15 The Structure and Toxicity of the
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
Alternaria Metabolites D. J. HARVAN and R. W. PERO
1
National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, N. C. 27709 The Alternaria are a common field fungi responsible for a variety of plant diseases including tobacco brown spot, tomato blight, and citrus seedling chlorosis. They have been implicated in diseases of poultry and have been demonstrated lethal to mammals. The metabolites of the Alternaria represent several structural classes: dibenzo-pyrones, anthraquinones, tetramic acids, and polypeptides. The metabolites are discussed with regard to: structure; mammalian, plant, and cytotoxicity; methods of analysis; synthesis, and biosynthetic pathways. The Alternaria are common plant pathogens which infest a wide variety of food crops. Grain crops, hay, and silage are often contaminated with this fungus, generally as a field infection (1,2). Black spot of Jap anese pear (3), tobacco brown spot (4), early blight of tomato and po tato, and citrus seedling chlorosis are all caused by Alternaria spp. (5). The toxicity of the Alternaria has been well established. Grains which had been infected with A. humicola and A. alternata (Fries) Keissler (A. tenuis, Auct. and A. longipes) (6) were believed the source of several out breaks of moldy grain toxicosis in man in the U.S.S.R. during World War II (7). Of the Alternaria isolates tested from a variety of food crops, 90% were lethal to rats when fed in a corn-rice mixture (2). Doupnik and Sobers (8) reported that 33% of the isolates tested were lethal to chicks. Slifkin and Spalding (9) found that A. mali was toxic to HeLa cells and mice in feeding studies. The Alternaria have been implicated as toxins to geese and other poultry (10, 11). Of 212 Alternaria isolates from tobacco, 60% were lethal to mice following intraperitoneal injection (12). Several workers attempted to establish a correlation between pathogenicity 1
Current address: University of Lund, Lund, Sweden. 344
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
15.
HARVAN AND PERO
ALTENUENE
Alternaria Metabolites
DEHYDRQAL7ENUSIN
ALTERSOLANOL A
Figure 1.
ALTENUSIN
345
AL7ENUIC ACID II
ALTERSOUWL Β
Structures of the metabolites of Alternaria spp.
to t o b a c c o leaves a n d t o x i c i t y o f t h e isolates ( 1 3 ) . I n these studies 7 4 % of t h e p a t h o g e n i c isolates w e r e t o x i c to c h i c k s , a n d 7 5 % o f t h e n o n p a t h o g e n i c isolates w e r e n o n t o x i c .
T h e Alternaria
possess a w i d e r a n g e o f
a n t i b i o t i c a c t i v i t y . O f 127 isolates 86 w e r e a c t i v e against e i t h e r b a c t e r i a , yeast, o r m o l d s ( 1 4 ) .
Structure of the Metabolites T h e s t r u c t u r e s o f t h e k n o w n Alternaria
metabolites are presented i n
F i g u r e s 1 a n d 2. T h e m o s t c o m m o n l y o c c u r r i n g class o f c o m p o u n d s a r e the dibenzo-pyrones a n d their derivatives: alternariol, alternariol m e t h y l ether, a l t e n u i s o l , a l t e r t e n u o l , a l t e n u e n e , d e h y d r o a l t e n u s i n , a l t e n u s i n , a n d the altenuic acids. A l t e r n a r i o l a n d t h e m e t h y l ether a r e p r o d u c e d b y m o s t A . isolates as w e l l as m a n y o t h e r Alternaria talline compounds.
alternata
species; b o t h a r e colorless, c r y s
A l t e r n a r i o l has a m e l t i n g p o i n t o f 3 5 0 ° C ( d e c ) ; t h e
m e t h y l e t h e r melts at 2 6 7 ° C . B e c a u s e o f t h e i r p h e n o l i c n a t u r e , t h e y e x h i b i t
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
346
MYCOTOXINS
AL7ER7TJXIN I
0
^
PHYTQftLŒRNARIN A
AL7ERT0XIN II
(qfyfo
PHY7OAL7ERNARIN Β
0 ^
PHYTOALTERNARIN C
BRASSICICOLINA
Figure 2.
Structures of the metabolites of Alternaria spp.
intense p u r p l e f e r r i c reactions a n d fluoresce b r i g h t b l u e u n d e r u v i r r a d i a tion. T h e y are p r o d u c e d i n rather large quantities accounting for u p to 1 3 % o f t h e d r y m y c e l i a l w e i g h t o f some isolates ( 1 5 ) . T h e i r biosynthesis is t h e best s t u d i e d of t h e metabolites ( 1 6 , 1 7 ) . h a v e b e e n r e p o r t e d f o r a l t e r n a r i o l (18,19),
Several synthetic methods
a n d t h e selective m e t h y l a t i o n
of a l t e r n a r i o l to t h e m e t h y l ether has b e e n d e s c r i b e d
(20).
A l t e n u i s o l a n d a l t e r t e n u o l a r e c l o s e l y r e l a t e d metabolites of A . alternata a n d i n f a c t m a y b e i d e n t i c a l c o m p o u n d s .
