers

a t t e m p t to a c c o u n t f o r the effect of the

b y m u l t i p l y i n g t h e shear m o d u l u s result

et a l . b y the " f i l l e r effect" c o r r e c t i o n t e r m w h i c h h a d

of

been

d e r i v e d b y G u t h a n d S m a l l w o o d f o r the Y o u n g s m o d u l u s . T h e p r e d i c t e d shear m o d u l u s values are s t i l l too l o w . T h e authors e x p l a i n this b y the fact t h a t : ( a ) at l o w c r y s t a l l i n i t i e s , a m o r p h o u s c h a i n entanglements

may

b e significant; ( b ) at h i g h c r y s t a l l i n i t i e s , the crystallites m a y i m p i n g e o n e a c h other a n d f o r m a c o n t i n u o u s c r y s t a l phase; a n d ( c ) at h i g h c r y s t a l linities, the tie chains m a y b e v e r y short a n d f o l l o w n o n - G a u s s i a n b e h a v i o r . T h e authors also p o i n t o u t that w h i l e e x p e r i m e n t a l l y the m o d u l u s of c r y s t a l l i n e p o l y m e r s decreases w i t h t e m p e r a t u r e , t h e o r y p r e d i c t s the opposite effect.

G a u s s i a n elasticity

H o w e v e r , if the d e g r e e of c r y s t a l -

l i n i t y decreases w i t h t e m p e r a t u r e t h e n one c a n p r e d i c t a negative t e m p e r a t u r e coefficient of the m o d u l u s , u s i n g G a u s s i a n statistics. K r i g b a u m et a l . (3)

a c c o u n t f o r the fact that tie m o l e c u l e s m a y b e i n

a h i g h l y e x t e n d e d state e v e n i n the absence of a n e x t e r n a l

macroscopic

strain, b y u s i n g inverse L a n g e v i n c h a i n statistics to c a l c u l a t e the Y o u n g ' s m o d u l u s . It is a s s u m e d that i n t h e u n d e f o r m e d state, the crystallites are randomly oriented

( i n the p r e v i o u s t w o theories, t h e a r r a n g e m e n t

of

crystallites is u n s p e c i f i e d , a l t h o u g h it is p r e s u m a b l y r a n d o m ). A n a d d i t i o n a l a s s u m p t i o n is that w h i l e the o v e r a l l d e f o r m a t i o n of the c r y s t a l l i n e p o l y m e r is affine, t h e crystallites themselves

semi-

d o not d e f o r m .

T h e r e f o r e , the d e f o r m a t i o n of t h e tie m o l e c u l e s is greater t h a n affine. C r y s t a l shear a n d r e o r i e n t a t i o n u n d e r d e f o r m a t i o n are b o t h

neglected.

T h e expression w h i c h they o b t a i n f o r the Y o u n g ' s m o d u l u s contains

the

d e g r e e of c r y s t a l l i n i t y a n d the t o t a l n u m b e r of segments i n the s e m i c r y s t a l l i n e c h a i n as v a r i a b l e s . It p r e d i c t s that the Y o u n g ' s m o d u l u s s h o u l d increase w i t h c r y s t a l l i n i t y a n d that, for constant c r y s t a l l i n i t y , the m o d u l u s is p r o p o r t i o n a l to t e m p e r a t u r e . using a relation between

T h e i r t h e o r y is f u r t h e r d e v e l o p e d

the degree of c r y s t a l l i n i t y a n d

by

temperature

w h i c h they h a d p r e v i o u s l y d e r i v e d f o r the c r y s t a l l i z a t i o n of f o l d e d - c h a i n crystallites i n a n i s o t r o p i c , u n d e f o r m e d s a m p l e (4).

T h e final expression

p r e d i c t s a decrease i n the Y o u n g s m o d u l u s w i t h i n c r e a s i n g t e m p e r a t u r e . L o h s e a n d G a y l o r d (5)

h a v e e x a m i n e d t h e role of c r y s t a l l i t e i m p e n -

e t r a b i l i t y o n the Y o u n g s m o d u l u s . T h e crystallites are a s s u m e d to f o r m p a i r s of p a r a l l e l l a m e l l a e . T w o m a c r o s c o p i c m o r p h o l o g i e s are c o n s i d e r e d :

Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

12.

