Nickel-Catalyzed Carboxylation of Aryl and Heteroaryl Fluorosulfates

Mar 7, 2019 - Ni(PPh3)2Cl2, 10 mol % of 2,9-dimethyl-1,10-phenanthorline. (L1), and 3 equiv of Mn in DMF at room temperature after 20 h (Table 1, entr...
0 downloads 0 Views 1012KB Size
Letter Cite This: Org. Lett. XXXX, XXX, XXX−XXX

pubs.acs.org/OrgLett

Nickel-Catalyzed Carboxylation of Aryl and Heteroaryl Fluorosulfates Using Carbon Dioxide Cong Ma,† Chuan-Qi Zhao,† Xue-Tao Xu,‡ Zhao-Ming Li,† Xiang-Yang Wang,‡ Kun Zhang,‡ and Tian-Sheng Mei*,† †

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China ‡ School of Chemical & Environmental Engineering, Wuyi University, Jiangmen 529020, China Org. Lett. Downloaded from pubs.acs.org by UNIV OF EDINBURGH on 03/26/19. For personal use only.

S Supporting Information *

ABSTRACT: The development of efficient and practical methods to construct carboxylic acids using CO2 as a C1 synthon is of great importance. Nickel-catalyzed carboxylation of aryl fluorosulfates and heteroaryl fluorosulfates with CO2 is described, affording arene carboxylic acids with good to excellent yields under mild conditions. In addition, a one-pot phenol fluorosulfation/carboxylation is developed.

C

Scheme 1. Catalytic Carboxylation of Phenol Derivatives

arboxylic acids are versatile building blocks in organic synthesis and widely found in pharmaceuticals, agrochemicals, natural products, and biological systems.1 Carbon dioxide is considered an ideal C1-synthon for its nontoxicity, low cost, and renewability.2 The development of efficient and practical methods to construct carboxylic acids using CO2 as a C1 synthon is of great importance.3−5 Transition metalcatalyzed carboxylation of aryl halides with CO2 is an established tool for the construction of arene carboxylic acids.6,7 For instance, Martin et al. reported a Pd-catalyzed carboxylation of aryl bromides with CO2 (1−10 atm) using Et2Zn as reducing agent.8 In 2012, Tsuji et al. demonstrated a Ni-catalyzed carboxylation of aryl chlorides with CO2 (1 atm) using Mn as reductant.9 Recently, Iwasawa et al. elegantly demonstrated the carboxylation of aryl halides using the combination of palladium and photoredox catalysts in the absence of metallic reductants.10 Catalytic carboxylation of C− O electrophiles with CO2 has emerged as a promising method for accessing arene carboxylic acids because the phenols from which they are derived are cheap and readily available from both petroleum feedstocks and biomass.11 Tsuji et al. reported the first example of catalytic carboxylation of aryl triflates and aryl tosylates (Scheme 1a).9,12 Later, Durandetti et al. extended the scope of Ni-catalyzed carboxylation of aryl tosylates in the absence of halogenated additives.13 In 2014, Martin et al. demonstrated catalytic carboxylation of naphthyl pivalates with CO2.14 Despite major progress in this field, efficient catalytic carboxylations that use simple, cheap, and readily available raw materials for preparing (hetero) arene carboxylic acids at ambient temperature are still lacking. The past few years have witnessed a renaissance in aryl fluorosulfate chemistry owing to its unique reactivity and its reliable preparation from phenol and sulfurylfluoride (SO2F2), which is abundant and inexpensive (Scheme 1b).15 Aryl fluorosulfates have been employed as a coupling partner in © XXXX American Chemical Society

various transformations.16 As part of our ongoing interest in CO2 fixation,17 we questioned whether catalytic carboxylation of aryl fluorosulfates with CO2 could be achieved. Herein, we report a nickel-catalyzed carboxylation of aryl fluorosulfates and pyridinyl fluorosulfates with CO2 that affords aryl carboxylic acids in good to excellent yields under mild conditions. In addition, a one-pot conversion of phenols to carboxylic acids via aryl fluorosulfate intermediates was realized and provides an efficient method to synthesize aryl carboxylic acids (Scheme 1c). Received: March 7, 2019

A

DOI: 10.1021/acs.orglett.9b00836 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters Scheme 2. Evaluation of Aryl Fluorosulfate Scopea

Initially, we chose 4-(tert-butyl)phenylfluorosulfate (1a) and CO2 (1 atm) as reaction partners and probed various reaction conditions for the envisioned carboxylation. After extensive optimization, we found that 96% isolated yield of the desired product (2a) could be obtained in the presence of 5 mol % of Ni(PPh3)2Cl2, 10 mol % of 2,9-dimethyl-1,10-phenanthorline (L1), and 3 equiv of Mn in DMF at room temperature after 20 h (Table 1, entry 1). Replacing ligand L1 with PCy3, PPh3, or Table 1. Reaction Optimization with Substrate 1aa

entry

variation from standard conditionsa

yield (%)b

1 2 3 4 5 6 7 8

none PCy3 instead of L1 PPh3 instead of L1 BINAP instead of L1 bpy instead of L1 no L1 no Ni(PPh3)2Cl2 no Mn

99 (96)c 6 68 29 93 24 nr nr

a Standard conditions: 1a (0.5 mmol), Ni(PPh3)2Cl2 (5 mol %), DMF (1 mL), CO2 (1 atm), and Mn (1.5 mmol), rt, 20 h. bThe yield was determined by 1H NMR using p-dimethoxybenzene as internal standard. cIsolated yield in parentheses.