T h o m a s (20)
postulated
the altertenuol structure based m a i n l y o n t h e e m p i r i c a l formula a n d b i o s y n t h e t i c a r g u m e n t s . A l t e r t e n u o l is a c r y s t a l l i n e m a t e r i a l ( m p = 2 8 5 ° C ) w h i c h forms a triacetate ( m p — 2 4 5 ° C ) . lated altenuisol ( m p =
284°-
P e r o et a l . (21)
iso
2 7 7 ° - 2 8 2 ° C ; triacetate m p — 2 1 0 ° - 2 1 3 ° C ) a n d
p r o p o s e d this d i f f e r i n g s t r u c t u r e b a s e d o n t h e f a c t t h a t a l t e n u i s o l f a i l e d t o r e a c t w i t h a m o l y b d a t e i o n , a p r o p e r t y c o m m o n to o r t h o d i h y d r i c p h e n o l s ( 2 2 ) , b u t d i d react after d e m e t h y l a t i o n w i t h h y d r i o d i c a c i d . T h e p o s i t i o n of t h e m e t h o x y l g r o u p w a s e s t a b l i s h e d b y c o m p a r i n g t h e N M R shifts o f a l t e n u i s o l a n d its triacetate w i t h s c o p o l e t i n a n d its acetate. F u r t h e r w o r k is necessary to resolve t h e s t r u c t u r e o f these t w o m e t a b o l i t e s . A l t e n u e n e , d e h y d r o a l t e n u s i n , a n d a l t e n u s i n a r e closely r e l a t e d m e t a bolites w h o s e structures h a v e b e e n d e t e r m i n e d b y x - r a y c r y s t a l l o g r a p h y . A l t e n u e n e w a s i s o l a t e d b y s i l i c a g e l c h r o m a t o g r a p h y o f A . alternata
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
ex-
15.
HARVAN
Alternaria
A N D PERO
Metabolites
347
tracts a n d w a s c r y s t a l l i z e d as colorless needles, m e l t i n g p o i n t · = 191 ° C .
Its o r i g i n a l structure p o s t u l a t i o n (23)
190°-
has b e e n r e v i s e d
D e h y d r o a l t e n u s i n w a s i s o l a t e d b y t h e a d s o r p t i o n of A . alternata
(24). culture
m e d i u m on charcoal, followed b y ethanol extraction. T h e resulting solu t i o n y i e l d e d d e h y d r o a l t e n u s i n as y e l l o w plates m e l t i n g at 1 8 9 ° - 1 9 0 ° C . T h e o r i g i n a l structure p o s t u l a t i o n w a s i n c o r r e c t ( 2 5 ) c e n t l y r e v i s e d (26).
colorless p r i s m s , m e l t i n g at 2 0 2 ° - 2 0 3 ° C . Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
a n d has b e e n r e
A l t e n u s i n c r y s t a l l i z e d f r o m c h l o r o f o r m extracts as It is i n t e r c o n v e r t i b l e w i t h d e
h y d r o a l t e n u s i n b y o x i d a t i o n w i t h f e r r i c c h l o r i d e or r e d u c t i o n w i t h s o d i u m dithionite
(27).
A l t e n u i c a c i d I I is one of three i s o m e r i c acids i s o l a t e d f r o m A . alter nata (27).
I t was separated f r o m acids I a n d I I I b y its l i m i t e d s o l u b i l i t y
i n ether, a n d c r y s t a l l i z e d f r o m a q u e o u s d i o x a n e as colorless plates m e l t i n g at 2 4 5 ° - 2 4 6 ° C . A l t e n u i c a c i d I a n d I I are c o n v e r t e d i n t o a l t e n u i c a c i d I I I b y t r e a t m e n t w i t h d i l u t e s o d i u m h y d r o x i d e . T h e s t r u c t u r e of a l t e n u i c a c i d I I has b e e n e s t a b l i s h e d b y x - r a y c r y s t a l l o g r a p h y (28).
T h e structures of
a l t e n u i c acids I a n d I I I are u n d e t e r m i n e d . A s e c o n d class of metabolites are t h e a n t h r a q u i n o n e p i g m e n t s l a t e d f r o m A . solani
(29, 30).
iso
T h e pigments were isolated b y silica gel
c h r o m a t o g r a p h y of the c h l o r o f o r m extracts of the fungus.
Anthraquinones
A , B , a n d C are s u b s t i t u t e d x a n t h o p u r p u r i n s , a n d the altersolanols are p a r t i a l l y r e d u c e d a n t h r a q u i n o n e s . A l t e r s o l a n o l A is c o n v e r t e d to a n t h r a q u i n o n e Β u p o n d e h y d r a t i o n at m o d e r a t e temperatures, a n d a l t e r s o l a n o l Β furnishes a n t h r a q u i n o n e A u p o n a r o m a t i z a t i o n w i t h t h i o n y l c h l o r i d e i n p y r i d i n e . A n t h r a q u i n o n e C is i d e n t i c a l to the p r e v i o u s l y i d e n t i f i e d m a c r o s p o r i n , a m e t a b o l i t e of Macrosporium
porri
(31).
T e n u a z o n i c a c i d is a t e t r a m i c a c i d d e r i v a t i v e w h i c h is p r o d u c e d b y a l a r g e v a r i e t y of Alternaria oryzae
spp.
( 3 3 ) , Sphaeropsidales,
(32).
It is also a m e t a b o l i t e of
a n d s o m e Aspergilli
(34).
Pyricularia
It w a s first iso
l a t e d b y Rosett i n 1957 ( 2 7 ) , a n d its s t r u c t u r e w a s e l u c i d a t e d b y S t i c k ings i n 1959 ( 3 5 ) .
I t has b e e n f o u n d i n n a t u r a l l y i n f e c t e d r i c e p l a n t s at
2.6 m g / k g p l a n t tissue (36).
T e n u a z o n i c a c i d is a n o p t i c a l l y a c t i v e l i q u i d
w h i c h loses a c t i v i t y u p o n l o n g s t a n d i n g o r w i t h t r e a t m e n t i n a base. T h i s is a t t r i b u t e d to the f o r m a t i o n of i s o t e n u a z o n i c a c i d , a c r y s t a l l i n e s o l i d w h i c h is b e l i e v e d to b e a m i x t u r e of diastereoisomers.