GAYLORD

the

stacked

233

Deformation of Multiple Domain Polymers lamellae

structure,

i n w h i c h a l l the lamellae

pairs are

p a r a l l e l to e a c h other, a n d t h e s p h e r u l i t i c s t r u c t u r e , i n w h i c h t h e l a m e l l a e p a i r s a r e d i s t r i b u t e d i n a s p h e r i c a l l y s y m m e t r i c m a n n e r a l o n g the r a d i i of the s p h e r u l i t e .

I t is a s s u m e d , as i n t h e K r i g b a u m et a l . m o d e l , t h a t

the o v e r a l l d e f o r m a t i o n o f the m a t e r i a l is affine, w h i l e the l a m e l l a e a r e undeformable. model.

C r y s t a l shear a n d r e o r i e n t a t i o n are i n c o r p o r a t e d i n t o t h e

T o c o n s i d e r i m p e n e t r a b i l i t y effects, a l a m e l l a r surface, a l t h o u g h

n o t i n f i n i t e , is a p p r o x i m a t e d b y a n i n f i n i t e p l a n e . statistics

The

configurational

of a c h a i n confined b y infinite, parallel, impenetrable

(6; 7) a r e t h e n u s e d .

I t is p r e d i c t e d that c i l i a ( c h a i n s

w i t h one

walls end

a t t a c h e d to a c r y s t a l surface ), loops ( chains w i t h b o t h ends a t t a c h e d t o the s a m e c r y s t a l s u r f a c e ) ,

a n d u n a t t a c h e d chains a l l c o n t r i b u t e t o t h e

Y o u n g ' s m o d u l u s as a result o f d o m a i n i m p e n e t r a b i l i t y effects a n d t h a t t h e i r c o n t r i b u t i o n decreases w i t h d e c r e a s i n g c h a i n c o n t o u r l e n g t h . T i e m o l e c u l e s , w h e n t h e y are v e r y large, c o n t r i b u t e t o the Y o u n g ' s m o d u l u s i n t h e same m a n n e r as the o t h e r types o f chains, b u t w h e n the c o n t o u r l e n g t h b e c o m e s v e r y s m a l l , t h e m o d u l u s b e g i n s t o rise w i t h a f u r t h e r decrease i n c h a i n c o n t o u r l e n g t h .

T h e m o d u l u s is a l w a y s greater i n a

s t a c k e d l a m e l l a r s t r u c t u r e t h a n i n a s p h e r u l i t e f o r e a c h t y p e of a m o r p h o u s chain.

T h e authors also c a l c u l a t e the Y o u n g ' s m o d u l u s d e p e n d e n c e o n

temperature,

at constant

crystallinity, w i t h

the use of the Rotational

I s o m e r i c State scheme.

I t is p r e d i c t e d that the Y o u n g ' s m o d u l u s o f c i l i a ,

loops, a n d unattached

chains s h o u l d a l w a y s decrease w i t h

temperature.

increasing

T h e tie m o l e c u l e shows the same b e h a v i o r at l o w t e m p e r a -

tures b u t at h i g h temperatures f o l l o w s G a u s s i a n b e h a v i o r as its Y o u n g ' s m o d u l u s b e g i n s t o rise w i t h f u r t h e r t e m p e r a t u r e increases. t i o n o f a decrease i n m o d u l u s w i t h i n c r e a s i n g t e m p e r a t u r e c r y s t a l l i n i t y agrees w i t h e x p e r i m e n t .

The predicat constant

N o a t t e m p t is m a d e b y the authors

to relate the d e g r e e o f c r y s t a l l i n i t y to the t e m p e r a t u r e .

Block

Copolymers

Stress—Strain Relation for Uniaxial Extension.

