Nanoscale Mapping of Dielectric Properties of Nanomaterials from

Mar 14, 2016 - Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States. ¶ School ... (12, 13) In a similar study...
0 downloads 12 Views 8MB Size
Nanoscale Mapping of Dielectric Properties of Nanomaterials from Kilohertz to Megahertz Using Ultrasmall Cantilevers Maria J. Cadena,†,‡ Seung Hyun Sung,¶ Bryan W. Boudouris,¶ Ronald Reifenberger,§,‡ and Arvind Raman*,†,‡ †

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States ¶ School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States § Department of Physics, Purdue University, West Lafayette, Indiana 47907, United States ‡

ABSTRACT: Electrostatic force microscopy (EFM) is often used for nanoscale dielectric spectroscopy, the measurement of local dielectric properties of materials as a function of frequency. However, the frequency range of atomic force microscopy (AFM)-based dielectric spectroscopy has been limited to a few kilohertz by the resonance frequency and noise of soft microcantilevers used for this purpose. Here, we boost the frequency range of local dielectric spectroscopy by 3 orders of magnitude from a few kilohertz to a few megahertz by developing a technique that exploits the high resonance frequency and low thermal noise of ultrasmall cantilevers (USCs). We map the frequency response of the real and imaginary components of the capacitance gradient (∂C(ω)/∂z) by using second-harmonic EFM and a theoretical model, which relates cantilever dynamics to the complex dielectric constant. We demonstrate the method by mapping the nanoscale dielectric spectrum of polymer-based materials for organic electronic devices. Beyond offering a powerful extension to AFM-based dielectric spectroscopy, the approach also allows the identification of electrostatic excitation frequencies which affords high dielectric contrast on nanomaterials. KEYWORDS: ultrasmall cantilevers, EFM, dielectric spectroscopy, second harmonic, capacitance gradient

M

However, traditional BDS techniques are unable to perform spatially sensitive measurements, which probe local modifications introduced by nanostructures, boundaries, and interfaces on dielectric properties. Local probes are particularly important in understanding the dielectric properties of composite films. Lacking spatially resolved measurements, the interpretation of experimental results from macroscopic samples often becomes a model-dependent exercise.9−11 To enable spatially sensitive dielectric spectroscopy measurements at the mesoscopic length scale, a number of atomic force microscopy (AFM) methods have been developed recently. For example, the glassy dynamics of polyvinyl acetate (PVAc) films were studied at one spatial point as a function of temperature at low frequencies (0.01 < f < 100 Hz) using frequency modulation electrostatic force microscopy (FM-EFM).12,13 In a similar study, the dielectric relaxation of a polystyrene/PVAc blend was analyzed at a single point, using phase images at one

easurements of dielectric properties are relevant to the understanding of electrical and structural characteristics of heterogeneous materials in a wide range of devices, such as organic emitting diodes, photovoltaic cells and nonvolatile memories.1−3 In such applications, novel materials comprising different nanoscale domains (phases) are continuously emerging. Controlling the dielectric performance of the different components and the mixture as a whole presents a formidable challenge.4−6 The dielectric response of a material under the influence of an applied field is driven by three main frequency-dependent polarization mechanisms: intra-atomic (electronic), interatomic (vibrational), and orientational.7 Frequency dependence of bulk materials is often determined using broadband dielectric spectroscopy (BDS). This is a popular technique for bulk measurements of dielectric properties over a wide range of frequencies, ranging from 90°), keeping constant the distance between the tip and the sample. Lock-in B generates the electrical excitation signal at a frequency ωe and amplitude VAC. Lock-in C is set to measure the electrostatic interaction force at 2ωe through the amplitude and phase observables, A2ωe and ψ2ωe, respectively. It is used to track the spatial dependence of ∂C/∂z. A cypher AFM is used to acquire the data. An important feature of this instrument that enables the use of USCs is the spot size of the laser, which is about 3 μm. All measurements were made under ambient conditions. The main observables from the experiments are topography and amplitude (A2ωe) and phase (ψ2ωe) from the cantilever response at the second harmonic of the electrostatic excitation. For a complete data set over a broad frequency range, a set of experiments was systematically performed on each sample, acquiring the cantilever response due to electrostatic excitation at 24 equally spaced logarithmic values of frequency ranging from 8 kHz to 2 MHz. The maps taken at each frequency were used to calculate the real and imaginary capacitance gradient as a function of frequency using eqs 9 and 10. Metalized USC were used under ambient conditions to obtain each set of data. A gold coating is on both sides of the USC, but the tip itself is left uncoated. Therefore, sputtering is used to deposit a thin layer of titanium (5 nm) followed by gold (20 nm). Table 3 specifies the relevant parameters for the USC and the ANSCMA-PA probe used for comparison in Figure 1. To estimate Sqq(ω) in Figure 1b, we measured the cantilever deflection q(t) in thermal motion from the photodetector at a sampling rate of 80 MS/s. Then, segment averaging and windowing using a Hann function with 50% overlap is applied to the collected