Tenuazonic acid
forms a c r y s t a l l i n e salt w i t h Ν,Ν'-dibenzylethylenediamine w h i c h is a c o n v e n i e n t m e t h o d for storage of the c o m p o u n d .
T h e synthesis of
the
c o m p o u n d has b e e n d e s c r i b e d ( 3 7 ) ; a series of analogs w a s p r e p a r e d , a n d t h e i r b i o l o g i c a l activities w e r e assessed
(38).
Z i n n i o l is a p e n t a - s u b s t i t u t e d b e n z e n e d e r i v a t i v e p r o d u c e d zinniae
(42).
T h e s t r u c t u r e is b e l i e v e d to be
by
A.
l,2-bis-(hydroxymethyl)-5-
(3,3'-dimethylallyloxy)-3-methoxy-4-methylbenzene,
although
t i o n of the m e t h o x y a n d d i m e t h y l a l l y l o x y substituents is n o t
the
posi
absolutely
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
348
MYCOTOXINS
established (43).
It is q u i t e s i m i l a r i n s t r u c t u r e to the a n t i f u n g a l agent
q u a d r i l i n e a t i n , a m e t a b o l i t e of Aspergillus
quadrilineatus.
A l t e r n a r i c a c i d is p r o d u c e d b y strains of A . solani w h i c h are n o t e d for t h e i r specific a n t i f u n g a l a c t i v i t y . T h e c o m p o u n d is p u r i f i e d b y r e c r y s t a l l i z a t i o n f r o m b e n z e n e , g i v i n g colorless plates a n d m e l t i n g at 138 ° C 45).
(44,
Its s t r u c t u r e w a s e s t a b l i s h e d b y B a r t e l s - K e i t h a n d G r o v e i n 1959
(46). Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
A l t e n i n is a n o p t i c a l l y a c t i v e , y e l l o w l i q u i d that is p r o d u c e d b y A . kikuchiana.
I t is i s o l a t e d f r o m t h e c u l t u r e filtrate a n d p u r i f i e d b y c h r o m a
t o g r a p h y o n a l u m i n a a n d s i l i c a g e l . I t is u n s t a b l e at h i g h e r t e m p e r a t u r e s ; i t loses its b i o l o g i c a l a c t i v i t y i n t e n m i n u t e s at 8 0 ° C a n d i n 1 h r at 6 0 ° C . T h e a s s i g n e d s t r u c t u r e is b e l i e v e d to b e the m o s t p r o b a b l e of several tautomeric forms
(3).
«,)S-Dehydrocurvularin is a m e t a b o l i c p r o d u c t of A . cucumerina,
the
c a u s a t i v e agent of leaf spot o n c u c u r b i t s , p a r t i c u l a r l y m u s k m e l o n a n d watermelon (47).
I t is a colorless, c r y s t a l l i n e s o l i d , m e l t i n g p o i n t 2 3 0 ° -
2 3 2 ° C , w i t h a n o p t i c a l r o t a t i o n of — 8 5 ° . I t is also a m e t a b o l i t e o f s e v e r a l Curvularia
spp.
(48).
A l t e r t o x i n s I a n d I I are m e t a b o l i t e s of u n k n o w n structure a n d are p r o d u c e d b y A . mali ( 4 9 ) a n d A . alternata.
A l t e r t o x i n I ( C o H i O e ) is a 2
6
y e l l o w , amorphous solid w i t h an undefined m e l t i n g point; i t decomposes a t ca. 210 ° C . It fluoresces b r i g h t y e l l o w u n d e r i r r a d i a t i o n , a n d t h i s p r o p e r t y has b e e n u s e d as a m e t h o d of analysis ( 5 0 ) . A l t e r t o x i n I I ( C o H i 0 ) 2
4
is a n o r a n g e , c r y s t a l l i n e s o l i d w h i c h d e c o m p o s e s at 1 8 5 - 1 9 5 ° C . 0
6
I t is
c l o s e l y r e l a t e d t o A l t e r t o x i n I a n d is p r o b a b l y t h e d e h y d r o d e r i v a t i v e . U n d e r i r r a d i a t i o n i t appears as a d a r k , q u e n c h i n g spot. B o t h c o m p o u n d s a r e h i g h l y a r o m a t i c m a t e r i a l s , possessing n e i t h e r m e t h o x y l n o r c a r b o n m e t h y l g r o u p s . T h e y b o t h h a v e c a r b o n y l absorptions at 1650 c m " w h i c h 1
i n d i c a t e s h y d r o g e n - b o u n d i n g b y adjacent h y d r o x y l s . T h e i r s t r u c t u r e is b e i n g investigated b y x-ray crystallography. B r a s s i c i c o l i n A is a m e t a b o l i t e i s o l a t e d f r o m A . brassicicoh. m a t e r i a l is a colorless o i l , w i t h [ « ]
D
=
The
2 0 . 1 ° . Its e l e m e n t a l c o m p o s i t i o n
has b e e n r e p o r t e d to b e C o H i 0 . T h e c o m p o u n d possesses anti-yeast 2
a n d m i l d anti-bacterial activity
3
9
(51).
P h y t o a l t e r n a r i n s A , B , a n d C are p r o d u c e d b y A . kikuchiana
Tanaka.
P h y t o a l t e r n a r i n A is a colorless s o l i d ; Β is a y e l l o w fluorescent l i q u i d , a n d C i s a colorless s o l i d , m e l t i n g at 2 3 5 ° C ( 5 ) .
A l l three give p o s i t i v e n i n
h y d r i n , L i e b e r m a n , a n d X a n t h o p r o t e i c tests, b u t n e g a t i v e F e h l i n g a n d B i u r e t reactions ( 5 2 ) . Synthetic
Methods
A l t e r n a r i o l w a s first s y n t h e s i z e d b y c o u p l i n g 2 - b r o m o - 4 , 6 - d i m e t h o x y b e n z o i c a c i d w i t h 3 , 5 - d i h y d r o x y t o l u e n e i n t h e presence of b a s i c c o p p e r
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
15.