Leonard ( 8 ) has

c a l c u l a t e d the stress-strain r e l a t i o n f o r a n i n t e r d o m a i n tie m o l e c u l e i n a s p h e r i c a l d o m a i n m o r p h o l o g y . H e first w r i t e s the t o t a l e n t r o p y o f d e f o r m a t i o n as the s u m o f the e n t r o p y o f d e f o r m a t i o n w h i c h o n e gets f r o m G a u s s i a n e l a s t i c i t y t h e o r y a n d the e n t r o p y o f d o m a i n f o r m a t i o n ( i n b o t h terms, the extension ratio refers t o the i n t e r d o m a i n s t r a i n a n d n o t to t h e macroscopic

strain).

This

s u m is t h e n

S m a l l w o o d " f i l l e r effect" c o r r e c t i o n t e r m .

multiplied b y the Guth

and

T h e stress is c a l c u l a t e d b y

d i f f e r e n t i a t i n g the e n t r o p y e x pre ssi on w i t h respect t o the l e n g t h o f t h e d e f o r m e d i n t e r d o m a i n r e g i o n . T h e r a t i o o f the l e n g t h o f the u n d e f o r m e d i n t e r d o m a i n r e g i o n to the i n i t i a l o v e r a l l s a m p l e l e n g t h is set e q u a l t o t h e

Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

234

MULTIPHASE

POLYMERS

v o l u m e f r a c t i o n o f i n t e r d o m a i n m a t e r i a l , r a i s e d to the o n e - t h i r d p o w e r . L e o n a r d s c a l c u l a t i o n contains a great m a n y flaws: i t is incorrect to use t h e e n t r o p y of d o m a i n f o r m a t i o n i n t h e stress c a l c u l a t i o n because d o m a i n f o r m a t i o n occurs p r i o r to d e f o r m a t i o n a n d does n o t c h a n g e thereafter; the stress c a l c u l a t i o n s h o u l d b e p e r f o r m e d b y d i f f e r e n t i a t i n g w i t h respect to t h e m a c r o s c o p i c s a m p l e d i m e n s i o n rather t h a n t h e i n t e r d o m a i n d i m e n s i o n ; t h e expression r e l a t i n g the i n t e r d o m a i n a n d m a c r o s c o p i c

extension

ratios is i n c o r r e c t since i t fails to p r e d i c t that the f o r m e r q u a n t i t y b e c o m e s u n i t y as t h e latter q u a n t i t y goes to one; a n d , the r e l a t i o n g i v e n f o r t h e ratio of the i n i t i a l o v e r a l l s a m p l e l e n g t h to t h e i n i t i a l i n t e r d o m a i n l e n g t h fails to change w h e n t h e n u m b e r a n d size of the d o m a i n s are v a r i e d w h i l e the total v o l u m e f r a c t i o n of i n t e r d o m a i n m a t e r i a l is k e p t constant. Meier

(9)

has m o d e l e d the s p h e r i c a l d o m a i n m o r p h o l o g y b y a

s i m p l e c u b i c lattice i n w h i c h d o m a i n s are a r r a n g e d o n the lattice sites. T h e tie m o l e c u l e s r u n b e t w e e n nearest-neighbor d o m a i n s a n d are a s s u m e d to b e c o n f i n e d b y pairs of infinite, p a r a l l e l w a l l s .

T h e extension

f o r t h e i n t e r d o m a i n r e g i o n is set e q u a l to the m a c r o s c o p i c

ratio

extension

ratio d i v i d e d b y t h e v o l u m e f r a c t i o n of the i n t e r d o m a i n m a t e r i a l .

The

r a t i o of the i n i t i a l i n t e r d o m a i n d i m e n s i o n to t h e d o m a i n d i m e n s i o n is set e q u a l to the ratio of the v o l u m e fractions of the i n t e r d o m a i n a n d d o m a i n material.