REFERENCES (1) Godovsky, D. Y. Device Applications of Polymer-Nanocomposites. In Advances in Polymer Science; Springer: Berlin, Heidelberg, 2000; pp 163−205. (2) Brondijk, J. J.; Asadi, K.; Blom, P. W. M.; de Leeuw, D. M. Physics of Organic Ferroelectric Field-Effect Transistors. J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 47−54. (3) Brabec, C. J.; Winder, C.; Sariciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; van Hal, P. A.; Janssen, R. A. J. A Low-Bandgap Semiconducting Polymer for Photovoltaic Devices and Infrared Emitting Diodes. Adv. Funct. Mater. 2002, 12, 709−712. (4) Brosseau, C. Modelling and Simulation of Dielectric Heterostructures: a Physical Survey from an Historical Perspective. J. Phys. D: Appl. Phys. 2006, 39, 1277−1294. (5) Khan, M. A.; Bhansali, U. S.; Almadhoun, M. N.; Odeh, I. N.; Cha, D.; Alshareef, H. N. High-Performance Ferroelectric Memory Based on Phase-Separated Films of Polymer Blends. Adv. Funct. Mater. 2014, 24, 1372−1381. (6) Asadi, K.; Wondergem, H. J.; Moghaddam, R. S.; McNeill, C. R.; Stingelin, N.; Noheda, B.; Blom, P. W. M.; de Leeuw, D. M. Spinodal Decomposition of Blends of Semiconducting and Ferroelectric Polymers. Adv. Funct. Mater. 2011, 21, 1887−1894. (7) Blythe, T.; Bloor, D. Dielectric Relaxation. In Electrical Properties of Polymers; Cambridge University Press: Cambridge, 2005; pp 58− 110. (8) Volkov, A. A.; Prokhorov, A. S. Broadband Dielectric Spectroscopy of Solids. Radiophys. Quantum Electron. 2003, 46, 657−665. (9) Achour, M. E.; Brosseau, C.; Carmona, F. Dielectric Relaxation in Carbon Black-Epoxy Composite Materials. J. Appl. Phys. 2008, 103, 094103. (10) Nuzhnyy, D.; Savinov, M.; Bovtun, V.; Kempa, M.; Petzelt, J.; Mayoral, B.; McNally, T. Broad-Band Conductivity and Dielectric Spectroscopy of Composites of Multiwalled Carbon Nanotubes and Poly(Ethylene Terephthalate) around Their Low Percolation Threshold. Nanotechnology 2013, 24, 055707. (11) Vo, H. T.; Shi, F. G. Towards Model-Based Engineering of Optoelectronic Packaging Materials: Dielectric Constant Modeling. Microelectron. J. 2002, 33, 409−415. (12) Crider, P. S.; Majewski, M. R.; Zhang, J.; Oukris, H.; Israeloff, N. E. Local Dielectric Spectroscopy of Polymer Films. Appl. Phys. Lett. 2007, 91, 013102. (13) Crider, P. S.; Majewski, M. R.; Zhang, J.; Oukris, H.; Israeloff, N. E. Local Dielectric Spectroscopy of Near-Surface Glassy Polymer Dynamics. J. Chem. Phys. 2008, 128, 044908. (14) Riedel, C.; Sweeney, R.; Israeloff, N. E.; Arinero, R.; Schwartz, G. A.; Alegría, Á .; Tordjeman, P.; Colmenero, J. Imaging Dielectric

