Ni-Catalyzed Regioselective β,δ-Diarylation of Unactivated Olefins in

challenging primarily due to the flexible alkyl chain and the high propensity of the Heck C(sp3)-MX .... Value in parenthesis is the isolated yield fr...
0 downloads 0 Views 288KB Size
Subscriber access provided by University of Sussex Library

Communication

Ni-Catalyzed Regioselective #,#-Diarylation of Unactivated Olefins in Ketimines via Ligand-Enabled Contraction of Transient Nickellacycles: Rapid Access to Remotely Diarylated Ketones Prakash Basnet, Roshan K Dhungana, Surendra Thapa, Bijay Shrestha, Shekhar KC, Jeremiah M. Sears, and Ramesh Giri J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b03163 • Publication Date (Web): 12 Jun 2018 Downloaded from http://pubs.acs.org on June 12, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

Ni-Catalyzed Regioselective β,δ δ-Diarylation of Unactivated Olefins in Ketimines via Ligand-Enabled Contraction of Transient Nickellacycles: Rapid Access to Remotely Diarylated Ketones Prakash Basnet,† Roshan K. Dhungana,† Surendra Thapa,† Bijay Shrestha,† Shekhar KC,† Jeremiah M. Sears,§ and Ramesh Giri†* †

Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA. §Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Blvd. SE, Albuquerque, NM 87106, USA.

Supporting Information Placeholder ABSTRACT: We disclose a [(PhO)3P]/NiBr2-catalyzed regioselective β,δ-diarylation of unactivated olefins in ketimines with aryl halides and arylzinc reagents. This diarylation proceeds at remote locations to the carbonyl group to afford, after simple H+ workup, diversely substituted β,δ-diarylketones that are otherwise difficult to access readily with existing methods. Deuteriumlabelling and crossover experiments indicate that diarylation proceeds by ligand-enabled contraction of transient nickellacycles.

Interception of in situ-generated Heck C(sp3)-MX intermediates by organometallic reagents is a powerful method to difunctionalize unactivated olefins (Scheme 1).1 This process creates two new carbon-carbon (C-C) bonds across an olefin with new stereocenters2 and enables to build complex molecules rapidly,3 the access for which would otherwise require multiple steps from readily available chemicals with the known methods. However, development of such a method for acyclic alkenes remains incredibly challenging primarily due to the flexible alkyl chain and the high propensity of the Heck C(sp3)-MX species to undergo β-hydride (β-H) elimination that leads to the formation of Heck products (Scheme 1, A). Due to these complications, regioselective olefin dicarbofunctionalization has generally remained successful with dienes and styrenes,4 a class of substrates that tender internal stabilization of Heck C(sp3)-MX species by generating π-allyl/πbenzyl complexation and furnish 1,2- or 1,4-difunctionalized products (Scheme 1, B).5 In some cases, olefins that lack intrinsic stabilizing factors follow a Heck carbometallation, β-H elimination and [M]-H reinsertion steps prior to transmetalation to give 1,1-difunctionalized products (Scheme 1, C).6

Scheme 1. Strategies for olefins dicarbofunctionalization and the complication by β-H elimination

Scheme 2. Pd Redox relay and interception of C(sp3)-NiX species during 1,3-diarylation of unactivated olefins Unactivated olefins on aliphatic backbones also readily undergo isomerization7 by redox relay that involves a series of C(sp3)-MX species generated through sequential β-H elimination/M-H migratory insertion steps.8 In some cases, such isomerization can be harnessed for remote functionalization.9 In a recent report, Sigman and coworkers demonstrated that unactivated olefins tethered to carbonyl compounds would undergo such a process involving a Pd-catalyzed Heck reaction10 until the C(sp3)-PdX species result in β-H elimination from α-position to furnish terminally arylated α,β-unsaturated carbonyl compounds (Scheme 2).11 Herein, we demonstrate that one of such redox-relay Heck C(sp3)-MX species generated at the β-position of carbonyl derivatives can be intercepted with arylzinc reagents to furnish β,δ-diarylketones (Scheme 2). This process was rendered successful by utilizing (PhO)3P/NiBr2 as a new catalyst and modifying the carbonyl group to an imine for intercepting the redox-relay Heck C(sp3)NiX species by coordination-assisted formation of transient nickellacycles.12 Preliminary studies by deuterium-labelling and crossover experiments indicate that the reaction proceeds by a (PhO)3P-promoted contraction of six-membered transient nickellacycles to five-membered nickellacycles. In our continued efforts to expand the scope of coordinationassisted olefin difunctionalization to synthetically important carbonyl compounds,13 we examined olefins in simple aliphatic ketone-derived imines.14 Unfortunately, our preliminary examination of diarylation of imine 1 derived from 5-hexenone and aniline under our previously reported conditions13 either did not form any product or only produced the Heck product 2 in 74% yield (Scheme 3).15 We reasoned that the fluxional characteristics of the