U s i n g this t h r e e - c h a i n m o d e l , M e i e r calculates t h e stress-strain

r e l a t i o n b y d i f f e r e n t i a t i n g his e n t r o p y

expression

w i t h respect to t h e

i n t e r d o m a i n extension ratio. T h e M e i e r c a l c u l a t i o n has some d i f f i c u l t i e s : the i n t e r d o m a i n d e f o r m a t i o n fails to v a n i s h i n the absence of a n a p p l i e d m a c r o s c o p i c d e f o r m a t i o n ; the r e l a t i o n b e t w e e n the ratio of t h e d o m a i n d i m e n s i o n to the i n i t i a l i n t e r d o m a i n d i m e n s i o n a n d the ratio of v o l u m e fractions is incorrect; a n d the d i f f e r e n t i a t i o n s h o u l d b e c a r r i e d o u t w i t h respect to the m a c r o s c o p i c extension ratio. Gaylord and Lohse

(10)

have c a l c u l a t e d t h e stress-strain

relation

f o r c i l i a a n d tie m o l e c u l e s i n a s p h e r i c a l d o m a i n m o r p h o l o g y u s i n g t h e same t y p e of t h r e e - c h a i n m o d e l as M e i e r . It is a s s u m e d that the o v e r a l l s a m p l e d e f o r m a t i o n is affine w h i l e the d o m a i n s are u n d e f o r m a b l e .

It is

p r e d i c t e d that t h e stress increases r a p i d l y w i t h i n c r e a s i n g s t r a i n f o r b o t h types of chains.

T h e rate of stress rise is greatly a c c e l e r a t e d as the r a t i o

of t h e d o m a i n thickness to t h e i n i t i a l i n t e r d o m a i n separation increases. T h e results i n d i c a t e that i t is n o t correct to use the stress-strain

equation

o b t a i n e d b y G a u s s i a n elasticity theory, e v e n i f i t is m u l t i p l i e d b y a " f i l l e r effect" c o r r e c t i o n

term.

N o connection

d i m e n s i o n s a n d t h e v o l u m e fractions

is m a d e

between

the

initial

of the d o m a i n a n d i n t e r d o m a i n

m a t e r i a l i n this theory. Partial Molar E l a s t i c Free Energy of Swelling. L e o n a r d ( 8 ) c a l c u l a t e d t h e p a r t i a l m o l a r elastic free e n e r g y of s w e l l i n g f o r a n i n t e r d o m a i n tie m o l e c u l e i n a s p h e r i c a l d o m a i n m o r p h o l o g y . H e i n c l u d e d t h e e n t r o p y

Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

12.

GAYLORD

235

Deformation of Multiple Domain Polymers

of d o m a i n f o r m a t i o n a n d the e n t r o p y t e r m f r o m G a u s s i a n elasticity t h e o r y . T h e c u b e of the extension r a t i o f o r i s o t o p i c s w e l l i n g is t a k e n e q u a l t o the i n v e r s e of the v o l u m e f r a c t i o n of p o l y m e r i n the i n t e r d o m a i n r e g i o n . L e o n a r d stated t h a t h i s expression reduces to t h e F l o r y - R e h n e r e q u a t i o n w h e n the d o m a i n size goes to z e r o . f o r m a t i o n b y L e o n a r d is i n c o r r e c t .

T h e use of the e n t r o p y of d o m a i n

A d d i t i o n a l l y , L e o n a r d ' s final e q u a t i o n

f o r the p a r t i a l m o l a r elastic free e n e r g y of s w e l l i n g is i n c o r r e c t l y w r i t t e n . T h e a c t u a l expression n e v e r r e d u c e s to t h e F l o r y - R e h n e r e q u a t i o n ,

but

is p o s i t i v e o v e r t h e entire r a n g e of i n t e r d o m a i n p o l y m e r v o l u m e f r a c t i o n a n d goes to zero as the v o l u m e f r a c t i o n b e c o m e s zero. M e i e r (11 ) considers the s w e l l i n g of a tie m o l e c u l e i n b l o c k c o p o l y mers w i t h l a m e l l a r , c y l i n d r i c a l , a n d s p h e r i c a l d o m a i n m o r p h o l o g i e s .