Table 3. Relevant Properties of a Conventional Long Cantilever (ANSCM-PA from App-Nano) and a Ultrasmall (USC-F5-k30 from NanoWorld) Cantilever parameters

ANSCM-PA

USC

ω0 k Q length width tip height

240 kHz 25.8 N/m 449.1 125 μm 30 μm 14 μm

4.8 MHz 27.4 N/m 381.1 10 μm 5.4 μm 2.5 μm 4069

DOI: 10.1021/acsnano.5b06893 ACS Nano 2016, 10, 4062−4071

Article

ACS Nano

(35) Ahmad, Z. Polymer Dielectric Materials. In Dielectric Material; In Tech, 2012; pp 3−26. (36) Pillai, P. K. C.; Rashmi. Dielectric Properties of Polystyrene and Some Related Polymers. Int. J. Polym. Mater. 1980, 8, 255−263. (37) Zhang, L.; Chen, S.; Yuan, S.; Wang, D.; Hu, P.-H.; Dang, Z.-M. Low Dielectric Loss and Weak Frequency Dependence of Dielectric Permittivity of the CeO2/Polystyrene Nanocomposite Films. Appl. Phys. Lett. 2014, 105, 052905. (38) Obrzut, J.; Page, K. A. Electrical Conductivity and Relaxation in Poly(3-Hexylthiophene). Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 195211. (39) Singh, R.; Singh, R. K.; Kumar, J.; Kant, R.; Kumar, V. The Origin of DC Electrical Conduction and Dielectric Relaxation in Pristine and Doped Poly(3-Hexylthiophene) Films. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 1047−1053. (40) Furukawa, T.; Tajitsu, Y.; Zhang, X.; Johnson, G. E. Dielectric Relaxations in Copolymers of Vinylidene Fluoride. Ferroelectrics 1992, 135, 401−417. (41) Schenk, M.; Bauer, S.; Lessle, T.; Ploss, B. Dielectric Spectroscopy on Ferroelectric P(VDF-TrFE). Ferroelectrics 1992, 127, 215−220. (42) Gómez-Moñivas, S.; Froufe, L. S.; Carminati, R.; Greffet, J. J.; Sáenz, J. J. Tip-Shape Effects on Electrostatic Force Microscopy Resolution. Nanotechnology 2001, 12, 496−499. (43) Sacha, G. M.; Sáenz, J. J. Cantilever Effects on Electrostatic Force Gradient Microscopy. Appl. Phys. Lett. 2004, 85, 2610. (44) Hochwitz, T. Capacitive Effects on Quantitative Dopant Profiling with Scanned Electrostatic Force Microscopes. J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 1996, 14, 457. (45) Kalinin, S. V.; Bonnell, D. A. Imaging Mechanism of Piezoresponse Force Microscopy of Ferroelectric Surfaces. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 65, 125408. (46) Gómez-Moñivas, S.; Sáenz, J. J.; Carminati, R.; Greffet, J. J. Theory of Electrostatic Probe Microscopy: A Simple Perturbative Approach. Appl. Phys. Lett. 2000, 76, 2955. (47) Tevaarwerk, E.; Keppel, D. G.; Rugheimer, P.; Lagally, M. G.; Eriksson, M. A. Quantitative Analysis of Electric Force Microscopy: The Role of Sample Geometry. Rev. Sci. Instrum. 2005, 76, 053707. (48) Sung, S. H.; Boudouris, B. W. Systematic Control of the Nanostructure of Semiconducting-Ferroelectric Polymer Composites in Thin Film Memory Devices. ACS Macro Lett. 2015, 4, 293−297. (49) Gramse, G.; Gomila, G.; Fumagalli, L. Quantifying the Dielectric Constant of Thick Insulators by Electrostatic Force Microscopy: Effects of the Microscopic Parts of the Probe. Nanotechnology 2012, 23, 205703. (50) Seiler, J.; Kindersberger, J. Insight into the Interphase in Polymer Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 537−547. (51) Riedel, C.; Alegría, Á .; Schwartz, G. A.; Arinero, R.; Colmenero, J.; Sáenz, J. J. On the Use of Electrostatic Force Microscopy as a Quantitative Subsurface Characterization Technique: A Numerical Study. Appl. Phys. Lett. 2011, 99, 023101. (52) Castañeda-Uribe, O. A.; Reifenberger, R.; Raman, A.; Avila, A. Depth-Sensitive Subsurface Imaging of Polymer Nanocomposites Using Second Harmonic Kelvin Probe Force Microscopy. ACS Nano 2015, 9, 2938−2947. (53) Fumagalli, L.; Esteban-Ferrer, D.; Cuervo, A.; Carrascosa, J. L.; Gomila, G. Label-Free Identification of Single Dielectric Nanoparticles and Viruses with Ultraweak Polarization Forces. Nat. Mater. 2012, 11, 808−16. (54) Zhang, J.; Lu, W.; Li, Y. S.; Cai, J.; Chen, L. Dielectric Force Microscopy: Imaging Charge Carriers in Nanomaterials without Electrical Contacts. Acc. Chem. Res. 2015, 48, 1788−96. (55) Forchheimer, D.; Forchheimer, R.; Haviland, D. B. Improving Image Contrast and Material Discrimination with Nonlinear Response in Bimodal Atomic Force Microscopy. Nat. Commun. 2015, 6, 6270. (56) Cadena, M. J.; Misiego, R.; Smith, K. C.; Avila, A.; Pipes, B.; Reifenberger, R.; Raman, A. Sub-Surface Imaging of Carbon Nanotube