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

six-membered transient nickellacycle 3 could be responsible for the Heck reaction by making it harder to stabilize the C(sp3)-NiX species and prompting them to undergo rapid β-H elimination. We then hypothesized that such transient nickellacycles could be stabilized in situ by intercepting them with exogenous ligands that could create a comparatively rigid, higher coordinate organonickel species. Examination of a variety of ligands with NiBr2 indeed revealed that (PhO)3P was an excellent ligand to promote diarylation of unactivated olefins in ketimines with aryl iodides and arylzinc reagents (Table 1, entry 1). Surprisingly, the unactivated olefin underwent 1,3-diarylation, rather than 1,2-diarylation, furnishing β,δ-diarylketone 5 along with the Heck product 2 in 54% and 12% yields, respectively. No product arising from β-H elimination from α-position of the carbonyl group was observed. Further examination of other solvents (entries 2-5) showed that the diarylated product 5 was formed in best yield in MeCN (entry 2).

Scheme 3. Formation of Heck product via a fluxional sixmembered transient metallacycle Table 1. Optimization of reaction conditionsa

and generates only Heck product 2 in 18% yield in the absence of (PhO)3P (entries 11-12). Altering the phenyl group in imine electronically with p-F and p-Me substituents or replacing it with nBu group also formed the diarylated product 5 in lower yields (entries 13-15). Shorter reaction time decreased the yield of the product 5 (entry 16). Other catalysts based on Pd, Fe, Co and Cu did not catalyze the diarylation reaction (entry 17). Control experiments with the parent ketone as a substrate both with and without (PhO)3P formed neither the diarylated nor the Heck product (entries 18-19). These experiments highlight the critical roles played by (PhO)3P and the imine group in promoting Heck carbometallation and nickellacycle contraction, and stabilizing the resultant transient nickellacycles. After optimizing the reaction conditions, we examined the scope of the current reaction for β,δ-diarylation of imine 1 with 4(trifluoromethyl)phenylzinc iodide and different aryl iodides (Table 2). The reaction proceeds with both electron-rich and electronpoor aryl iodides16 and tolerates substituents such as alkyl, OMe, Cl, F, CO2Me and CF3 on aryl iodides. In addition, the reaction also tolerates ortho-substitution on aryl iodides as demonstrated by ortho-Me and 1-naphthyl (31 and 37). We further examined the scope of the current β,δ-diarylation reaction with respect to different ketimines, aryl iodides and arylzinc reagents (Table 3).17 The reaction typically works well with electron-deficient arylzinc reagents.16 The reaction tolerates functional groups such as Me, F, Cl and CF3 on arylzinc reagents and alkyl, OMe, F, Cl, CN and CF3 on aryl iodides. The aryl iodides and arylzinc reagents can be used in different combinations with several ketimines to furnish variously substituted β,δ-diarylketones. The reaction also proceeds well with ketimines derived from ketones with substitutions at α-carbons both at distal (51-53) and proximal (54-64) locations to the unactivated olefins. The diarylation reactions with these substituted ketones gave products in nearly 1:1 diastereomeric ratios (54-64). We further conducted deuterium-labelling and crossover experiments in order to understand the process of metallacycle contraction, and propose a catalytic cycle (Scheme 6). We subjected the imine 1-d2 labelled with deuterium (86% D) at the allylic position (β-d2) to our standard reaction condition for diarylation (Scheme 4). Analysis of the diarylated product 5-d2 revealed that one of two allylic deuteriums migrated quantitatively (85% D) to γposition of the carbonyl group. We then conducted a crossover experiment between the imine 1 and the styryl imine 65 (Scheme 5), a Heck product that serves as an intermediate during redox relay. Analysis of the products showed that the product 35 arising

Table 2. Scope with aryl iodidesa

a

0.1 mmol scale reactions in 0.5 mL solvent. b1H NMR yields using pyrene as an internal standard. Value in parenthesis is the isolated yield from 0.5 mmol. c80% remaining starting material. d Pd(OAc)2, CoCl2, FeCl2 or CuI. The results with triarylphosphines, trialkylphosphines, triarylphosphites and trialkylphosphites (entries 6-10) indicate that the 1,3-diarylation reaction requires an electron-deficient ligand. The reaction does not form the diarylated product 5 without NiBr2

a

Isolated from 0.5 mmol. 5-10% Heck products observed.