HARVAN
sulfate.
The
A N D PERO
Alternaria
resulting material was
methylated
i d e n t i c a l to a l t e r n a r i o l t r i m e t h y l ether ( 1 8 ) . a l t e r n a r i o l has r e c e n t l y b e e n
described
m e t h y l orsellinate w a s c o n d e n s e d triketone derivative.
349
Metabolites giving a
compound
A m o r e elegant synthesis of
(19).
The
d i b e n z y l ether
of
w i t h d i l i t h i o a c e t y l a c t o n e to g i v e
a
T h e triketone was carboxylated w i t h l i t h i u m d i -
i s o p r o p y l a m i d e a n d esterified w i t h d i a z o m e t h a n e .
R e m o v a l of the b e n z y l
p r o t e c t i v e groups c a u s e d spontaneous c y c l i z a t i o n to a c h r o m a n d e r i v a t i v e .
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
T r e a t m e n t of the c h r o m a n w i t h s o d i u m acetate g a v e a l t e r n a r i o l i n 5 2 % y i e l d ( F i g u r e 3 ). A l t e r n a r i o l p r e s u m a b l y is f o r m e d b y a n a l d o l c o n d e n s a tion between
positions t w o
a n d seven, f o l l o w e d
by
dehydration
and
l a c t o n i z a t i o n . S i n c e a l t e r n a r i o l c a n b e s e l e c t i v e l y m e t h y l a t e d to a l t e r n a r i o l m e t h y l ether, this constitutes a synthesis of t h e m e t h y l ether as w e l l ( 2 0 ) . B y use of t h e a p p r o p r i a t e b e n z o i c a c i d analogs this m e t h o d c o u l d also p r o v i d e s y n t h e t i c routes to a l t e n u s i n , d e h y d r o a l t e n u s i n , a n d a l t e r t e n u o l . Tenuazonic
a c i d is s y n t h e s i z e d
by
condensing
L-isoleucine w i t h
d i k e t e n e . T h e p r o d u c t is m e t h y l a t e d w i t h d i a z o m e t h a n e a n d c y c l i z e d b y r e f l u x i n g w i t h the s o d i u m m e t h o x i d e i n b e n z e n e .
T h e c o m p o u n d is p u r i
fied b y r e c r y s t a l l i z a t i o n of its c o p p e r ( 3 7 ) or its N , N ' - d i b e n z y l e t h y l e n e d i a m i n e salt ( 3 4 ) . A l t e n i n has b e e n p r e p a r e d b y t h e c o n d e n s a t i o n of e t h y l g l y o x a l a t e w i t h 3-acetoxy-acetylacetone
i n the presence
of p o t a s s i u m a m i d e
(3).
T h e s y n t h e t i c m a t e r i a l w a s i d e n t i c a l to the n a t u r a l l y o c c u r r i n g c o m p o u n d i n p h y t o p a t h o l o g i c a c t i v i t y as w e l l as
spectroscopy.
T h e o n l y a n t h r a q u i n o n e m e t a b o l i t e t h a t has b e e n m a c r o s p o r i n m o n o m e t h y l ether ( 5 4 ) .
s y n t h e s i z e d is
T h e method involved condensing
a-resorcylic a c i d w i t h 3-methoxy-4-methylbenzoic
acid b y heating w i t h C
Figure 3.
Biogenetic type synthesis of
«0
alternariol
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
350
MYCOTOXINS
c o n c e n t r a t e d s u l f u r i c a c i d a n d b o r i c a n h y d r i d e . M e t h y l a t i o n of this m a t e r i a l gave m a c r o s p o r i n m o n o m e t h y l ether. A l t h o u g h t w o isomers w e r e possible, o n l y t h a t one c o r r e s p o n d i n g to n a t u r a l l y - o c c u r r i n g m a c r o s p o r i n w a s isolated.
Biosynthetic Pathways
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
T h e biosynthesis of a l t e r n a r i o l has b e e n discussed i n r e l a t i o n to the p o l y k e t i d e hypothesis ( 5 6 ) .
This theory maintains that a long poly-β
c a r b o n y l c h a i n is f o r m e d b y h e a d - t o - t a i l condensations of acetate m a l o n y l - C o A units.
with
T h e r e s u l t a n t c h a i n m a y t h e n c y c l i z e b y a l d o l or
C l a i s s e n - t y p e reactions a n d l e a d to t h e o b s e r v e d p r o d u c t s .
T h e theory
i n v o l v e s o n l y s l i g h t m o d i f i c a t i o n of t h a t b e l i e v e d to b e r e s p o n s i b l e for f a t t y - a c i d synthesis. T h e e n z y m e c o m p l e x r e s p o n s i b l e for a l t e r n a r i o l synthesis has b e e n purified b y gel
filtration
o n Sephadex G-25 (16).
T h e enzyme utilizes
a c e t y l - C o A a n d m a l o n y l - C o A as substrate b u t is i n h i b i t e d b y excessive concentrations of e i t h e r reagent. O p t i m u m v e l o c i t y w a s o b s e r v e d w i t h a r a t i o of m a l o n y l p a n t o t h e i n e to a c e t y l - C o A of 6:1 w h i c h is t h e r a t i o of m a l o n a t e to acetate f o u n d i n a l t e r n a r i o l . T h e o p t i m u m a c t i v i t y w a s o b s e r v e d at p H 7.8 at 2 8 ° C ( 1 7 ) .