Relaxation in Nanostructured Polymers by Frequency Modulation Electrostatic Force Microscopy. Appl. Phys. Lett. 2010, 96, 213110. (15) Labardi, M.; Prevosto, D.; Nguyen, K. H.; Capaccioli, S.; Lucchesi, M.; Rolla, P. Local Dielectric Spectroscopy of Nanocomposite Materials Interfaces. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 2010, 28, C4D11. (16) Schwartz, G. A.; Riedel, C.; Arinero, R.; Tordjeman, P.; Alegría, Á .; Colmenero, J. Broadband Nanodielectric Spectroscopy by Means of Amplitude Modulation Electrostatic Force Microscopy (AM-EFM). Ultramicroscopy 2011, 111, 1366−1369. (17) Miccio, L. A.; Schwartz, G. A. Study of Relaxation and Transport Processes by Means of AFM Based Dielectric Spectroscopy. AIP Conf. Proc. 2014, 1599, 150−153. (18) Kummali, M. M.; Miccio, L. A.; Schwartz, G. A.; Alegría, Á .; Colmenero, J.; Otegui, J.; Petzold, A.; Westermann, S. Local Mechanical and Dielectric Behavior of the Interacting Polymer Layer in Silica Nano-Particles Filled SBR by Means of AFM-Based Methods. Polymer 2013, 54, 4980−4986. (19) Ku, C. C.; Liepins, R. Dielectric Constant of Polymers. In Electrical Properties of Polymers: Chemical Principles; Hanser Publishers: Munich, 1987; pp 20−58. (20) Miccio, L. A.; Kummali, M. M.; Schwartz, G. A.; Alegría, Á .; Colmenero, J. AFM Based Dielectric Spectroscopy: Extended Frequency Range Through Excitation of Cantilever Higher Eigenmodes. Ultramicroscopy 2014, 146, 55−61. (21) Melcher, J.; Hu, S.; Raman, A. Equivalent Point-Mass Models of Continuous Atomic Force Microscope Probes. Appl. Phys. Lett. 2007, 91, 053101. (22) Kiracofe, D.; Raman, A. On Eigenmodes, Stiffness, and Sensitivity of Atomic Force Microscope Cantilevers in Air versus Liquids. J. Appl. Phys. 2010, 107, 033506. (23) Franke, K. Evaluation of Electrically Polar Substances by Electric Scanning Force Microscopy. Part II: Measurement Signals Due to Electromechanical Effects. Ferroelectr., Lett. Sect. 1995, 19, 35−43. (24) Fumagalli, L.; Ferrari, G.; Sampietro, M.; Gomila, G. DielectricConstant Measurement of Thin Insulating Films at Low Frequency by Nanoscale Capacitance Microscopy. Appl. Phys. Lett. 2007, 91, 243110. (25) Kumar, B.; Bonvallet, J. C.; Crittenden, S. R. Dielectric Constants by Multifrequency Non-Contact Atomic Force Microscopy. Nanotechnology 2012, 23, 025707. (26) Walters, D. A.; Cleveland, J. P.; Thomson, N. H.; Hansma, P. K.; Wendman, M. A.; Gurley, G.; Elings, V. Short Cantilevers for Atomic Force Microscopy. Rev. Sci. Instrum. 1996, 67, 3583. (27) Sarid, D. Mechanical Properties of Levers. In Scanning Force Microscopy: With Applications to Electric, Magnetic and Atomic Forces; Oxford University Press: New York, 1994; pp 1−17. (28) Rast, S.; Wattinger, C.; Gysin, U.; Meyer, E. The Noise of Cantilevers. Nanotechnology 2000, 11, 169−172. (29) Albrecht, T. R.; Grütter, P.; Horne, D.; Rugar, D. Frequency Modulation Detection Using High-Q Cantilevers for Enhanced Force Microscope Sensitivity. J. Appl. Phys. 1991, 69, 668. (30) Sadewasser, S.; Glatzel, T. Experimental Techniques and Working Modes. In Kelvin Probe Force Microscopy Measuring and Compensating Electrostatic Forces; Sadewasser, S., Glatzel, T., Eds.; Springer: Berlin, 2012; Vol. 48; pp 7−24. (31) Müller, F.; Müller, A.-D.; Hietschold, M.; Kämmer, S. Detecting Electrical Forces in Noncontact Atomic Force Microscopy. Meas. Sci. Technol. 1998, 9, 734−738. (32) Fumagalli, L.; Gramse, G.; Esteban-Ferrer, D.; Edwards, M. A.; Gomila, G. Quantifying the Dielectric Constant of Thick Insulators Using Electrostatic Force Microscopy. Appl. Phys. Lett. 2010, 96, 183107. (33) García, R.; Pérez, R. Dynamic Atomic Force Microscopy Methods. Surf. Sci. Rep. 2002, 47, 197−301. (34) Xu, X.; Mares, J.; Groven, L. J.; Son, S. F.; Reifenberger, R. G.; Raman, A. Nanoscale Characterization of Mock Explosive Materials Using Advanced Atomic Force Microscopy Methods. J. Energ. Mater. 2015, 33, 51−65. 4070