ACS Paragon Plus Environment

Page 2 of 5

Page 3 of 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society Table 3. Scope with ketone derivatives, aryl iodides and arylzinc reagentsa

+

R2

Cl

ZnI

R1

R3

+

I

Cl

Me

O R2

then H+ workup

R 1.5 equiv

1.2 equiv

R1

5 mol % NiBr2 5 mol % (PhO) 3P MeCN, 60 °C, 2-14 h

PhN

F O

O

O

O

Me tBu

38, 52%

F

O Ph

iPr

39, 51%

Cl

Ph

Ph

R

Me

47, 62%

CN

b

Me

( )2 44, 65%

CF3 O

O Me

( )2 48, 76%

OMe

CF3

CF3

43, 48%

F

O

( )2

F

46, 61%

O Ph

42, 51% F

O

( )2

Me

45, 81%

41, 61%

Cl

Me CF3

Cl

O

( )2

Me Me

40, 42%

F

Cl

F

O

O Me

Me

38-64

F

Cl

Me

R

R3

F

CF3

OMe

( )2

Me

49, 74%

F

F3 C

Me

( )2 50, 52%

CF3

O Me

O

O R'

Me

OMe

Me

51, R = CF3 ; R' = p-OMe, 62% 52, R = Cl; R' = m-OMe, 63% 53, R = CF3 ; R' = p-Me, 55%

Me

Me 54, 45% (dr, 1:1)

CF3

OMe

Me

F

F

F

O

O

Me

OMe

61, 62% (dr, 1:1)

Cl

F

O

iPr

60, 43%, (dr, 1:1.4)

56, 63% (dr, 1:1.2)

55, 51% (dr, 1:1.2)

X-ray (61)

CF3 Cl

Cl O

O

O

iPr

57, 56% (dr, 1:1.2)

58, 62% (dr, 1:1)

CF3

59, 58%, (dr, 1:1.5)

O 62, 41% (dr, 1:1.3)

Isolated from 0.5 mmol. 5-10% Heck products observed. b50 °C. from the imine 1 was generated predominantly along with traces of the product 32. These results, along with the observation of 510% Heck products in all reactions, indicate that the contraction of the six-membered transient nickellacycle 68 proceeds while Ni remains mostly bound to the substrate (Scheme 6).11e Such ring contraction to the five-membered nickellacycle 71 proceeds by βH elimination from a β-carbon followed by H-NiX reinsertion to olefin prior to transmetalation/reductive elimination to furnish β,δ-diarylketones.18 Since no product is observed without (PhO)3P, we believe that the ligand facilitates ring contraction. In addition, (PhO)3P, an electron-deficient ligand, could also facilitate reductive elimination.19

O

O 63, 61% (dr, 1:1.3)

Me

64, 44% (dr, 1:1.3)

a

O Me

NiBr2 + 1 + P(OPh) 3

Ar'

Ar'ZnX (−Ar'Ar')

Ar (H + workup) Me

PhN

PhN

Me 1 Me

RE Ar

PhN (PhO) 3P ZnX2

NiII Ar' 72

Me

+

ArI

+

Ar'

5 mol % NiBr2 5 mol % (PhO) 3 P

ZnI

MeCN, 60 °C, 2 h (H + workup) 68%

Me

1-d2 Ar = 4-MeC 6 H4 ; Ar' = 4-CF 3 C6 H 4

O

X

Me

Me

D

Ar D

Me 1 (0.10 mmol)

MeO 2C

Ph

I 5 mol % NiBr2 5 mol % (PhO) 3 P

(ArI) +

+ F 3C

ZnI

Ar NiII P(OPh) 3 (fluxional unstable)

PhN X

Ar NiII H 70

(PhO) 3 P

Ar' Ph

Me 32, 2% + O Ar'

