Subscriber access provided by University of Florida | Smathers Libraries
Note
N-Thiocyanatosaccharin: A ‘Sweet’ Electrophilic Thiocyanation Reagent and the Synthetic Applications Di Wu, Jiashen Qiu, Pran Gopal Karmaker, Hongquan Yin, and Fu-Xue Chen J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b02850 • Publication Date (Web): 05 Jan 2018 Downloaded from http://pubs.acs.org on January 5, 2018
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
N-Thiocyanatosaccharin: A ‘Sweet’ Electrophilic Thiocyanation Reagent and the Synthetic Applications Di Wu, Jiashen Qiu, Pran Gopal Karmaker, Hongquan Yin* and Fu-Xue Chen* School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun Street, Haidian District, Beijing 100081, China.
Abstract: N-Thiocyanatosaccharin (R1) was readily prepared from the sweet additive Saccharin in two steps with 71% overall yield. Applying this new reagent to diverse nucleophiles such as benzothiophenes, indoles, oxindoles, aromatic amines, phenols, β-keto carbonyl compounds, aromatic ketones, a novel electrophilic thiocyanation reaction was achieved with high yields (up to 99%). The potential recycling of Saccharin, wide scope of substrates, and the mild reaction conditions made this protocol much more practical.
T
hiocyano is an important functional group widely existing in bioactive natural products.1 It is of valuable synthetic intermediate to access sulfur-containing compounds.2a-h Their biological importance has stimulated the development of new method to prepare organic thiocyanates. In the last decades, methodologies concerning oxidative thiocyanation of heterocycles or aromatics have been extensively studied (Scheme 1, entry 1).3 To that end, thiocyanate salts (MSCN, M = Na+, K+, NH4+, etc.) were generally combinatory used with suitable oxidants such as CAN (ceric ammonium nitrate),3a NCS (N-chlorosuccinimide),3b-e DEAD (diethyl azodicarboxylate),3f oxone,3g oxygen,3h and DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone).3i Alternatively, Cu-catalyzed cross-coupling was also employed to the synthesis of thiocyanates (Scheme 1, entry 2).4 In 1958, Angus demonstrated the thiocyanation of aromatic compounds using ClSCN.5 In 2008, Falck documented the electrophilic thiocyanation of N-acyl imides with NTS (N-thiocyanatosuccinimide) (Scheme 1, entry 3).6 In 2014, Petrosyan reported the heteroarene 7 thiocyanation through electrolysis. In 2015, Samareh and Kobra demonstrated the oxidant-free 8 thiocyanation by AlCl3/NH4SCN. In 2015, Waser
released the method of synthesis thiocyanates from thiols (Scheme 1, entry 4).9 In spite of the above achievements, it remains challenging to find a more effective, widely applicable thiocyanation protocol. Scheme 1 Thiocyanation reactions
Herein, we report a new cationic thiocyanation reagent, N-thiocyanatosaccharin (R1), and its synthetic application in electrophilic thiocyanation reactions. It is conveniently synthesized from Saccharin in two sequential steps. The thiocyanations using R1 and various nucleophiles such as indoles, benzothiophenes, aromatic amines, β-keto carbonyl compounds,
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
oxindoles, phenols, and aromatic ketones were achieved under mild reaction conditions with high yields (up to 99%). These results made R1 a general cationic thiocyanato reagent. The synthesis of N-thiocyanatosaccharin (R1) was shown in Scheme 2.10 Treatment of Saccharin with tert-butyl hypochlorite in methanol for 5 min gave N-chlorosaccharin with a yield of 80%, and then it reacted with AgSCN in CH2Cl2 for 30 min to afford R1. The structure of compound R1 was characterized by IR, HRMS, 1H and 13C NMR. It can be prepared on gram scale. Preliminary stability study revealed R1 is sensitive to air and light so it should be preserved in dark at low temperature under argon atmosphere.
Page 2 of 11
α-amination,14 and α-trifluoromethylthiolation15 of β-keto carbonyl compounds have been extensively studied. Our group discovered the α-cyanation reaction.16,17,18 In this paper, the α-thiocyanation of β-keto carbonyl compounds was reported. As shown in Table 2, a variety of β-keto carbonyl compounds including adamantyl esters, methyl esters and amides available in our lab were employed to react with R1 and the corresponding products (2a-2j) were isolated in good to excellent yields. The ring size and substituents did not affect the reaction efficiency of β-keto esters while the linear chain substrate (2j) was converted using DMAP as the base in toluene. Table
1
Thiocyanation
reactions
of
indoles
and
benzothiophenesa
Scheme 2 Synthesis of R1
With R1 in hand, we explored the reactions of R1 with many nucleophiles. As illustrated in Table 1, indoles with different substituents such as bromine, methoxyl, methyl and nitro groups were tolerated under the standard conditions, providing the corresponding thiocyanated products in good to excellent yields with short reaction times at room temperature. The reaction completed quickly and cleanly. However, substrates with electron-withdrawing groups showed less activity with lower yields (1c, 1f, 1h). Reasonably, thiocyanation occurred at the 3-position of indoles, while thiocyanation took place at the 2-position to give the corresponding product (1b) in 98% yield when C-3 was occupied. The reaction is also suitable for heterocyclic indole and a moderate yield was obtained (1i, 74%). Moreover, benzothiophene was also efficiently converted into the corresponding thiocyanation product by R1 in excellent yield (1j, 91%) when TfOH was utilized as the promotor.11 However, the N-Boc indole needed Lewis acid to generate the desired product (1k) in moderate yield. In the last few years, α-chlorination,12 α-azidation,13
a
Reaction conditions: indoles (0.15 mmol), R1 (48 mg, 0.20 mmol, 1.3
equiv), THF (1.0 mL), rt, 30 min. b 3 h, c 6 h, d TfOH (23 mg, 0.15 mmol, 1.0 equiv), CH3CN (1.0 mL) instead of THF, e Zn(BF4)2•H2O (9 mg, 0.04 mmol, 0.20 equiv).
Table 2 Thiocyanation of β-keto carbonyl compoundsa
ACS Paragon Plus Environment
Page 3 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
a
The Journal of Organic Chemistry
Reaction conditions: β-keto carbonyl compounds (0.15 mmol), R1 (48 mg,
0.20 mmol, 1.3 equiv), THF (1.0 mL), rt, 12 h. b Toluene (2.0 mL) instead of THF, DMAP (73 mg, 0.60 mmol, 4.0 equiv), 30 oC, 20 h. c 37 oC. Ad =
of anilines, phenols and aromatic ketones with R1 were subsequently investigated. As shown in Table 4, most of the reactions between anilines with R1 took place in high yields in CH2Cl2 at room temperature. However, the thiocyanation of anilines becomes a bit complicated since the thiocyanation exist in the o-position, p-position and amino group. In most cases, the thiocyanation took place in the p-position to amino group (4a-4e). When 3,5-dimethoxyaniline was used as the substrate to react with R1, the p-position substituted product (4f, 54%) and the o-position substituted product (4f', 32%) were generated. With electron-withdrawing groups, the thiocyanation took place on nitrogen of amino group instead on the phenyl ring (5a-5c) in moderate to good yields. But in the case of p-chloroaniline substrate, a mixture of 4-chloro-N-thiocyanatoaniline (5d, 30%) and 4-chloro-2-thiocyanatoaniline (5d', 36%) was produced.
adamantyl.
Table 4 Thiocyanation reaction of aniline derivativesa Table 3 Thiocyanation reactions of oxindolesa
a
Reaction conditions: oxindoles (0.10 mmol), R1 (31 mg, 0.13 mmol, 1.3
equiv), THF (1.0 mL), rt, 12 h.
The thiocyanation of oxindoles was also evaluated. As indicated in Table 3, the thiocyanation reaction of oxindoles with R1 was carried out conveniently in THF at room temperature without any catalyst and additive, and all substrates were transformed to the corresponding products. Substituent on the phenyl ring was tolerated (3b-d) but unprotected amide N-H (3a) decreased the yield substantially. To widen the substrate scope of this new thiocyanato reagent, the electrophilic thiocyanations
a
Reaction conditions: aniline (0.20 mmol), R1 (53 mg, 0.22 mmol, 1.1
equiv), CH2Cl2 (1.5 mL), rt, 12 h.