The

statistics u s e d f o r the l a m e l l a r d o m a i n m o r p h o l o g y is that of a c h a i n confined between

a p a i r of i n f i n i t e , p a r a l l e l i m p e n e t r a b l e

c y l i n d r i c a l a n d s p h e r i c a l d o m a i n structures confined between respectively.

infinite, concentric

are

modeled

walls. by

a

cylinders and concentric

The chain

spheres,

T h e i n v e r s e of the v o l u m e f r a c t i o n of p o l y m e r i n the i n t e r -

d o m a i n r e g i o n is t a k e n e q u a l to the i s o t r o p i c s w e l l i n g r a t i o , r a i s e d to t h e first,

s e c o n d , a n d t h i r d p o w e r i n the l a m e l l a r , c y l i n d r i c a l , a n d s p h e r i c a l

domain morphologies, respectively.

T h e results i n d i c a t e t h a t the b e h a v i o r

of the p a r t i a l m o l a r elastic f r e e e n e r g y of s w e l l i n g as a f u n c t i o n of interd o m a i n p o l y m e r v o l u m e f r a c t i o n is q u i t e different i n t h e different m o r phologies.

A n objection

spherical domain models. constructs

can be

raised about

Meier's cylindrical a n d

M e i e r takes one p a r t i c u l a r d o m a i n a n d t h e n

a c o n f i n i n g s h e l l a r o u n d that d o m a i n , w h i c h passes t h r o u g h

nearest-neighbor

domains.

T h e tie c h a i n is t h e n c o n f i n e d b e t w e e n

d o m a i n a n d the s u r r o u n d i n g s h e l l . H o w e v e r , a tie m o l e c u l e is to t w o different d o m a i n s , a r o u n d e a c h of w h i c h one

the

attached

c a n construct

a

c o n f i n i n g s h e l l . A n i n t e r d o m a i n tie m o l e c u l e s h o u l d t h e r e f o r e b e c o n f i n e d to the v o l u m e d e f i n e d b y the i n t e r s e c t i o n of these t w o shells i f M e i e r s a p p r o a c h is to b e

consistent.

G a y l o r d a n d L o h s e (10)

h a v e e x a m i n e d the s w e l l i n g b e h a v i o r of tie

m o l e c u l e s , loops, c i l i a , a n d u n a t t a c h e d phologies.

chains i n different d o m a i n m o r -

E a c h c h a i n is c o n f i n e d b e t w e e n

a p a i r of i n f i n i t e , p a r a l l e l

i m p e n e t r a b l e w a l l s a l t h o u g h the d o m a i n s are n o t a s s u m e d to b e i n f i n i t e . T h e r e are one, t w o , a n d three o r t h o g o n a l p a i r s of p a r a l l e l w a l l s i n t h e l a m e l l a r , c y l i n d r i c a l , a n d s p h e r i c a l d o m a i n strucutres, r e s p e c t i v e l y .

The

r e l a t i o n b e t w e e n the s w e l l i n g extension r a t i o a n d the i n t e r d o m a i n p o l y m e r f r a c t i o n f o r the different d o m a i n m o r p h o l o g i e s is the s a m e as that u s e d by Meier.

T h e results i n d i c a t e t h a t c i l i a , l o o p s , a n d u n a t t a c h e d

a l l f a v o r s w e l l i n g o v e r t h e entire range of d i l u t i o n . d o m a i n separation

chains

If t h e i n i t i a l i n t e r -

is not too l a r g e r e l a t i v e to the i n t e r d o m a i n

chain

c o n t o u r l e n g t h , a tie m o l e c u l e also w i l l f a v o r s w e l l i n g at l o w degrees of

Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.

MULTIPHASE POLYMERS

236

s w e l l i n g b u t w i l l o p p o s e s w e l l i n g a t h i g h levels o f d i l u t i o n .

W h e n the

tie c h a i n is short o r t h e i n i t i a l i n t e r d o m a i n s e p a r a t i o n is large, t h e curves are s i m i l a r t o those o b t a i n e d b y M e i e r , a n d s w e l l i n g is a l w a y s o p p o s e d . Young's Modulus.