MeCN, 60 °C, 2 h (H + workup)

ASSOCIATED CONTENT Supporting Information

Ar

Me (Ar'ZnI)

PhN

68 X

Scheme 6: Proposed catalytic cycle O

PhN

65 (0.20 mmol) + PhN

Me

Transient Metallacycle Contraction Steps

Scheme 4: Deuterium-labelling experiment Me

Ar

Me

(PhO) 3 P

86% D 5-d 2 85% D

NiII H 69

Ar

NiII (PhO) 3P X 71 (rigid, stable)

Ar'

(PhO) 3 P

PhN

Ar'ZnX

PhN 86% D PhN D D

ArX (PhO) 3 P Ni P(OPh) 3 Me 66 PhN NiII 67 X Ar

35, 30%

Scheme 5: Crossover experiment In summary, we have developed a new (PhO)3P/NiBr2 catalyst for regioselective 1,3-diarylation of unactivated olefins in ketimines with aryl iodides and arylzinc reagents to furnish variously substituted β,δ-diarylketones. This remote diarylation was made feasible by the combination of (PhO)3P as a ligand and imine as a coordinating group that enabled to intercept transient Heck C(sp3)NiX intermediates. Deuterium-labelling and crossover experiments indicate that the reaction proceeds by the contraction of sixmembered nickellacycles to five-membered nickellacycles enabled by the presence of (PhO)3P.

Experimental procedures, characterization data for all compounds, and crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION Corresponding Author

[email protected] Notes

The authors declare no competing financial interests.

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACKNOWLEDGMENT We thank the University of New Mexico (UNM) and the National Science Foundation (NSF CHE-1554299) for financial support, and upgrades to the NMR (NSF grants CHE08-40523 and CHE09-46690) and MS Facilities. The Bruker X-ray diffractometer was purchased via an NSF CRIF:MU award to UNM (CHE04-43580). Sandia National Laboratories (See the SI).