Table 5 Thiocyanation reactions of phenols and derivativesa
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 11
Zn(BF4)2•H2O (9 mg, 0.04 mmol, 0.20 equiv) instead of Me3SiCl.
Subsequently, gram-scale reaction was carried out (Scheme 3). Without surprising, the reaction gave 1.17 g of 1c in 91% yield from 5-bromoindole (5.1 mmol). In this case, the starting material Saccharin was recycled with a good yield (85%) after a simple workup (see supporting information). Scheme 3 Synthesis of 1c on gram scale.
a
Reaction conditions: phenols (0.20 mmol), R1 (48 mg, 0.20 mmol, 1.0
equiv), CH2Cl2 (1.0 mL), rt, 12 h.
As shown in Table 5, the electrophilic thiocyanation of phenols (6a-6f) and anisole (6e) with R1 provided the corresponding products in good yields. Similarly, thiocyanation mainly occurred at p-position. Unlike 4f and 4f', thiocyanation of 3,5-dimethoxyphenol exclusively gave product 6f (89%). However, unlike anilines, phenols bearing electron-withdrawing groups gave no conversion on treatment with R1. As indicated in Table 6, linear and cyclic aryl ketones reacted with R1. However, all substrates gave the corresponding products with moderate yields (7a-7g, 42%-74%).
In summary, a new cationic thiocyanato reagent, N-thiocyanatosaccharin, was prepared and applied to the direct electrophilic thiocyanation of diverse nucleophiles. The readily synthesis, and its broad capacity for thiocyanation reactions under mild reaction conditions, and the good to excellent yields, all made N-thiocyanatosaccharin (R1) a novel cationic thiocyanation reagent.
█ EXPERIMENTAL SECTION General experimental information: All chemicals were bought from commercial companies and used direct unless noted. Reactions were carried out in reaction tube with common solvents open to air. 1H and
13C{1H}
NMR spectra
were recorded on a Bruker 400 or 700 instrument in CDCl3 and DMSO-d6, chemical shifts are recorded in ppm. All the MS of samples were analyzed on an Agilent (Q-TOF 6520) with an
Table 6 Thiocyanation reaction of aromatic ketonesa
ESI source. All IR spectra were measured on a Shimadzu IRAffinnity-1s spectrometer. Melting points were measured on a digital micromelting point apparatus unless otherwise indicated. Melting points were measured on DSC-60 under a nitrogen flow (50 mL/min) at a heating rate of 5 oC/min. Procedure for synthesis of R1: Saccharin (3.0 g, 16.41 mmol) and tert-butyl hypochlorite (19.69 mmol, 1.2 equiv) were stirred in methanol (35.0 mL) for 5 min at room temperature. Then the suspension was filtered giving the N-chlorosaccharin with a yield of 80%. N-Chlorosaccharin (542 mg, 2.50 mmol) was treated with AgSCN (433 mg, 2.63 mmol, 1.05 equiv) in a
Reaction conditions: ketones (0.20 mmol), R1 (63 mg, 0.26 mmol, 1.3
equiv), Me3SiCl (0.20 mmol, 1.0 equiv), MeCN (1.0 mL), 80 oC, 6 h.
b
CH2Cl2 (25.0 mL) for 30 min at room temperature. Then the reaction mixture was filtered and the filtrate was concentrated
ACS Paragon Plus Environment
Page 5 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
under reduced pressure to afford the product R1 in 89% yield.
5-Methoxy-3-thiocyanato-1H-indole (1e):3h Eluent petroleum
N-Thiocyanatosaccharin (R1): white solid (535 mg, 89%), mp
ether/ethyl acetate (5:1, V/V), white solid (30 mg, 98%), mp
NMR (400 MHz,
119–121 oC. 1H NMR (400 MHz, CDCl3): δ = 8.71 (s, 1H),
DMSO-d6): δ = 8.17 (d, J = 7.5 Hz, 1H), 8.03–7.93 (m, 3H)
7.45 (d, J = 2.9 Hz, 1H), 7.30 (d, J = 8.9 Hz, 1H), 7.19 (d, J =
NMR (175 MHz, CDCl3): δ = 157.3, 138.1, 136.7,
2.4 Hz, 1H), 6.95 (dd, J = 8.9, 2.4 Hz, 1H), 3.91 (s, 3H) ppm.
227
ppm.
oC
(DSC, 10
13C
oC/min,
peak).
1H
135.3, 126.7, 126.2, 122.2, 108.2 ppm. IR (KBr) ν = 2100, 1720, 1593, 1458
cm‒1.
HRMS (ESI) m/z: [M –
SCN]‒
calcd
13C
NMR (100 MHz, CDCl3): δ = 155.7, 131.4, 130.8, 128.5,
114.5, 113.0, 112.0, 99.8, 91.4, 55.8 ppm. IR (KBr) ν = 3286,
for C7H4NO3S 181.9917; Found 181.9912.
3134, 2154, 1622, 1568 cm‒1.
Procedure for the thiocyanation of indoles: Indoles (0.15
5-Nitro-3-thiocyanato-1H-indole (1f):3c Eluent petroleum
mmol) and R1 (48 mg, 0.20 mmol, 1.3 equiv) were stirred in
ether/ethyl acetate (1:1, V/V), white solid (28 mg, 85%), mp
THF (1.0 mL) for 30 min at room temperature. After reaction
126–128 oC. 1H NMR (400 MHz, DMSO-d6): δ = 12.63 (s, 1H),
was completed (monitored by TLC), the reaction mixture was
8.53 (d, J = 2.2 Hz, 1H), 8.28 (s, 1H), 8.14 (dd, J = 9.2, 2.2 Hz,
purified by column chromatography on silica gel with
1H), 7.72 (d, J = 9.2 Hz, 1H) ppm.
petroleum ether/ethyl acetate to afford the pure desired
DMSO-d6): δ = 142.6, 140.0, 137.6, 127.4, 118.6, 114.9, 114.2,
products (1a-1k).
112.4, 93.7 ppm. IR (KBr) ν = 3354, 3111, 2162, 1581, 1523
3-Thiocyanato-1H-indole
(1a):3h
Eluent petroleum ether/ethyl
13C
NMR (100 MHz,
cm‒1.
acetate (2:1, V/V). pale yellow solid (26 mg, 98%), mp 72‒74
4-Methyl-3-thiocyanato-1H-indole (1g):6 Eluent petroleum
NMR (400 MHz, CDCl3): δ = 8.69 (s, 1H), 7.82–7.80
ether/ethyl acetate (5:1, V/V), white solid (27 mg, 99%), mp
(m, 1H), 7.50 (d, J = 2.5 Hz, 1H), 7.44–7.42 (m, 1H),
107–109 oC. 1H NMR (400 MHz, CDCl3): δ = 8.74 (s, 1H),
NMR (100 MHz, CDCl3): δ =
7.47 (d, J = 2.9 Hz, 1H), 7.25 (d, J = 8.3 Hz, 1H), 7.17 (t, J =
oC. 1H
7.33–7.31 (m, 2H) ppm.
13C
136.0, 131.0, 127.7, 123.9, 122.0, 118.8, 112.1, 112.0, 92.4 ppm. IR (KBr) ν = 3286, 2160, 1614
cm‒1.
3-Methyl-2-thiocyanato-1H-indole
(1b):19
7.3 Hz, 1H), 7.01 (d, J = 7.1 Hz, 1H), 2.95 (s, 3H) ppm.
13C
NMR (100 MHz, CDCl3): δ = 136.4, 132.1, 130.9, 125.5, 123.9, Eluent petroleum
123.4, 113.4, 110.1, 91.9, 19.1 ppm. IR (KBr) ν = 3319, 2154,
ether/ethyl acetate (20:1, V/V), white solid (28 mg, 98%), mp
1583, 1502, 1433 cm‒1.
86–88 oC. 1H NMR (400 MHz, CDCl3): δ = 7.75 (s, 1H), 7.49
4-Bromo-3-thiocyanato-1H-indole (1h): Eluent petroleum
(d, J = 7.9 Hz, 1H), 7.24 (m, 2H), 7.18–7.13 (m, 1H), 2.33 (s,
ether/ethyl acetate (2:1, V/V), white solid (36 mg, 95%), mp
NMR (100 MHz, CDCl3): δ = 141.2, 132.9,
144–146 oC. 1H NMR (400 MHz, DMSO-d6): δ = 12.33 (s, 1H),
127.5, 123.6, 120.5, 119.9, 118.9, 110.7, 109.6, 8.3 ppm. IR
8.11 (d, J = 3.2 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.39 (d, J =
(KBr) ν = 3377, 2106, 2044, 1456 cm‒1.