It was also d e m o n s t r a t e d t h a t the a d d i
t i o n of S - a d e n o s y l m e t h i o n i n e to the r e a c t i o n m i x t u r e c a u s e d the f o r m a t i o n of a l t e r n a r i o l m e t h y l ether. T h e d e g r a d a t i o n of a l t e r n a r i o l m e t h y l ether c o u l d a c c o u n t for most o f the other d i b e n z o - p y r o n e m e t a b o l i t e s ( F i g u r e 4 ) . A l t e n u s i n w o u l d b e the result of h y d r o x y l a t i o n f o l l o w e d b y r e d u c t i v e o p e n i n g of t h e l a c t o n e ring.
D e h y d r o a l t e n u s i n a n d altenuene c o u l d arise f r o m a l t e n u s i n b y
o x i d a t i o n a n d r e d u c t i o n . T h e o x i d a t i o n of the c a r b o n - m e t h y l g r o u p f o l l o w e d b y d e c a r b o x y l a t i o n w o u l d l e a d to a l t e r t e n u o l . O x i d a t i o n of the c a t e c h o l g r o u p i n g of a l t e n u s i n — i n a m a n n e r analogous to the d e g r a d a t i o n of c a t e c h o l to m u c o n i c a c i d a n d t h e n to m u c o n o l a c t o n e (56)—would
lead
to the f o r m a t i o n of a l t e n u i c a c i d . T e n u a z o n i c a c i d is f o r m e d b y the N - a c e t o a c e t y l a t i o n of i s o - l e u c i n e followed by enzymatic cyclization (57).
I t has b e e n d e m o n s t r a t e d t h a t
a d d i n g v a l i n e or l e u c i n e to c u l t u r e s of the f u n g u s p r o d u c e s the c o r r e s p o n d i n g t e t r a m i c a c i d d e r i v a t i v e b u t t h a t p h e n y l a l a n i n e is n o t u t i l i z e d
(58).
Analytical Methods F e w a n a l y t i c a l m e t h o d s h a v e b e e n r e p o r t e d for the Alternaria metab olites. A l t e r n a r i o l , the m e t h y l ether, a n d altenuene h a v e b e e n a n a l y z e d b y gas c h r o m a t o g r a p h y as s i l y l ethers ( 5 9 ) . T h e s i l y l ethers a r e c h r o m a t o g r a p h e d o n 3 % O V - 1 7 at 1 0 0 ° - 2 5 0 ° C at 8 ° / m i n . U n d e r these c o n d i -
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
15.
Alternaria
HARVAN AND PERO
Metabolites
351
Acetyl-CoA
+
alternariol
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
6 Malonyl-CoA
alternariol methyl ether
•OCH
3
dehydroaltenusin I I.) oxidn. redn.
2
)
C
0
altertenuol
2
altenuene altenuic acid Figure 4.
Possible biosynthetic
pathway for the dibenzo-pyrone the Alternaria
metabolites of
tions altenuene has a r e t e n t i o n t i m e of 2 3 m i n , a l t e r n a r i o l 2 7 m i n , a n d t h e m e t h y l ether, 29 m i n . T h i s m e t h o d has also b e e n u s e d f o r s e v e r a l c o m m o n l y o c c u r r i n g f u n g a l m e t a b o l i t e s s u c h as stearic a c i d , p a l m i t i c a c i d , s u c c i n i c a c i d , e r y t h r i t o l , a n d m a n n i t o l . I t is also u s e f u l f o r s o m e m e t a b olites of other f u n g i , e.g., k o j i c a c i d , p e n i c i l l i c a c i d , a n d p a t u l i n
(60).
T h i n l a y e r c h r o m a t o g r a p h y has b e e n u s e d r e c e n t l y t o detect a l t e r n a r i o l a n d the m e t h y l ether i n g r a i n samples (61). T h e m e t h o d w a s of v a l u e i n d i s t i n g u i s h i n g b e t w e e n a l t e r n a r i o l , zearelenone, a n d aflatoxin i n i n f e c t e d grains.
T e n u a z o n i c a c i d has b e e n
analyzed b y a
m e t h o d (62) a n d a gas c h r o m a t o g r a p h i c m e t h o d
spectrophotometric
(63).
Toxicity C r u d e Alternaria
extracts a r e l e t h a l to m i c e ( i p i n j e c t i o n ) a t 3 0 0
m g / k g ( 5 0 ) . S i m i l a r levels of toxicosis o c c u r i n rats w i t h o r a l dosage. T h e m a j o r m a m m a l i a n t o x i n is b e l i e v e d to b e t e n u a z o n i c a c i d (64).
Sev
e r a l investigators d e m o n s t r a t e d t h e t o x i c i t y o f t e n u a z o n i c a c i d to m i c e (38, 6 5 ) , rats, dogs, m o n k e y s a n d g u i n e a p i g s
(65).
S o d i u m t e n u a z o n a t e is h i g h l y i n h i b i t o r y t o t h e h u m a n a d e n o c a r c i -
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
352
MYCOTOXINS
n o m a ( H A d l ) i n t h e e g g host system at 0.1 m g / e g g a n d t o x i c to t h e T h e D-allo a n d D-isomers as w e l l as s t r u c
e m b r y o at 0.48 m g / e g g ( 3 4 ) .
t u r a l analogs of t e n u a z o n i c a c i d , s u b s t i t u t e d i n the carbon-five p o s i t i o n , w e r e m u c h less a c t i v e against t u m o r s .
Analogs substituted on nitrogen
showed an increased antibacterial activity but a reduced antitumor activ i t y . A g a i n s t Bacillus
analogs s u b s t i t u t e d at carbon-five w e r e
megaterium,
a b o u t as a c t i v e as the p a r e n t c o m p o u n d .
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
D-sodium tenuazonate were equally active
L- a n d
A g a i n s t B. megaterium, (38).