DOI: 10.1021/acsnano.5b06893 ACS Nano 2016, 10, 4062−4071

Article

ACS Nano Polymer Composites Using Dynamic AFM Methods. Nanotechnology 2013, 24, 135706. (57) Asadi, K.; Li, M.; Blom, P. W. M.; Kemerink, M.; de Leeuw, D. M. Organic Ferroelectric Opto-Electronic Memories. Mater. Today 2011, 14, 592−599. (58) Heremans, P.; Gelinck, G. H.; Müller, R.; Baeg, K.-J.; Kim, D.Y.; Noh, Y.-Y. Polymer and Organic Nonvolatile Memory Devices. Chem. Mater. 2011, 23, 341−358. (59) Ounaies, Z.; Park, C.; Wise, K. E.; Siochi, E. J.; Harrison, J. S. Electrical Properties of Single Wall Carbon Nanotube Reinforced Polyimide Composites. Compos. Sci. Technol. 2003, 63, 1637−1646. (60) Misiego, C. R.; Pipes, R. B. Dispersion and Its Relation to Carbon Nanotube Concentration in Polyimide Nanocomposites. Compos. Sci. Technol. 2013, 85, 43−49. (61) Bendat, J. S.; Piersol, A. G. Data Analysis. In Random Data: Analysis and Measurement Procedures; John Wiley & Sons, Inc.: Hoboken, NJ, 2012; pp 359−416. (62) Schäffer, T. E. Calculation of Thermal Noise in an Atomic Force Microscope with a Finite Optical Spot Size. Nanotechnology 2005, 16, 664−670.

4071

DOI: 10.1021/acsnano.5b06893 ACS Nano 2016, 10, 4062−4071