7.6 Hz, 1H), 7.15 (t, J = 8.0 Hz, 1H) ppm. 13C NMR (100 MHz,
5-Bromo-3-thiocyanato-1H-indole (1c):3h Eluent petroleum
DMSO-d6): δ = 137.6, 136.0, 125.3, 124.2, 124.0, 113.3, 112.6,
ether/ethyl acetate (2:1, V/V), white solid (36 mg, 95%), mp
112.1, 90.2 ppm. IR (KBr) ν = 3296, 2169, 2150, 1610, 1565,
NMR (400 MHz, CDCl3): δ = 8.77 (s, 1H),
1504, 1402 cm‒1. HRMS (ESI) m/z: [M ‒ H]‒ calcd for
3H) ppm.
131–133
13C
oC. 1H
7.92 (s, 1H), 7.51 (d, J = 2.2 Hz, 1H), 7.39 (dd, J = 8.7, 2.2 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H) ppm.
13C
NMR (100 MHz,
C9H4BrN2S 250.9284; Found 250.9284. 3-Thiocyanato-1H-pyrrolo[2,3-b]pyridine
(1i):20
Eluent
CDCl3): δ = 134.7, 132.1, 129.4, 127.1, 121.5, 115.5, 113.6,
petroleum ether/ethyl acetate (2:1, V/V), white solid (20 mg,
111.6, 92.2 ppm. IR (KBr) ν = 3340, 3109, 2148, 1718, 1691
74%), mp 197–199 oC. 1H NMR (400 MHz, DMSO-d6): δ =
cm‒1.
12.60 (s, 1H), 8.40 (d, J = 3.9 Hz, 1H), 8.14 (s, 1H), 8.12 (d, J
1-Methyl-3-thiocyanato-indole
(1d):3h
Eluent
petroleum
= 7.9 Hz, 1H), 7.30 (dd, J = 7.9, 3.9 Hz, 1H) ppm.
13C
NMR
ether/ethyl acetate (20:1, V/V), white solid (28 mg, 99%), mp
(175 MHz, DMSO-d6): δ = 148.3, 144.4, 133.9, 126.4, 119.7,
84–86 oC. 1H NMR (400 MHz, CDCl3): δ = 7.71 (d, J = 7.2 Hz,
117.3, 112.1, 88.9 ppm. IR (KBr) ν = 2922, 2152, 1587 cm‒1.
1H), 7.32–7.18 (m, 4H), 3.74 (s, 3H) ppm. 13C NMR (100 MHz,
3-Thiocyanatobenzo[b]thiophene (1j): Eluent petroleum ether,
CDCl3): δ = 137.2, 135.1, 128.5, 123.5, 121.7, 119.0, 111.9,
white solid (26 mg, 91%), mp 82–84 oC. 1H NMR (400 MHz,
110.2, 90.0, 33.5 ppm. IR (KBr) ν = 3120, 2150, 1610, 1514
CDCl3): δ = 8.02 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 5.6 Hz, 2H),
cm‒1.
7.59–7.55 (m, 1H), 7.52–7.48 (m, 1H) ppm.
ACS Paragon Plus Environment
13C
NMR (100
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 11
MHz, CDCl3): δ = 139.6, 137.3, 134.3, 125.9, 125.8, 123.3,
Adamantyl
122.3, 112.1, 109.7 ppm. IR (KBr) ν = 2154, 1869, 1655, 1554,
7-bromo-1-oxo-2-thiocyanato-1,2,3,4-tetrahydronaphthalen
1508
cm‒1.
Anal calcd for C9H5NS2: C, 56.52; H, 2.64; N, 7.32.
e-2-carboxylate (2c): Eluent petroleum ether/ethyl acetate (20:1, V/V), white solid (54 mg, 78%), mp 134–136 oC. 1H
Found: C, 56.48; H, 2.63; N, 7.32. petroleum
NMR (400 MHz, CDCl3): δ = 8.14 (d, J = 2.2 Hz, 1H), 7.66
ether/ethyl acetate (15:1, V/V), colorless liquid (30 mg, 73%).
(dd, J = 8.2, 2.2 Hz, 1H), 7.17 (d, J = 8.2 Hz, 1H), 3.13 – 3.07
NMR (400 MHz, CDCl3): δ = 8.20 (d, J = 7.6 Hz, 1H), 7.96
(m, 3H), 2.59–2.51 (m, 1H), 2.16 (s, 3H), 2.06 (s, 6H), 1.62 (s,
N-Boc-3-thiocyanato-1H-indole 1H
(1k):
Eluent
(s, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.47-7.39 (m, 2H), 1.69 (s, 9H)
6H) ppm.
13C
NMR (100 MHz, CDCl3): δ = 188.4, 164.8,
NMR (100 MHz, CDCl3): δ = 148.4, 135.4, 131.7,
141.3, 137.6, 132.1, 130.8, 130.7, 121.5, 110.2, 85.9, 65.9, 40.9,
129.1, 126.0, 124.0, 119.1, 115.7, 110.1, 99.1, 85.4, 28.1 ppm.
35.9, 33.9, 30.9, 26.7 ppm. IR (KBr) ν = 2912, 2852, 2156,
IR (KBr) ν = 2982, 2926, 2850, 2158, 2005, 1748, 1531 cm‒1.
1728, 1693, 1589 cm‒1. HRMS (ESI) m/z: [M + H]+ calcd for
ppm.
13C
HRMS (ESI) m/z: [M +
NH4]+ calcd
for C14H18N3O2S 292.1114;
C22H23BrNO3S 460.0582; Found 460.0587.
Found 292.1115.
Methyl
Procedure for the thiocyanation of β-keto carbonyl
5-methoxy-1-oxo-2-thiocyanato-1,2,3,4-tetrahydronaphthal
compounds: β-Keto carbonyl compounds (0.15 mmol) and R1
ene-2-carboxylate (2d): Eluent petroleum ether/ethyl acetate
(48 mg, 0.20 mmol, 1.3 equiv) were stirred in THF (1.0 mL)
(15:1, V/V), white solid (40 mg, 92%), mp 122–124 oC. 1H
for 12 h at room temperature. After reaction was completed
NMR (400 MHz, CDCl3): δ = 7.63 (d, J = 7.9 Hz, 1H), 7.34 (t,
(monitored by TLC), the reaction mixture was purified by
J = 8.0 Hz, 1H), 7.09 (d, J = 8.1 Hz, 1H), 3.87 (s, 3H), 3.78 (s,
column chromatography on silica gel with petroleum
3H), 3.24–3.18 (m, 2H), 2.89–2.81 (m, 1H), 2.55–2.47 (m, 1H)
ether/ethyl acetate to afford the pure desired product.
ppm.
Adamantyl
131.9, 131.0, 128.0, 119.7, 115.7, 110.0, 65.5, 55.8, 54.1, 33.1,
1-oxo-2-thiocyanato-1,2,3,4-tetrahydronaphthalene-2-carbo
21.2 ppm. IR (KBr) ν = 2956, 2841, 2156, 1734, 1680, 1593
xylate (2a): Eluent petroleum ether/ethyl acetate (10:1, V/V),
cm‒1. HRMS (ESI) m/z: [M + H]+ calcd for C14H14NO4S
white solid (50 mg, 88%), mp 99–101 oC. 1H NMR (400 MHz,
292.0638; Found 292.0640.
CDCl3): δ = 8.03 (d, J = 7.9 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H),
Methyl
7.37 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 3.18–3.10 (m,
1-oxo-2-thiocyanato-1,2,3,4-tetrahydronaphthalene-2-carbo
3H), 2.60–2.53 (m, 1H), 2.15 (s, 3H), 2.05 (s, 6H), 1.62 (s, 6H)
xylate (2e): Eluent petroleum ether/ethyl acetate (15:1, V/V),
NMR (100 MHz, CDCl3): δ = 189.6, 165.1, 142.6,
white solid (33 mg, 85%), mp 137–139 oC. 1H NMR (400 MHz,
134.8, 130.6, 128.9, 128.2, 127.5, 110.6, 85.5, 66.4, 40.9, 35.9,
CDCl3): δ = 8.06 (d, J = 7.9 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H),
34.1, 30.9, 27.1 ppm. IR (KBr) ν = 2912, 2852, 2156, 1724,
7.39 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.8 Hz, 1H), 3.82 (s, 3H),
1688, 1599 cm‒1. HRMS (ESI) m/z: [M + NH4]+ calcd for
3.24–3.12 (m, 3H), 2.64–2.57 (m, 1H) ppm.