Gaylord a n d Lohse

(10)

have

examined the

Y o u n g s m o d u l u s of t h e v a r i o u s types o f i n t e r d o m a i n c h a i n s i n t h e different d o m a i n m o r p h o l o g i e s , u s i n g t h e m o d e l d e s c r i b e d i n the p r e v i o u s section. T h e results i n d i c a t e that i n a n y g i v e n m o r p h o l o g y , t h e Y o u n g s m o d u l u s behavior of the loop, cilium, a n d unattached

c h a i n a l l arise f r o m t h e

i m p e n e t r a b i l i t y o f t h e d o m a i n s a n d decreases w i t h

decreasing

chain

l e n g t h . T h e t i e m o l e c u l e s h o w s this same b e h a v i o r a t l o n g c h a i n c o n t o u r lengths

b u t a t sufficiently s m a l l c h a i n l e n g t h b e h a v e s i n a G a u s s i a n

elastic m a n n e r .

I t is p r e d i c t e d that the Young's m o d u l u s is greatest f o r a

l a m e l l a r d o m a i n structure s t r e t c h e d n o r m a l to t h e l a m e l l a r p l a n e . T h e c y l i n d r i c a l d o m a i n structure s t r e t c h e d n o r m a l to t h e c y l i n d r i c a l axis has a l o w e r m o d u l u s , a n d t h e m o d u l u s o f t h e s p h e r i c a l d o m a i n s t r u c t u r e is even lower.

T h e m o d u l u s is l o w e s t f o r c y l i n d e r s s t r e t c h e d

along the

c y l i n d r i c a l axis a n d l a m e l l a e s t r e t c h e d a l o n g t h e l a m e l l a r p l a n e .

I t also

is p r e d i c t e d that t h e m o d u l u s increases r a p i d l y w i t h i n c r e a s i n g v o l u m e f r a c t i o n o f d o m a i n m a t e r i a l a n d that, a t l o w temperatures, t h e m o d u l u s decreases w i t h i n c r e a s i n g t e m p e r a t u r e .

T h e s e last t w o p r e d i c t i o n s a r e i n

agreement w i t h experiment. Acknowledgment The

author

is a p p r e c i a t i v e

of m a n y

e n l i g h t e n i n g discussions o n

v a r i o u s aspects o f this w o r k w i t h D a v i d J . L o h s e .

This w o r k was sup-

ported, i n part, b y the U . S . E n e r g y Research a n d D e v e l o p m e n t A d m i n i s t r a t i o n u n d e r contract E R D A - E Y - 7 6 - C - 0 2 - 1 1 9 8 . Literature

Cited

1. Jackson, J. B., Flory, P. J., Chaing, R., Richardson, M . J., Polymer (1963) 4, 237. 2. Nielson, L . E . , Stockton, F. D . , J. Polym. Sci., Part A (1963) 1, 1995. 3. Krigbaum, W . R., Roe, R. J., Smith, K. J., Jr., Polymer (1964) 5, 533. 4. Roe, R. J., Smith, K. J., Jr., Krigbaum, W . R., J. Chem. Phys. (1961) 35, 1306. 5. Lohse, D . J., Gaylord, R. J., Polym. Eng. Sci. (1978) 18, 512. 6. Gaylord, R. J., Lohse, D . J., J. Chem. Phys. (1976) 65, 2779. 7. Lohse, D . J., Gaylord, R. J., J. Chem. Phys. (1977) 66, 3843. 8. Leonard, W . J., Jr., J. Polym. Sci., Polym. Symp. (1976) 54, 237. 9. Meier, D . J., Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. (1973) 14(1), 280. 10. Gaylord, R. J., Lohse, D . J., Polym. Eng. Sci. (1978) 18, 359. 11. Meier, D . J., J. Appl. Polym. Symp. (1974) 24, 67. RECEIVED April 14, 1978.

Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.