S o d i u m t e n u a z o n a t e a n d isotenuazonate w e r e e q u a l l y effective against enteroviruses ( E C H O - 9 , C o x s a c k i e Β ), r e s p i r a t o r y viruses [ p a r a i n f l u e n z a 3, ( H A - 1 ) , S a l i s b u r y H G P ] , v a c c i n i a , herpes s i m p l e x H F , a n d Ί Γ v i r u s at 1 0 0 - 5 0 0 / x g / m l .
S o d i u m tenuazonate w a s effective against p o h o v i r u s
M E F 1 , whereas s o d i u m isotenuazonate w a s not.
N e i t h e r was a c t i v e i n
tissue c u l t u r e against p o l y o m a v i r u s or i n m i c e against A s i a n i n f l u e n z a , rabies, or F r i e n d leukemia
(66).
T e n u a z o n i c a c i d i n h i b i t s t h e i n c o r p o r a t i o n of a m i n o acids i n t o p r o t e i n in vivo i n S p r a g u e - D a w l e y rats a n d in vitro i n E h r l i c h Ascites t u m o r cells. I t is b e l i e v e d t h a t t e n u a z o n i c a c i d interferes w i t h the release of n e w l y f o r m e d p r o t e i n f r o m t h e ribosomes thus p r e v e n t i n g t h e ribosomes a c c e p t i n g a m i n o acids f r o m transfer R N A (67).
from
T e n u a z o n i c a c i d is also
k n o w n to b l o c k p e p t i d e b o n d f o r m a t i o n i n p r o t e i n synthesis of h u m a n t o n s i l a n d p i g - l i v e r ribosomes
(68).
T e n u a z o n i c a c i d has a p r o t e c t i v e effect o n in vivo c e l l d e a t h of intes t i n a l c r y p t e p i t h e l i a l cells after exposure to l-β
D-arabinofuranosylcytosine,
n i t r o g e n m u s t a r d , or x - i r r a d i a t i o n . A t 3 0 - 7 5 m g / k g i n m a l e rats t e n u a zonic a c i d inhibits leucine incorporation into protein a n d t h y m i d i n e i n corporation into D N A but not u r i d i n e incorporation into R N A . T h e pro t e c t i v e effect w a s a t t r i b u t e d to the i n h i b i t i o n of p r o t e i n synthesis
(69).
S e v e r a l other metabolites h a v e b e e n e x a m i n e d for c y t o t o x i c i t y 70) a n d t e r a t o g e n i c i t y (50).
(50,
A l t e r n a r i o l a n d the m e t h y l ether e x h i b i t e d a
s y n e r g i s t i c effect against b a c t e r i a a n d as teratogens. A l t e n u e n e , a l t e n u i s o l , a n d the altertoxins w e r e a l l active against H e L a cells, w i t h I D from 0.5-28 ^ g / m l
5 0
values
(50).
T h e t o x i c i t y of t h e r e m a i n i n g Alternaria
metabolites has not
been
s t u d i e d extensively. N o d a t a exist for a l t e r t e n u o l , a l t e n u s i n , d e h y d r o a l t e n u s i n , a l t e n u i c a c i d , or t h e a n t h r a q u i n o n e p i g m e n t s . B r a s s i c i o l i n A has l o w a n t i b a c t e r i a l a c t i v i t y b u t f a i r antiyeast a n d a n t i f u n g a l p r o p e r t i e s . T h i s a n d other m e t a b o l i t e s of A . brassicicola
n e e d f u r t h e r s t u d y since
strains of this t y p e w e r e the most consistently a c t i v e against b a c t e r i a , m o l d s , a n d yeast ( 1 4 ) .
E v e n t h o u g h α , β - d e h y d r o c u r v u l a r i n has n o t b e e n
i n v e s t i g a t e d for a n t i b i o t i c or p h y t o t o x i c a c t i v i t y , i t is s i m i l a r i n s t r u c t u r e to zearelenone, a Fusarium
m e t a b o l i t e w h i c h has strong estrogenic a c t i v
i t y , a n d m a y b e of interest i n studies of t h a t t y p e .
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
15.
HARVAN
Alternaria
A N D PERO
353
Metabolites
Phytotoxicity S e v e r a l Alternaria ity (5). fruits.
m e t a b o l i t e s h a v e b e e n associated w i t h p h y t o t o x i c
T e n t o x i n is r e s p o n s i b l e for s e e d l i n g chlorosis of c o t t o n a n d c i t r u s T h e p u r i f i e d c o m p o u n d interferes w i t h c h l o r o p h y l l f o r m a t i o n i n
m a n y h i g h e r p l a n t species. M o s t d i c o t y l e d o n s are sensitive w i t h t h e e x c e p t i o n of t o m a t o a n d t h e C r u c i f e r a e ( 7 1 ) . the a l g a Euglena
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
filamentous
gracilis,
T h e c o m p o u n d does n o t affect
b a c t e r i a , the yeast Saccharomyces
or
cerevisiae,
f u n g i at concentrations t h a t cause 1 0 0 % chlorosis of c u c u m
b e r cotyledons. A l t e n i n is c a p a b l e of c a u s i n g b l a c k spots o n s u s c e p t i b l e Japanese p e a r at 2 Χ
10" m g / m l . T h e a c t i v e m o i e t y is b e l i e v e d to b e t h e e n e d i o l c a r 5
bonyl grouping
(3).