C22H27N2O3S 399.1737; Found 399.1745.
MHz, CDCl3): δ = 189.0, 166.9, 142.9, 135.2, 130.1, 129.0,
Adamantyl
128.6, 127.6, 110.0, 65.5, 54.2, 33.9, 26.9 ppm. IR (KBr) ν =
7-methoxy-1-oxo-2-thiocyanato-1,2,3,4-tetrahydronaphthal
2922, 2850, 2156, 1734, 1684 cm‒1. HRMS (ESI) m/z: [M +
ene-2-carboxylate (2b): Eluent petroleum ether/ethyl acetate
H]+ calcd for C13H12NO3S 262.0532; Found 262.0541.
(15:1, V/V), white solid (59 mg, 95%), mp 134–136 oC. 1H
Adamantyl
NMR (400 MHz, CDCl3): δ = 7.47 (d, J = 2.6 Hz, 1H), 7.18 (d,
1-oxo-2-thiocyanato-2,3-dihydro-1H-indene-2-carboxylate
J = 8.5 Hz, 1H), 7.13 (dd, J = 8.5, 2.6 Hz, 1H), 3.84 (s, 3H),
(2f): Eluent petroleum ether/ethyl acetate (15:1, V/V), white
3.11–3.06 (m, 3H), 2.59 – 2.50 (m, 1H), 2.15 (s, 3H), 2.07 (s,
solid (42 mg, 76%), mp 99–101 oC. 1H NMR (400 MHz,
6H), 1.62 (s, 6H) ppm. 13C NMR (100 MHz, CDCl3): δ = 189.7,
CDCl3): δ = 7.87 (d, J = 7.7 Hz, 1H), 7.74–7.70 (m, 1H),
165.3, 158.9, 135.3, 131.4, 130.2, 123.5, 110.7, 109.9, 85.6,
7.53–7.47 (m, 2H), 4.05 (d, J = 18.0 Hz, 1H), 3.62 (d, J = 18.0
66.4, 55.7, 41.0, 36.0, 34.5, 31.0, 26.5 ppm. IR (KBr) ν = 2912,
Hz, 1H), 2.16 (s, 3H), 2.05 (d, J = 3.0 Hz, 6H), 1.63 (d, J = 2.8
ppm.
13C
2852, 2156, 1724, 1685, 1610
cm‒1.
HRMS (ESI) m/z: [M +
H]+ calcd for C23H26NO4S 412.1583; Found 412.1582.
13C
NMR (100 MHz, CDCl3): δ = 189.3, 166.8, 156.8,
13C
NMR (100
Hz, 6H) ppm. 13C NMR (100 MHz, CDCl3): δ = 195.1, 164.8, 151.1, 136.7, 133.2, 128.8, 126.2, 125.8, 109.8, 86.2, 64.4, 40.9,
ACS Paragon Plus Environment
Page 7 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
40.5, 35.8, 31.0 ppm. IR (KBr): ν = 2912, 2850, 2156, 1732, 1716, 1450
cm‒1.
]+
HRMS (ESI) m/z: [M + NH4
calcd for
2H), 4.33–4.23 (m, 2H), 2.14 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H) ppm.
13C
NMR (100 MHz, CDCl3): δ = 190.4, 168.2, 134.4,
C21H25N2O3S 385.1586; Found 385.1570.
132.3, 129.2, 129.0, 110.1, 67.5, 63.8, 23.9, 13.7 ppm. IR
Adamantyl
(KBr): ν = 2928, 2156, 1737, 1674, 1597 cm‒1.
5-chloro-1-oxo-2-thiocyanato-2,3-dihydro-1H-indene-2-carb
Procedure for the thiocyanation of oxindoles: Oxindoles
oxylate (2g): Eluent petroleum ether/ethyl acetate (15:1, V/V),
(0.10 mmol) and R1 (31 mg, 0.13 mmol, 1.3 equiv) were
white solid (57 mg, 95%), mp 140–142
oC. 1H
NMR (400 MHz,
stirred in THF (1.0 mL) for 12 h at room temperature. After
CDCl3): δ = 7.79 (d, J = 8.2 Hz, 1H), 7.51 (s, 1H), 7.46 (d, J =
reaction was completed (monitored by TLC), the reaction
8.2 Hz, 1H), 4.02 (d, J = 18.2 Hz, 1H), 3.59 (d, J = 18.2 Hz,
mixture was purified by column chromatography on silica gel
1H), 2.16 (s, 3H), 2.04 (d, J = 3.0 Hz, 6H), 1.62 (d, J = 2.6 Hz,
with petroleum ether/ethyl acetate to afford the pure desired
6H) ppm.
13C
NMR (100 MHz, CDCl3): δ = 193.8, 164.4,
product.
152.5, 143.6, 131.8, 129.8, 126.9, 126.5, 109.7, 86.6, 64.5, 41.0,
3-Thiocyanato-3-(p-tolyl)indolin-2-one
40.2, 35.9, 31.1 ppm. IR (KBr): ν = 2914, 2852, 2156, 1739,
petroleum ether/ethyl acetate (2:1, V/V), yellow solid (14 mg,
1597, 1456
cm‒1.
]+
HRMS (ESI) m/z: [M + NH4
calcd for
(3a):
Eluent
48%), mp 98–100 oC. 1H NMR (400 MHz, CDCl3): δ = 8.70 (d,
C21H24ClN2O3S 419.1196; Found 419.1200.
J = 11.3 Hz, 1H), 7.38–7.34 (m, 1H), 7.27 (d, J = 9.2 Hz, 1H),
Adamantyl
7.23 (d, J = 8.3 Hz, 2H), 7.18–7.11 (m, 3H), 6.99 (d, J = 7.8 Hz,
6-methyl-1-oxo-2-thiocyanato-2,3-dihydro-1H-indene-2-car
1H), 2.33 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ = 174.1,
boxamide (2h): Eluent petroleum ether/ethyl acetate (5:1, V/V),
140.2, 139.7, 139.2, 133.4, 130.7, 129.7, 129.3, 125.7, 125.2,
white solid (55 mg, 97%), mp 132–134 oC. 1H NMR (400 MHz,
124.0, 111.1, 69.4, 21.1ppm. IR (KBr): ν = 3165, 2033, 1726,
CDCl3): δ = 7.62 (s, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.39 (d, J =
1617 cm‒1. HRMS (ESI) m/z: [M + NH4]+ calcd for
7.8 Hz, 1H), 6.96 (s, 1H), 4.22 (d, J = 18.7 Hz, 1H), 3.18 (d, J
C16H16N3OS 298.1009; Found 298.1009.
= 18.7 Hz, 1H), 2.43 (s, 3H), 2.09 (s, 3H), 2.04 (d, J = 2.4 Hz,
1-Benzyl-3-phenyl-3-thiocyanatoindolin-2-one (3b): Eluent
NMR (100 MHz, CDCl3): δ = 198.4,
petroleum ether/ethyl acetate (5:1, V/V), white solid (33 mg,
162.5, 148.0, 139.2, 138.7, 133.2, 126.3, 125.6, 109.0, 58.1,
91%), mp 128–130 oC. 1H NMR (400 MHz, CDCl3): δ =
53.3, 41.2, 37.1, 36.3, 29.5, 21.2 ppm. IR (KBr): ν = 2908,
7.65–7.63 (m, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.46–7.40 (m, 3H),
6H), 1.68 (s, 6H) ppm.
13C
2848, 2153, 1709, 1682, 1531, 1456
cm‒1.
HRMS (ESI) m/z:
7.35–7.28 (m, 6H), 7.21 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 7.9 Hz,
[M + NH4 calcd for C22H25N2O2S 381.1637; Found 381.1630.