REFERENCES (1) For dicarbofunctionalization of activated olefins by conjugate addition/enolate interception, see: (a) Guo, H.-C.; Ma, J.-A. Angew. Chem. Int. Ed. 2006, 45, 354; (b) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801. For olefin difunctionalization by metallate rearrangement, see: (c) Zhang, L.; Lovinger, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Science 2016, 351, 70. (2) For selected examples of olefin dicarbofunctionalization invloving cyclization, see: (a) Dhungana, R. K.; Shrestha, B.; Thapa-Magar, R.; Basnet, P.; Giri, R. Org. Lett. 2017, 19, 2154; (b) Thapa, S.; Basnet, P.; Giri, R. J. Am. Chem. Soc. 2017, 139, 5700; (c) You, W.; Brown, M. K. J. Am. Chem. Soc. 2015, 137, 14578; (d) You, W.; Brown, M. K. J. Am. Chem. Soc. 2014, 136, 14730; (e) Cong, H.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 3788; (f) Phapale, V. B.; Buñuel, E.; García-Iglesias, M.; Cárdenas, D. J. Angew. Chem. Int. Ed. 2007, 46, 8790; (g) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123, 5374; (h) Yan, C.-S.; Peng, Y.; Xu, X.-B.; Wang, Y.-W. Chem. Eur. J. 2012, 18, 6039; (i) McMahon, C. M.; Renn, M. S.; Alexanian, E. J. Org. Lett. 2016, 18, 4148; (j) Vaupel, A.; Knochel, P. J. Org. Chem. 1996, 61, 5743; (k) Walker, J. A.; Vickerman, K. L.; Humke, J. N.; Stanley, L. M. J. Am. Chem. Soc. 2017, 139, 10228; (l) Dreis, A. M.; Douglas, C. J. J. Am. Chem. Soc. 2009, 131, 412; (m) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem. Int. Ed. 2012, 51, 2485; (n) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005; (o) Logan, K. M.; Sardini, S. R.; White, S. D.; Brown, M. K. J. Am. Chem. Soc. 2018, 140, 159. (3) For reviews on olefin difunctionalization to form C-C/C-O,N bonds, see: (a) Chemler, S. R.; Karyakarte, S. D.; Khoder, Z. M. J. Org. Chem. 2017, 82, 11311; (b) Gockel, S. N.; Buchanan, T. L.; Hull, K. L. J. Am. Chem. Soc. 2018, 140, 58; (c) Wolfe, J. P. Synlett 2008, 2008, 2913. (4) (a) Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 5784; (b) Wu, X.; Lin, H.-C.; Li, M.-L.; Li, L.-L.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2015, 137, 13476; (c) Kuang, Z.; Yang, K.; Song, Q. Org. Lett. 2017, 19, 2702; (d) Terao, J.; Nii, S.; Chowdhury, F. A.; Nakamura, A.; Kambe, N. Adv. Synth. Catal. 2004, 346, 905; (e) Mizutani, K.; Shinokubo, H.; Oshima, K. Org. Lett. 2003, 5, 3959; (f) McCammant, M. S.; Liao, L.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 4167; (g) McCammant, M. S.; Sigman, M. S. Chem. Sci. 2015, 6, 1355; (h) McCammant, M. S.; Shigeta, T.; Sigman, M. S. Org. Lett. 2016, 18, 1792. (5) For olefin dicarbofunctionalization by a radical process, see: (a) García-Domínguez, A.; Li, Z.; Nevado, C. J. Am. Chem. Soc. 2017, 139, 6835; (b) Stokes, B. J.; Liao, L.; de Andrade, A. M.; Wang, Q.; Sigman, M. S. Org. Lett. 2014, 16, 4666; (c) Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 10202; (d) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904; (e) Ilchenko, N. O.; Janson, P. G.; Szabó, K. J. J. Org. Chem. 2013, 78, 11087; (f) Liang, Z.; Wang, F.; Chen, P.; Liu, G. Journal of Fluorine Chemistry 2014, 167, 55; (g) He, Y.-T.; Li, L.-H.; Yang, Y.-F.; Zhou, Z.Z.; Hua, H.-L.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2014, 16, 270; (h) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547. (6) (a) Saini, V.; Sigman, M. S. J. Am. Chem. Soc. 2012, 134, 11372; (b) Werner, E. W.; Urkalan, K. B.; Sigman, M. S. Org. Lett. 2010, 12, 2848; (c) Saini, V.; Liao, L.; Wang, Q.; Jana, R.; Sigman, M. S. Org. Lett. 2013, 15, 5008; (d) Urkalan, K. B.; Sigman, M. S. Angew. Chem. Int. Ed. 2009, 48, 3146. (7) (a) Kocen, A. L.; Klimovica, K.; Brookhart, M.; Daugulis, O. Organometallics 2017, 36, 787; (b) Kita, M. R.; Miller, A. J. M. Angew. Chem. Int. Ed. 2017, 56, 5498; (c) Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788; (d) Larsen, C. R.; Grotjahn, D. B. J. Am. Chem. Soc. 2012, 134, 10357; (e) Chen, C.; Dugan, T. R.;