Z i n n i o l is r e s p o n s i b l e for leaf spot a n d s e e d l i n g b l i g h t of z i n n i a , s u n flower,
a n d m a r i g o l d . P l a n t s w i t h severe i n f e c t i o n often w i l t a n d d i e . A t
500 p p m z i n n i o l i n h i b i t s the g e r m i n a t i o n of z i n n i a , t o m a t o , l e t t u c e , w a t e r m e l o n , a n d c a r r o t seeds. A t 1000 p p m i t causes c o m p l e t e w i t h e r i n g of c u t seedlings of w a t e r m e l o n , s q u a s h , s p i n a c h , beet, t o m a t o , oat, c o r n , p e a , and bean. /*g/disc
T h e c o m p o u n d is m i l d l y i n h i b i t o r y to A c t i n o m y c e t e s at 485
(42).
A l t e r n a r i c a c i d w a s i s o l a t e d f r o m c u l t u r e s of A . sohni,
the fungus
r e s p o n s i b l e for e a r l y b l i g h t of tomatoes a n d potatoes, a n e c o n o m i c a l l y significant p l a n t disease i n t h e U n i t e d States (44, 72).
A t 5-10 /xg/ml it
causes w i l t i n g a n d d e a t h to seedlings of r a d i s h , c a b b a g e , m u s t a r d , a n d carrot.
A t 2 - 2 0 μg/m\ i t causes n e c r o t i c lesions i n t o m a t o a n d p o t a t o
shoots. I t also possesses s o m e a n t i f u n g a l a c t i v i t y , i n h i b i t i n g t h e g e r m i n a t i o n of Absidia,
Myrothecium,
f t g / m l i t i n h i b i t s t h e rate of Pénicillium
a n d Stachybotrys
at 0 . 1 - 1 . 0 f t g / m l . A t 200
g e r m i n a t i o n of Botrytis,
Fusarium,
and
(5).
A l t e r n a r i o l m e t h y l ether has also b e e n s h o w n to cause chlorosis i n t o b a c c o leaves (73).
W h e n solutions of t h e m a t e r i a l are i n j e c t e d i n t o
t o b a c c o leaves, c h l o r o t i c zones, p r o p o r t i o n a l i n size to c o n c e n t r a t i o n , w e r e f o r m e d w i t h i n 48 h r . T h e l e v e l of a c t i v i t y w a s b e t w e e n 1 0 - 2 5 / A g / m l .
It
w a s also o b s e r v e d t h a t t h e m e t h y l ether w a s p r o d u c e d b y g r o w i n g A . alternata
o n t o b a c c o substrate. T h e c o m p o u n d w a s r a p i d l y m e t a b o l i z e d
a n d w a s n o n d e t e c t a b l e 72 h r after i n j e c t i o n i n t o l i v i n g tissue. T h i s is s u p p o r t e d b y the f a c t t h a t o t h e r w o r k e r s f a i l e d to find a l t e r n a r i o l or t h e m e t h y l ether i n extracts of n a t u r a l l y m o l d y t o b a c c o
(74).
Phytoalternarins A , B , a n d C have been isolated b y chromatography o n a l u m i n a c o l u m n s . P h y t o a l t e r n a r i n A has t h e same host s p e c i f i c i t y as t h e f u n g u s itself. A c o r r e l a t i o n is o b s e r v e d b e t w e e n tissue age a n d o p t i m u m temperature for symptom development between the fungus
and
p u r e t o x i n . P h y t o a l t e r n a r i n s Β a n d C are t o x i c to s u s c e p t i b l e v a r i e t i e s of Japanese p e a r ( 5 ) .
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
354
MYCOTOXINS
Summary T h e i m p o r t a n c e o f t h e Alternaria not yet been
firmly
established.
toxins as e n v i r o n m e n t a l h a z a r d s has
H u m a n p o p u l a t i o n s w o u l d n o t b e ex
p e c t e d to r e c e i v e a c u t e l y t o x i c doses i n h i g h l y - d e v e l o p e d nations.
How
e v e r i n u n d e r d e v e l o p e d areas t h e r e is a greater p o s s i b i l i t y o f h u m a n e x p o s u r e t o i n f e c t e d f o o d crops.
M o r e i m p o r t a n t is t h e p o s s i b i l i t y o f effects
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
a r i s i n g f r o m c o n t i n u e d l o w - l e v e l exposure to t h e metabolites. T h e l i m i t e d f e t o t o x i c i t y d a t a i m p l i e s some c o m b i n e d a c t i v i t y f o r a l t e r n a r i o l a n d t h e m e t h y l ether, b u t t h e m a j o r i t y o f t h e metabolites h a v e n o t b e e n tested. T h e a u t h o r s f e e l t h a t c o n t i n u e d r e s e a r c h is necessary to evaluate t h e p o t e n t i a l h a z a r d s o f t h e Alternaria
toxins p a r t i c u l a r l y a t t h e c h r o n i c l e v e l o f
exposure.
Literature Cited
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.