1H), 4.99 (s, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 172.8,
Adamantyl
142.2, 134.6, 133.4, 130.8, 129.5, 129.2, 128.9, 127.9, 127.8,
5-oxo-6-thiocyanato-6,7,8,9-tetrahydro-5H-benzo[7]annulen
127.2, 127.0, 126.1, 123.8, 110.3, 109.3, 60.7, 44.6 ppm. IR
e-6-carboxylate (2i): Eluent petroleum ether/ethyl acetate
(KBr): ν = 2154, 1721, 1608, 1485 cm‒1. HRMS (ESI) m/z: [M
(15:1, V/V), colorless oil (55 mg, 96%). 1H NMR (400 MHz,
+ NH4]+ calcd for C22H20N3OS 374.1322; Found 374.1325.
CDCl3): δ = 7.56 (dd, J = 7.6, 0.8 Hz, 1H), 7.45–7.41 (m, 1H),
N-Boc-3-(4-methoxyphenyl)-2-oxo-3-thiocyanatoindoline
7.31 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 3.04–2.97 (m,
(3c): Eluent petroleum ether/ethyl acetate (15:1, V/V), pale
2H), 2.93–2.86 (m, 1H), 2.33–2.26 (m, 1H), 2.18–2.02 (m, 5H),
yellow solid (31 mg, 80%), mp 107–109 oC. 1H NMR (400
1.89 (m, 6H), 1.57 (s, 6H) ppm. 13C NMR (100 MHz, CDCl3):
MHz, CDCl3): δ = 7.99 (d, J = 8.2 Hz, 1H), 7.48 (t, J = 8.4 Hz,
δ = 197.6, 164.7, 139.7, 136.7, 132.5, 130.7, 129.9, 126.6,
1H), 7.36 (d, J = 7.4 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H), 7.22 (d,
110.8, 84.9, 72.2, 40.6, 35.9, 33.9, 30.8, 26.9, 24.9 ppm. IR
J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 1.61 (s,
]+
(KBr): ν = 2912, 2852, 2154, 1737, 1682, 1597
cm‒1.
HRMS
9H) ppm.
13C
NMR (100 MHz, CDCl3): δ = 168.7, 159.4,
(ESI) m/z: [M + H]+ calcd for C23H26NO3S 396.1628; Found
147.8, 139.4, 138.4, 129.8, 127.4, 126.8, 126.7, 126.0, 124.6,
396.1635.
124.5, 124.0, 114.8, 113.3, 84.4, 67.8, 54.4, 27.0 ppm. IR
Ethyl
2-methyl-3-oxo-3-phenyl-2-thiocyanatopropanoate
(KBr): ν = 2978, 2927, 2027, 1789, 1732, 1606, 1506 cm‒1.
(2j):23
Eluent petroleum ether/ethyl acetate (10:1, V/V),
HRMS (ESI) m/z: [M + Na]+ calcd for C21H20N2NaO4S
colorless oil (34 mg, 87%). 1H NMR (400 MHz, CDCl3): δ =
419.1036; Found 419.1033.
7.87–7.85 (m, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 8.0 Hz,
N-Boc
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 11
-3-(4-methoxyphenyl)-5-methyl-2-oxo-3-thiocyanatoindolin
132.1, 123.9, 115.8, 112.5, 109.5, 17.2 ppm. IR (KBr): ν =
e-1-carboxylate (3d): Eluent petroleum ether/ethyl acetate (5:1,
3446, 3363, 2150, 1633 cm‒1. HRMS (ESI) m/z: [M + H]+
V/V), white solid (38 mg, 91%), mp 148–150 oC. 1H NMR
calcd for C8H9N2S 165.0481; Found 165.0478.
(400 MHz, CDCl3): δ = 7.85 (d, J = 8.0 Hz, 1H), 7.27 (d, J =
2-(tert-Butyl)-4-thiocyanatoaniline (4e): Eluent petroleum
5.6 Hz, 1H), 7.22 (d, J = 8.7 Hz,2H), 7.15 (s, 1H), 6.88 (d, J =
ether/ethyl acetate (10:1, V/V), yellowish oil (39 mg, 94%). 1H
13C
NMR (400 MHz, CDCl3): δ = 7.40 (d, J = 2.4 Hz, 1H), 7.25
8.7 Hz, 2H), 3.79 (s, 3H), 2.38 (s, 3H), 1.60 (s, 9H) ppm.
NMR (100 MHz, CDCl3): δ = 169.8, 160.3, 148.8, 140.0, 137.0,
(dd, J = 8.2, 2.4 Hz, 1H), 6.63 (d, J = 8.2 Hz, 1H), 4.13 (s, 2H),
135.5, 131.4, 128.6, 127.6, 127.0, 125.3, 115.5, 114.3, 85.1,
1.41 (s, 9H) ppm.
69.0, 55.4, 28.0, 21.1 ppm. IR (KBr): ν = 2972, 2920, 2070,
135.1, 132.1, 132.0, 118.7, 112.7, 109.6, 34.5, 29.3 ppm. IR
1770, 1732, 1506 cm‒1. HRMS (ESI) m/z: [M + NH4]+ calcd
(KBr): ν =3508, 3394, 3242, 2152, 1587, 1556 cm‒1. HRMS
for C22H26N3O4S 428.1639; Found 428.1642.
(ESI) m/z: [M + H]+ calcd for C11H15N2S 207.0950; Found
Procedure for the thiocyanation of aniline derivatives:
207.0942.
Aniline derivatives (0.20 mmol) and R1 (53 mg, 0.22 mmol,
3,5-Dimethoxy-4-thiocyanatoaniline (4f): Eluent petroleum
1.1 equiv) were stirred in CH2Cl2 (1.0 mL) for 12 h at room
ether/ethyl acetate (5:1, V/V), white solid (27 mg, 54%), mp
temperature. After reaction was completed (monitored by TLC),
170–172 oC. 1H NMR (400 MHz, CDCl3): δ = 5.89 (s, 2H),
the reaction mixture was purified by column chromatography
4.01 (s, 2H), 3.86 (s, 6H) ppm. 13C NMR (100 MHz, CDCl3): δ
on silica gel with petroleum ether/ethyl acetate to afford the
= 161.7, 151.5, 112.5, 91.4, 86.0, 56.2 ppm. IR (KBr): ν = 3362,
pure desired product.
2920, 2848, 2150 cm‒1. HRMS (ESI) m/z: [M + H]+ calcd for
4-Thiocyanatoaniline (4a):3c Eluent petroleum ether/ethyl
C9H11N2O2S 211.0536; Found 211.0541.
acetate (10:1, V/V), yellow solid (29 mg, 96%), mp 47–49 oC.
3,5-Dimethoxy-2-thiocyanatoaniline (4f '): Eluent petroleum
NMR (400 MHz, CDCl3): δ = 7.34 (d, J = 7.8 Hz, 2H), 6.66
ether/ethyl acetate (5:1, V/V), white solid (13 mg, 32%), mp
1H
13C
NMR (100 MHz, CDCl3): δ = 147.1,
NMR (100 MHz,
128–130 oC. 1H NMR (400 MHz, CDCl3): δ = 5.93 (d, 2.4 Hz,
CDCl3): δ = 148.8, 134.4, 116.0, 112.4, 109.4 ppm. IR (KBr): ν
1H, Ar-H), 5.92 (d, 2.4 Hz, 1H, Ar-H), 4.49 (s, 2H), 3.87 (s,
(d, J = 7.8 Hz, 2H), 3.98 (s, 2H) ppm.
= 3419, 3346, 2147, 1888, 1595
cm‒1.
13C
HRMS (ESI) m/z: [M +
H]+ calcd for C7H7N2S 151.0324; Found 151.0324.
3H), 3.77 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ = 164.3, 161.8, 151.0, 111.1, 92.5, 90.0, 84.5, 56.2, 55.4 ppm. IR (KBr):
Eluent petroleum
ν = 3412, 3323, 2953, 2924, 2142, 1614, 1585 cm‒1. HRMS
ether/ethyl acetate (5:1, V/V), white solid (31 mg, 87%), mp
(ESI) m/z: [M + H]+ calcd for C9H11N2O2S 211.0536; Found
66–68 oC. 1H NMR (400 MHz, CDCl3): δ = 7.42 (d, J = 8.8 Hz,
211.0537.