Brennessel, W. W.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945; (f) Gauthier, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.; Skrydstrup, T. J. Am. Chem. Soc. 2010, 132, 7998; (g) Larionov, E.; Li, H.; Mazet, C. Chem. Commun. 2014, 50, 9816. (8) (a) Renata, H.; Zhou, Q.; Baran, P. S. Science 2013, 339, 59; (b) Weinstein, A. B.; Stahl, S. S. Angew. Chem. Int. Ed. 2012, 51, 11505; (c) Aspin, S.; Goutierre, A.-S.; Larini, P.; Jazzar, R.; Baudoin, O. Angew. Chem. Int. Ed. 2012, 51, 10808; (d) Kohler, D. G.; Gockel, S. N.; Kennemur, J. L.; Waller, P. J.; Hull, K. L. Nature Chem. 2018, 10, 333; (e) Park, J.-W.; Kou, K. G. M.; Kim, D. K.; Dong, V. M. Chem. Sci. 2015, 6, 4479. (9) For a review, see: (a) Vasseur, A.; Bruffaerts, J.; Marek, I. Nature Chem. 2016, 8, 209. For selected examples, see: (b) Chinkov, N.; Majumdar, S.; Marek, I. J. Am. Chem. Soc. 2003, 125, 13258; (c) He, Y.; Cai, Y.; Zhu, S. J. Am. Chem. Soc. 2017, 139, 1061. (10) Zhang, C.; Santiago, C. B.; Kou, L.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 7290. (11) For redox relay Heck arylation of olefin-tethered alcohols, see: (a) Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Science 2012, 338, 1455; (b) Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P.-O.; Wu, Y.-D.; Sigman, M. S.; Wiest, O. J. Am. Chem. Soc. 2014, 136, 1960; (c) Patel, H. H.; Sigman, M. S. J. Am. Chem. Soc. 2016, 138, 14226; (d) Chen, Z.-M.; Hilton, M. J.; Sigman, M. S. J. Am. Chem. Soc. 2016, 138, 11461; (e) Hilton, M. J.; Xu, L.-P.; Norrby, P.-O.; Wu, Y.-D.; Wiest, O.; Sigman, M. S. J. Org. Chem. 2014, 79, 11841; (f) Dang, Y.; Qu, S.; Wang, Z.-X.; Wang, X. J. Am. Chem. Soc. 2014, 136, 986. (12) For selected examples of coordination-assisted Ni-catalyzed Negishi coupling, see: (a) Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11908; (b) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154; (c) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 5794; (d) Joshi-Pangu, A.; Ganesh, M.; Biscoe, M. R. Org. Lett. 2011, 13, 1218. (13) (a) Shrestha, B.; Basnet, P.; Dhungana, R. K.; Kc, S.; Thapa, S.; Sears, J. M.; Giri, R. J. Am. Chem. Soc. 2017, 139, 10653; (b) Thapa, S.; Dhungana, R. K.; Magar, R. T.; Shrestha, B.; Kc, S.; Giri, R. Chem. Sci. 2018, 9, 904. (14) For other examples of olefin dicarbofunctionalization using a coordinating group, see: (a) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Angew. Chem. Int. Ed. 2016, 55, 12270; (b) Li, W.; Boon, J. K.; Zhao, Y. Chem. Sci. 2018, 9, 600; (c) Yahiaoui, S.; Fardost, A.; Trejos, A.; Larhed, M. J. Org. Chem. 2011, 76, 2433; (d) Derosa, J.; Tran, V. T.; Boulous, M. N.; Chen, J. S.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 10657; (e) Liu, Z.; Zeng, T.; Yang, K. S.; Engle, K. M. J. Am. Chem. Soc. 2016, 138, 15122. For fluorarylation and dioxygenation of olefins using a coordinating group, see: (f) Talbot, E. P. A.; Fernandes, T. d. A.; McKenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101; (g) Neufeldt, S. R.; Sanford, M. S. Org. Lett. 2013, 15, 46. (15) For directed Heck reaction, see: (a) Oestreich, M. In Directed Metallation; Chatani, N., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007, p 169; (b) Maity, S.; Dolui, P.; Kancherla, R.; Maiti, D. Chem. Sci. 2017, 8, 5181. For examples of Ni-catalyzed Heck reactions, see: (c) Matsubara, R.; Gutierrez, A. C.; Jamison, T. F. J. Am. Chem. Soc. 2011, 133, 19020; (d) Tasker, S. Z.; Gutierrez, A. C.; Jamison, T. F. Angew. Chem. Int. Ed. 2014, 53, 1858; (e) Harris, M. R.; Konev, M. O.; Jarvo, E. R. J. Am. Chem. Soc. 2014, 136, 7825; (f) Liu, C.; Tang, S.; Liu, D.; Yuan, J.; Zheng, L.; Meng, L.; Lei, A. Angew. Chem. Int. Ed. 2012, 51, 3638; (g) Gøgsig, T. M.; Kleimark, J.; Nilsson Lill, S. O.; Korsager, S.; Lindhardt, A. T.; Norrby, P.-O.; Skrydstrup, T. J. Am. Chem. Soc. 2012, 134, 443; (h) Desrosiers, J.-N.; Hie, L.; Biswas, S.; Zatolochnaya, O. V.; Rodriguez, S.; Lee, H.; Grinberg, N.; Haddad, N.; Yee, N. K.; Garg, N. K.; Senanayake, C. H. Angew. Chem. Int. Ed. 2016, 55, 11921; (i) Huihui, K. M. M.; Shrestha, R.; Weix, D. J. Org. Lett. 2017, 19, 340. (16) Since the reaction is strongly influenced by electronic changes on ArZnI but not on ArI and only 1,3-diarylated products are formed without 1,2-diarylation, we believe that either the transmetalation or the reductive elimination could be rate-limiting. (17) Heteroaryl iodides formed products in