Christensen, C. M., Cereal Chem. (1951) 28, 408. Christensen, C. M., et al., Cancer Res. (1968) 28, 2293. Sugiyama, N., et al., Bull. Chem. Soc., Jap. (1966) 39, 2470. Lucas, G. B., "Diseases of Tobacco," p. 228, Scarecrow, New York, 1959. Templeton, G. E., in "Microbial Toxins," Vol. VII, (S. Kadis et al., Eds.), pp. 169-192, Academic, New York, 1972. Lucas, G. B., Tob. Sci. (1971) 15, 37. Joffe, A. Z., Bull Res. Counc. Isr., Sect D. (1960) 9, 101. Doupnik, B. Jr., Sobers, Ε. K., Appl. Microbiol (1968) 16, 1596. Slifkin, M . K., Spalding, J., Toxicol. Appl. Pharmacol. (1970) 17, 375. Forgacs, J., et al., Am. J. Vet. Res. (1958) 19, 744. Forgacs, J., et al., Avian Dis. (1962) 6, 363. Hamilton, P. B., et al., Appl. Microbiol. (1969) 18, 570. Sobers, Ε. K., Doupnik, B., Jr., Appl. Microbiol. (1972) 23, 313. Lindenfelser, L. Α., Ciegler, Α., Dev. Ind. Microbiol. (1969) 10, 271. Thomas, R., Biochem. J. (1961) 78, 748. Gatenbeck, S., Hermodsson, S., Acta. Chem. Scand. (1965) 19, 65. Sjoland, S., Gatenbeck, S., Acta. Chem. Scand. (1966) 20, 1053. Raistrick, H., et al., Biochem. J. (1953) 55, 421. Hay, J. V., Harris, T. M., J. Chem. Soc., Chem. Comm. (1972) 953. Thomas, R., Biochem. J. (1961) 80, 234. Pero, R. W., et al., Tetrahedron Lett. (1973) 12, 945. Pridham, J. B., Ed., "Methods in Polyphenol Chemistry," p. 120, Macmillan, New York, 1964. Pero, R. W., et al., Biochem. Biophys. Acta. (1971) 230, 170. McPhail, A. T., et al., J. Chem. Soc., Chem. Comm. (1973) 682. Coombe, R. G., et al., Aust. J. Chem. (1970) 23, 2343. Rogers, D., et al., J. Chem. Soc., Chem. Comm. (1971) 393. Rosett, T., et al., Biochem. J. (1957) 67, 390. Williams, D. J., Thomas, R., Tetrahedron Lett. (1973) 9, 639. Stoessl, Α., J. Chem. Soc., Chem. Comm. (1967) 307. Stoessl, Α., Can. J. Chem. (1969) 47, 767. Suemitsu, R., et al., Bull. Agric. Chem.Soc.Jap. (1959) 23, 547. Kinoshita, T., et al, Ann. Phytopathol. Soc. Jap. (1972) 38, 397. Iwasaki, S., et al., Tetrahedron Lett. (1972) 1, 13.
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF TENNESSEE KNOXVILLE on December 21, 2014 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch015
15.
34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74.
HARVAN
AND
PERO
Alternaria
Metabolites
355
Kaczka, T., et al., Biochem. Biophys. Res. Comm. (1964) 14, 54. Stickings, C. E., Biochem. J. (1959) 72, 332. Umetsu, Y., et al., Agric. Biol. Chem. (1973) 37, 451. Harris, S. Α., et al., J. Med. Chem. (1965) 8, 478. Gitterman, C. O., J. Med. Chem. (1965) 8, 483. Meyers, W. L., et al., Tetrahedron Lett. (1971) 25, 2357. Koncewicz, M., et al., Biochem. Biophys, Res. Comm. (1973) 53, 653. Meyer, W. L., et al, Biochem. Biophys. Res. Comm. (1974) 56, 234. White, G. Α., Starrat, A. N., Can. J. Bot. (1967) 45, 2087. Starrat, A. N., Can. J. Chem. (1968) 46, 767. Brian, P. W., et al., J. Gen. Microbiol. (1951) 5, 619. Grove, J. F., J. Chem. Soc. (1952) 4056. Bartels-Keith, J. R., Grove, J. F., Proc. Chem. Soc. (1959) 398. Starrat, A. N., White, G. Α., Phytochemistry (1968) 7, 1883. Munro, H . D., et al, J. Chem. Soc, (C) (1967) 947. Slifkin, M. K., et al., Mycopathol. Mycol. Appl. (1973) 50, 241. Pero, R . W., et al., Environ. Health Perspectives (June 1973) 87. Ciegler, Α., Lindenfelser, L. Α., Sep. Exp. (1969) 25, 719. Hiroe, I., Aoe, S., J. Fac. Agric., Tottori Univ. (1954) 2, 1. Shimizu, M., Ohta, G., J. Pharm.Soc.Jap. (1951) 71, 879. Suemitsu, R., et al., Agric.Biol.Chem. (1961) 25, 100. Light, R . J., J. Agric. Food Chem. (1970) 18, 260. Sistrom, W. R., Stanier, R. Y., J. Biol. Chem. (1954) 210, 821. Gatenbeck, S., Acta. Chem. Scand. (1973) 27, 1825. Gatenbeck, S., Sierankiewicz, J., Antimicrob. Agents Chemother. (1973) 3, 308. Pero, R. W., et al., Anal. Biochem. (1971) 43, 80. Pero, R. W., Harvan, D. J., J. Chromatogr. (1973) 80, 255. Seitz, L. M., et al., J. Agric. Food Chem. (1975) 23, 1. Mikami, Y., et al., Agric.Biol.Chem. (1971) 35, 611. Harvan, D., Pero, R., J. Chromatogr. (1974) 101, 222. Meronuck, R. Α., et al., Appl. Microbiol. (1972) 23, 613. Smith, E. R., et al., Cancer Chemother. Rep. (1968) 52, 579. Miller, F. Α., et al., Nature (1963) 200, 1338. Shigeura, H . T., Gordon, C. Ν., Biochemistry (1962) 2, 1132. Carrasco, L., Vasquez, D., Biochem. Biophys. Acta. (1973) 319, 209. Lieberman, M . W., et al., Cancer Res. (1970) 30, 942. Spalding, J. W., et al, J. Cell Biol. (1970) 47, 199a. Templeton, G. E., et al., Proc. Mycotoxin Res. Seminar (1967), p. 27, U.S. Dept. Agric, Wash., D.C. Pound, G. S., Stahmann, Μ. Α., Phytopathology (1951) 41, 1104. Pero, R. W., Main, C. E., Phytopatholgy (1970) 60, 1570. Lucas, G. B., et al., J. Agric Food Chem. (1971) 19, 1275.
RECEIVED November 8, 1974.
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.