2H), 6.67 (d, J = 8.8 Hz, 2H), 2.99 (s, 6H) ppm. 13C NMR (100
4-(Thiocyanatoamino)benzonitrile (5a): Eluent petroleum
MHz, CDCl3): δ = 151.7, 134.5, 113.2, 112.7, 106.5, 40.2 ppm.
ether/ethyl acetate (2:1, V/V), white solid (26 mg, 74%), mp
IR (KBr): ν = 2912, 2819, 2145, 1884, 1593, 1504 cm‒1.
107–109 oC. 1H NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 8.8
N,N-Dimethyl-4-thiocyanatoaniline
HRMS (ESI) m/z: [M +
H]+
(4b):3h
calcd for C9H11N2S 179.0637;
Hz, 2H), 7.19 (d, J = 8.8 Hz, 2H), 5.75 (s, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 147.4, 134.0, 118.7, 116.5, 112.2, 106.2
Found 179.0635. Eluent
ppm. IR (KBr): ν = 2224, 2147, 1645, 1604, 1506 cm‒1. HRMS
petroleum ether/ethyl acetate (15:1, V/V), colorless oil (37 mg,
(ESI) m/z: [M ‒ H]‒ calcd for C8H4N3S 174.0131; Found
74%). 1H NMR (400 MHz, CDCl3): δ = 7.22 (s, 2H), 4.01 (s,
174.0155.
2,6-Diisopropyl-4-thiocyanatoaniline
(4c):21
2H), 2.90–2.84 (m, 2H), 1.27 (d, J = 6.8 Hz, 12H) ppm.
13C
4-(Thiocyanatoamino)bromobenzene (5b): Eluent petroleum
NMR (100 MHz, CDCl3): δ = 142.8, 134.0, 128.1, 112.8, 109.8,
ether/ethyl acetate (10:1, V/V), white solid (35 mg, 76%), mp
28.1, 22.1 ppm. IR (KBr): ν = 3402, 2958, 2924, 2150 cm‒1.
64–66 oC. 1H NMR (400 MHz, CDCl3): δ = 7.46–7.43 (m, 2H),
2-Methyl-4-thiocyanatoaniline
(4d):4b
Eluent
petroleum
7.01–6.97 (m, 2H), 5.19 (s, 1H) ppm.
13C
NMR (100 MHz,
ether/ethyl acetate (10:1, V/V), white solid (32 mg, 98%), mp
CDCl3): = δ 142.6, 132.6, 118.2, 115.9, 112.9 ppm. IR (KBr): ν
NMR (400 MHz, CDCl3): δ = 7.27 (s, 1H),
= 2153, 2065, 1630 cm‒1. HRMS (ESI) m/z: [M + H]+ calcd for
66–68
oC. 1H
7.26–7.23 (m, 1H), 6.66 (d, J = 8.2 Hz, 1H), 3.88 (s, 2H), 2.16 (s, 3H) ppm.
13C
NMR (100 MHz, CDCl3): δ = 147.0, 135.1,
C7H6N2SBr 228.9430; Found 228.9439. 4-(Thiocyanatoamino)fluorobenzene (5c):3e Eluent petroleum
ACS Paragon Plus Environment
Page 9 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
ether/ethyl acetate (2:1, V/V), white solid (17 mg, 51%), mp
NMR (400 MHz, CDCl3): δ = 7.43 (d, J = 2.4 Hz, 1H), 7.28
NMR (400 MHz, CDCl3): δ = 7.09‒7.02 (m, 4H),
(dd, J = 8.4, 2.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 1.40 (s, 9H)
77–79
oC. 1H
5.11 (s, 1H) ppm.
13C
NMR (100 MHz, CDCl3): δ = 159.1 (d, J
ppm.
13C
NMR (100 MHz, CDCl3): δ = 156.7, 138.8, 131.7,
= 241.0 Hz), 139.5 (d, J = 2.6 Hz), 118.3 (d, J = 8.1 Hz), 116.3
131.5, 118.2, 112.7, 112.4, 34.9, 29.1 ppm. IR (KBr): ν = 3381,
(d, J = 22.9 Hz), 113.2 ppm. IR (KBr): ν = 3267, 2149, 1635,
2958, 2160, 1589, 1498 cm‒1.
1506 cm‒1.
3-Methyl-4-thiocyanatophenol
(6e):22
Eluent
petroleum
Eluent
ether/ethyl acetate (5:1, V/V), yellowish oil (29 mg, 88%), 1H
petroleum ether/ethyl acetate (5:1, V/V), colorless oil (12 mg,
NMR (400 MHz, CDCl3): δ = 7.46 (d, J = 6.0 Hz, 1H), 6.79 (d,
30%). 1H NMR (400 MHz, CDCl3): δ = 7.31 (d, J = 8.8 Hz,
J = 2.4 Hz, 1H), 6.71 (dd, J = 6.0, 2.4 Hz, 1H), 2.47 (s, 3H)
2H), 7.05 (d, J = 8.8 Hz, 2H), 5.16 (s, 1H) ppm. 13C NMR (100
ppm.
MHz, CDCl3): δ = 142.0, 129.6, 128.5, 117.8, 112.8 ppm. IR
118.6, 114.9, 112.6, 111.9, 20.9 ppm. IR (KBr): ν = 3360, 2154,
4-(Thiocyanatoamino)chlorobenzene
(KBr): ν = 2145, 1489
(5d):3e
cm‒1.
13C
NMR (100 MHz, CDCl3): δ = 158.4, 143.3, 136.0,
1586, 1492 cm‒1. (5d'):28
4-Chloro-2-thiocyanatoaniline
Eluent
petroleum
3,5-Dimethoxy-4-thiocyanatophenol (6f): Eluent petroleum
1H
ether/ethyl acetate (5:1, V/V), white solid (38 mg, 89%), mp:
NMR (400 MHz, CDCl3): δ = 7.47 (s, 1H), 7.24 (d, J = 8.8 Hz,
158–156 oC. 1H NMR (400 MHz, CDCl3): δ = 6.10 (s, 2H),
1H), 6.75 (d, J = 8.8 Hz, 1H), 4.40 (s, 2H) ppm. 13C NMR (100
3.85 (s, 6H) ppm.
MHz, CDCl3): δ = 146.7, 134.8, 133.0, 123.3, 117.3, 109.3,
160.8, 112.4, 92.8, 89.1, 56.3 ppm. IR (KBr): ν = 3371, 2920,
ether/ethyl acetate (5:1, V/V), colorless oil (13 mg, 36%),
105.7 ppm. IR (KBr): ν = 2152, 1611, 1537, 1473
cm‒1.
13C
NMR (100 MHz, CDCl3): δ = 161.5,
2848, 2145, 1587, 1489 cm‒1. HRMS (ESI) m/z: [M + H]+
Procedure for the thiocyanation of phenols: phenols (0.20
calcd C9H10NO3S 212.0376; Found 212.0372.
mmol) and R1 (48 mg, 0.20 mmol, 1.0 equiv) were stirred in
1-Methoxy-2-methyl-4-thiocyanatobenzene
CH2Cl2 (1.0 mL) for 12 h at room temperature. After reaction
petroleum ether/ethyl acetate (15:1, V/V), colorless oil (30 mg,
was completed (monitored by TLC), the reaction mixture was
84%). 1H NMR (400 MHz, CDCl3): δ = 7.38 (d, J = 8.8 Hz,
purified by column chromatography on silica gel with
1H), 7.34 (s, 1H), 6.84 (d, J = 8.8 Hz, 1H), 3.85 (s, 3H), 2.22 (s,
petroleum ether/ethyl acetate to afford the pure desired product.
3H) ppm.
4-Thiocyanatophenol
(6a):22
Eluent petroleum ether/ethyl
acetate (5:1, V/V), yellowish oil (27 mg,
89%). 1H
NMR (400
13C
(6g):26
Eluent
NMR (100 MHz, CDCl3): δ = 159.4, 134.2,
131.3, 129.4, 113.0, 111.8, 111.2, 55.5, 16.1 ppm. IR (KBr): ν = 2924, 2848, 2154, 1591, 1490 cm‒1.
MHz, CDCl3): δ = 7.45 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz,
Procedure for the thiocyanation of aromatic ketones:
NMR (100 MHz, CDCl3): δ = 157.9, 134.2, 117.5,
Aromatic ketones (0.20 mmol). Me3SiCl (0.20 mmol, 1.0
2H).
13C
113.6, 112.0. IR (KBr): ν = 3368, 2158, 1598, 1583 cm‒1.
equiv) and R1 (63 mg, 0.26 mmol, 1.3 equiv) were stirred in
2,6-Dimethyl-4-thiocyanatophenol (6b):22 Eluent petroleum
MeCN (1.0 mL) for 6 h at 80 oC. Then the reaction mixture was
ether/ethyl acetate (5:1, V/V), white solid (26 mg, 73%), mp:
purified by column chromatography on silica gel with
NMR (400 MHz, CDCl3): δ = 7.20 (s, 2H), 5.05
petroleum ether/ethyl acetate to afford the pure desired product.
97–99
oC, 1H
(s, 1H), 2.25 (s, 6H).
13C
NMR (100 MHz, CDCl3): δ = 154.2,
132.4, 125.5, 112.6, 112.1, 15.8. IR (KBr): ν = 3452, 2922, 2154, 1581, 1479
cm‒1. (6c):22
Eluent
petroleum
ether/ethyl acetate (5:1, V/V), white solid (23 mg, 70%), mp 59–61
NMR (400 MHz, CDCl3): δ = 7.34 (d, J = 2.2 Hz,
1H), 7.27 (dd, J = 8.4, 2.2 Hz, 1H), 6.80 (d, J = 8.4 Hz, 1H), 5.62 (s, 1H), 2.25 (s, 3H).
13C
NMR (100 MHz, CDCl3): δ =
156.1, 135.0, 131.5, 126.8, 116.6, 113.0, 112.1, 15.7. IR (KBr): ν = 3362, 2154, 1585, 1494
(7a):23
Eluent
petroleum ether/ethyl acetate (10:1, V/V), yellowish oil (25 mg, 66%). 1H NMR (400 MHz, CDCl3): δ = 7.93 (d, J = 7.6 Hz,
2-Methyl-4-thiocyanatophenol oC. 1H
1-Phenyl-2-thiocyanatopropan-1-one
cm‒1.
2H), 7.66 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.8 Hz, Hz, 2H), 5.08 (q, J = 7.2 Hz, 1H), 1.86 (d, J = 7.2 Hz, 3H).
13C
NMR (175
MHz, CDCl3): δ = 194.8, 134.5, 133.1, 129.2, 128.8, 111.4, 50.0, 19.8. IR (KBr): ν = 2154, 1639, 1448 cm‒1. 1-(4-Methoxyphenyl)-2-thiocyanatoethan-1-one
(7b):23
Eluent petroleum ether/ethyl acetate (5:1, V/V), white solid (20 mg, 48%), mp 93–95 oC. 1H NMR (400 MHz, CDCl3): δ = 7.91
2-(tert-Butyl)-4-thiocyanatophenol (6d):27 Eluent petroleum
(d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 4.71 (s, 2H), 3.90
1H
(s, 3H). 13C NMR (100 MHz, CDCl3): δ = 189.1, 164.8, 130.9,
ether/ethyl acetate (5:1, V/V), colorless oil (30 mg, 72%).
ACS Paragon Plus Environment
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 11
126.9, 114.4, 112.1, 55.7, 42.9. IR (KBr): ν = 2158, 1645, 1506,
109.4, 47.9, 35.7 ppm. IR (KBr): ν = 2951, 2156, 1732, 1597,
cm‒1.
1456 cm‒1. HRMS (ESI) m/z: [M + NH4]+ calcd for
2-Thiocyanato-2,3-dihydro-1H-inden-1-one (7c):23 Eluent
C10H10BrN2OS 284.9692; Found 284.9679.
petroleum ether/ethyl acetate (5:1, V/V), yellowish solid (28
Gram-Scale reaction: 5-Bromo-1H-indole (1.0 g, 5.1 mmol)
mg, 74%), mp 84–86
oC. 1H
NMR (400 MHz, CDCl3): δ = 7.83
and R1 (1.6 g, 6.6 mmol, 1.3 equiv) were stirred in THF (30 mL)
(d, J = 8.0 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.52–7.45 (m, 2H),
for 30 min at room temperature. Upon completion, the solvent
4.13 (dd, J = 8, 4.4 Hz, 1H), 3.83 (dd, J = 17.6, 8 Hz, 1H), 3.36
was evaporated in vacuum. After addition of CH2Cl2 (8.0 mL)
NMR (100 MHz, CDCl3): δ =
to the residue followed by sonic oscillation and filtration,
198.0, 151.0, 136.4, 134.1, 128.6, 126.4, 125.0, 109.9, 48.2,
flushed by CH2Cl2 (2.0 mL), pure white Saccharin (1.03 g,
34.8. IR (KBr): ν = 2154, 1635, 1463, 1431 cm‒1.
85%) was recovered. Then, the filtrate was concentrated under
5-Chloro-2-thiocyanato-2,3-dihydro-1H-inden-1-one (7d):24
reduced pressure and purified by column chromatography on
Eluent petroleum ether/ethyl acetate (10:1, V/V), yellowish
silica gel with eluent petroleum ether/ethyl acetate to afford
(dd, J = 17.6, 4.4 Hz, 1H).
13C
solid (14 mg, 42%), mp 124–126
oC. 1H
NMR (400 MHz,
product 1c (1.17 g, 91%).
CDCl3): δ = 7.77 (d, J = 8.4 Hz, 1H), 7.51 (s, 1H), 7.45 (d, J = 8.4 Hz, 1H), 4.12 (dd, J = 8.2, 4.0 Hz, 1H), 3.81 (dd, J = 18.0, 8.2 Hz, 1H), 3.36 (dd, J = 18.0, 4.0 Hz, 1H).
13C
NMR (100
█
ASSOCIATED CONTENT
Supporting Information
MHz, CDCl3): δ = 196.5, 152.4, 143.3, 132.6, 129.6, 126.7,
The Supporting Information is available free of charge on the
126.2, 109.5, 48.1, 34.5. IR (KBr): ν = 2156, 1714, 1633, 1519
ACS Publications website at DOI:
cm‒1.
Copies of 1H, 13C NMR. (PDF)
6-Bromo-2-thiocyanato-2,3-dihydro-1H-inden-1-one
(7e):
█
AUTHOR INFORMATION
Eluent petroleum ether/ethyl acetate (5:1, V/V), white solid (36
Corresponding Author
mg, 67%), mp 99–101 oC. 1H NMR (400 MHz, CDCl3): δ =
*E-mail:
[email protected];
[email protected] 7.96 (s, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H),
Notes
4.13 (dd, J = 8.0, 4.4 Hz, 1H), 3.78 (dd, J = 18.0, 8.0 Hz, 1H),
The authors declare no competing financial interest.
3.31 (dd, J = 18.0, 4.4 Hz, 1H) ppm.
13C
NMR (100 MHz,
█
ACKNOWLEDGMENTS
CDCl3): δ = 196.7, 149.6, 139.3, 135.9, 128.0, 127.9, 122.9,
The financial support from the Natural Science Foundation of
109.5, 48.3, 34.5 ppm. IR (KBr): ν = 2900, 2154, 1732, 1701,
China (21572020) is acknowledged.
1595
cm‒1.
HRMS (ESI) m/z: [M +
NH4]+
calcd for
█ REFERENCES
C10H10BrN2OS 284.9692; Found 284.9677.
(1) Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Chem.
5-Bromo-2-thiocyanato-2,3-dihydro-1H-inden-1-one (7f):25
Soc. Rev. 2016, 45, 494.
Eluent petroleum ether/ethyl acetate (5:1, V/V), white solid (27
(2) (a) Zhang, Z.; Liebeskind, L. S. Org. Lett. 2006, 8, 4331. (b)
NMR (400 MHz, CDCl3): δ =
Wu, F.-Y.; Li, Y.; Feng, H.; Wu, Q.; Jiang, B.; Shi, F.; Tu, S.-J.
7.71-7.69 (m, 2H), 7.62 (d, J = 8.0 Hz, 1H), 4.11 (dd, J = 8.0,
Synthesis. 2011, 2459. (c) Wang, F.; Chen, C.; Deng, G.; Xi, C.
4.4 Hz, 1H), 3.82 (dd, J = 18.0, 8.0 Hz, 1H), 3.36 (dd, J = 18.0,
J. Org. Chem. 2012, 77, 4148. (d) Demko, Z.-P.; Sharpless,
NMR (100 MHz, CDCl3): δ = 196.8,
K.-B. Org. Lett. 2001, 3, 4091. (e) Kamiya, I.; Kawakami, J.;
152.4, 133.0, 132.4, 132.2, 129.8, 126.2, 109.5, 48.0, 34.4 ppm.
Yano, S.; Namoto, A.; Ogawa, A. Organometallics. 2006, 25,
mg, 50%), mp 122–124
4.4 Hz, 1H) ppm.
13C
oC. 1H
IR (KBr): ν = 2918, 2848, 2154, 1718, 1593, 1490
cm‒1.
3562. (f) Lu, X.; Wang, H.; Gao, R.; Sun, D.; Bi, X. RSC Adv. (7g):
2014, 4, 28794. (g) Melzig, L.; Rauhut, C. B.; Naredi, R. N.;
Eluent petroleum ether/ethyl acetate (5:1, V/V), white solid (30
Knochel, P. Chem.‒ Eur. J. 2011, 17, 5362. (h) Pawliczek, M.;
mg, 57%), mp 90–92 oC. 1H NMR (400 MHz, CDCl3): δ = 7.87
Garve, L. K. B.; Werz, D.-B. Org. Lett. 2015, 17, 1716.
(d, J = 7.6 Hz, 1H) 7.80 (d, J = 7.6 Hz, 1H), 7.38 (t, J = 7.6 Hz,
(3) (a) Nair, V.; George, T. G.; Nair, L. G.; Panicker, S. B.
1H), 4.14 (dd, J = 8.0, 4.0 Hz, 1H), 3.78 (dd, J = 18.0, 8.0 Hz,
Tetrahedron Lett. 1999, 40, 1195. (b) Zhang, H.; Wei, Q.; Wei,
4-Bromo-2-thiocyanato-2,3-dihydro-1H-inden-1-one
1H) 3.27 (dd, J = 18, 4.0 Hz, 1H) ppm.
13C
NMR (100 MHz,
S.; Qu, J.; Wang, B. Eur. J. Org. Chem. 2016, 3373. (c) Wang,
CDCl3): δ = 197.4, 150.8, 139.1, 136.1, 130.3, 123.8, 121.8,
C.; Wang, Z.; Wang, L.; Chen, Q.; He, M. Chin. J. Chem. 2016,
ACS Paragon Plus Environment
Page 11 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
34, 1081. (d) Chen, Q.; Lei, Y.-J.; Wang, Y.-F.; Wang, C.; Wang,
Yin, H.-Q.; Chen, F.-X. Org. Lett. 2017, 19, 4018.
Y.-N.; Xu, Z.-Q.; Wang, H.; Wang, R. Org. Chem. Front. 2017,
(19) Nikoofar, K.; Gorji, S. J. Sulfur. Chem. 2015, 36, 178.
4, 369. (e) Xiong, H.-Y.; Pannecoucke, X.; Besset, T. Org.
(20) Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Chem. Lett. 2008,
Chem. Front. 2016, 3, 620. (f) Iranpoor, N.; Firouzabadi, H.;
37, 652.
Khalili, D.; Shahin, R. Tetrahedron Lett. 2010, 51, 3508. (g)
(21) Murthy, Y. L. N.; Govindh, B.; Diwakar, B. S.;
Wu, G.; Liu, Q.; Shen, Y.; Wu, W.; Wu, L. Tetrahedron Lett.
Nagalakshmi, K.; Venu, R. J. Iran. Chem. Soc. 2011, 8, 292.
2005, 46, 5831. (h) Jiang, H.-F.; Yu, W.-T.; Tang, X.-D.; Li,
(22) Trimbak, B. M.; Tushar, M. K.; Ramakrishna, G. B.
J.-X.; Wu, W.-Q. J. Org. Chem. 2017, 82, 9312. (i) Memarian,
Tetrahedron Lett. 2017, 58, 415.
H.-R.;
(23) Meshram, H. M.; Thakur, P. B.; Babu, B. M.; Bangade, V.
Mohammadpoor,
B.-I.;
Nikoofar,
K.
Ultrason.
Sonochem. 2008, 15, 456.
M. Tetrahedron Lett. 2012, 53, 1780.
(4) (a) Beletskaya, I. P.; Sigeev, A.; Peregudov, A. S.;
(24) Anil, K. M.; Reddy, K. R.; Reddy, M. V.; Reddy, C. S.;
Petrovskii, P. V. Mendeleev Commun. 2006, 5, 250. (b) Sun, N.;
Reddy, C. D. Synth. Commun. 2008, 38, 2089.
Zhang, H.; Mo, W.; Shen, Z.; Hu, X. Synlett 2003, 96, 2214. (c)
(25) Yu, L.; Wu, X.-Y.; Kim, M. J.; Vaithyanathan,V.; Liu,
Yavari, I.; Damghani, T.; Nematpour, M. Helv. Chim. Acta.
Y.-D.; Tan, Y.; Qin, W.-L.; Song, C.-E.; Yan, H.-L. Adv. Synth.
2013, 96, 2214. (d) Zhu, N.; Wang, F.; Chen, P.; Ye, J.; Liu, G.
Catal. 2017, 359,1879.
Org. Lett. 2015, 17, 3580.
(26) Venkanna, P.; Rajanna, K. C.; Kumar, M. S.;
(5) Angus, A. B.; Bacon, R. G. R. J. Chem. Soc. 1958, 774.
Venkateswarlu, M.; Ail, M. M. Synlett 2016, 27, 237.
(6) Falck, J. K.; Gao, S.; Prasad, R. N.; Koduru, S. R. Bioorg.
(27) Ciocoiu, C. C.; Ravna, A. W.; Sylte, I.; Hansen, T. V. Arch.
Med. Chem. Lett. 2008, 18, 1768.
Pharm. Chem. Life Sci. 2010, 10, 612.
(7) Kokorekin, V. A.; Sigacheva, V. L.; Petrosyan, V. A.
(28) Malik, J. K.; Noolvi, M. N.; Manvi, F. V.; Nanjwade, B. K.;
Tetrahedron Lett. 2014, 55, 4306.
Patel, H. M.; Manjula, S. N.; Mallokarjuna, R. C.; Barve, A.
(8) Kobra, N.; Samareh, G. J. Sulfur. Chem. 2015, 37, 80.
Lett. Drug Des. Discov. 2011, 8, 717.
(9) Frei, R.; Courant, T.; Wodrich, M. D.; Waser, J. Chem. – Eur. J. 2015, 21, 2662. (10) Xu, C.-F.; Ma, B.-Q.; Shen, Q.-L. Angew. Chem. Int. Ed. 2014, 53, 9316. (11) (a) Zhang, P.-P.; Li, M.; Xue, X.-S.; Xu, C.-F.; Zhao, Q.-C.; Liu, Y.-F.; Wang, H.-Y.; Guo, Y.-L.; Lu, L.; Shen, Q.-L. J. Org. Chem. 2016, 81, 7486. (b) Tung, P. T.; Zhong, C. Z.; Chien, T. C.; PYeh, M. C. J. Org. Chem. 2017, 82, 11543. (12) Qi, M.-H.; Wang, F.-J.; Shi, M. Tetrahedron: Asymmetry 2010, 2, 247. (13) Yasui, K.; Kojima, K.; Kato, T.; Odagi, M.; Kato, M.; Nagasawa, K. Tetrahedron 2016, 72, 5350. (14) Xiao, X.; Lin, L.-L.; Lian, X.-J.; Liu, X.-H.; Feng, X.-M. Org. Chem. Front. 2016, 3, 809. (15) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q.-L. J. Org. Chem. 2015, 80, 3012. (16) Wang, Y.-F.; Qiu, J.-S.; Kong, D.-J.; Gao, Y.-T.; Lu, F.-P.; Karmaker, P. G.; Chen, F.-X. Org. Biomol. Chem. 2015, 13, 365. (17) Qiu, J.-S.; Wang, Y.-F.; Qi, G.-R.; Karmaker, P. G.; Yin, H.-Q.; Chen, F.-X. Chem. ‒ Eur. J. 2017, 23, 1775. (18) Qiu, J.-S.; Wu, D.; Karmaker, P. G.; Qi, G.-R.; Chen, P.;
ACS Paragon Plus Environment