(a) Reaction conditions: aryl fluorosulfate 1 (0.5 mmol), Ni(PPh3)2Cl2 (5 mol %), DMF (1 mL), CO2 (1 atm), and Mn (1.5 mmol), rt. (b) Isolated yields are reported. a

BINAP led to decreased yields (entries 2−4). 2,2′-Bipyridine (bpy) is an effective ligand but affords slightly lower yield (entry 5). Control experiments indicated that a ligand, Ni catalyst, and Mn are all essential for this carboxylation (entries 6−8). To our delight, the 93% isolated yield was obtained when 1 mmol of 1a was used (see Supporting Information for details). With the optimized reaction conditions in hand, the scope of aryl fluorosulfates was investigated to test the generality and limitations of the reaction. As shown in Scheme 2, both electron-rich and -deficient arenes are carboxylated with good to excellent yields (2b−2x). A variety of functional groups such as ether, amino, alkyl, aryl, halide, acetyl, ester, trifluoromethyl, cyano, and sulfonyl groups are well-tolerated under the standard reactions (2b−2s). Heteoaromatic fluorosulfates are well tolerated under the standard reaction conditions, affording the carboxylated products in good yields (2t, 2u). In Tsuji’s report using aryl triflates, the presence of a substituent in the ortho-position reduced reactivity.9 To our delight, ortho-substituted arenes are carboxylated smoothly and produce the corresponding carboxylic acids in excellent yields (2v−2x). Notably, the fluorosulfate of estradiol 17-heptanoate (2y) furnishes the desired product in 87% yield, showcasing the synthetic utility of this carboxylation. Encouraged by the scope and efficiency of the carboxylation of arylfluorosulfates with CO2, we moved to examine the feasibility of a one-pot carboxylation of phenols via arylsulfate intermediates generated using NaH. As shown in Scheme 3, various phenols bearing electron-donating and -withdrawing substituents are readily transformed into the corresponding carboxylic acids in moderate to good yields. To the best of our knowledge, this is the first example of a one-pot conversion of phenols to carboxylic acids using CO2. To our delight, this carboxylation protocol could also be applied to a range of

Scheme 3. Scope of a One-Pot Phenol Fluorosulfation/ Carboxylationa

a

(a) Reaction conditions: phenol 3 (0.5 mmol), NaH (0.5 mmol), SO2F2 (balloon), DMF (1 mL), Ni(PPh3)2Cl2 (5 mol %), CO2 (1 atm), and Mn (1.5 mmol), rt. (b) Isolated yields are reported.

biologically and synthetically important pyridyl substrates. CH2N2 was used to methylate the carboxylic acids to avoid the difficult separation of the pyridine carboxylic acids from water. As shown in Scheme 4, carboxylation of pyridinyl fluorosulfates bearing ether and alkyl substituents delivers desired products in good yields. In general, pyridines with the fluorosulfate in the meta-position (5a−5i) give better yields B

DOI: 10.1021/acs.orglett.9b00836 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters Scheme 4. Evaluation of Pyridinyl Fluorosulfate Scopea

Scheme 5. Proposed Catalytic Cycle for the Carboxylation Reaction

(a) Reaction conditions: pyridinyl fluorosulfates 4 (0.5 mmol), Ni(PPh3)2Cl2 (5 mol %), DMF (1 mL), CO2 (1 atm), and Mn (1.5 mmol), rt. (b) Isolated yields are reported.

a

to carboxylic acids via aryl fluorosulfate intermediates. Further applications of this method and a detailed mechanistic investigation are in progress in our lab.



than those with fluorosulfates in either the ortho- or parapositions (5j−5l). To gain further insight into the mechanism of this reaction, initial rates were measured for substrates with electronically varied substituents on the aryl ring, and faster rates were observed with substrates bearing electron-withdrawing groups. A Hammett plot18 using σpara parameters reveals a positive slope (ρ = 0.37, Figure 1).

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.9b00836. Experimental procedure, compound characterization data, and crystallographic data (PDF)



AUTHOR INFORMATION

Corresponding Author

E-mail: [email protected]. ORCID

Cong Ma: 0000-0001-7568-1347 Tian-Sheng Mei: 0000-0002-4985-1071 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB 20000000), NSF of China (21572245, 21821002), and S&TCSM of Shanghai (17JC1401200, 18JC1415600). We thank Professor Ruben Martin (Institute of Chemical Research of Catalonia, Spain) for helpful discussions.

Figure 1. Hammett plot of relative initial rates of substrate conversion.

On the basis of our experimental results and previous studies,9,19 a plausible mechanism is presented (Scheme 5). Initially, the nickel(II) catalyst is reduced by Mn to generate nickel(0) complex A, which undergoes oxidative addition with an aryl fluorosulfate to form Ni(II) species B. Next, complex B undergoes single-electron reduction by Mn to deliver intermediate C,20 which is carboxylated with CO2 to give complex D. Upon single-electron reduction, the carboxylated product E and Ni(0) catalyst are generated, thereby completing the catalytic cycle. In conclusion, we have developed a nickel-catalyzed carboxylation of aryl fluorosulfates with CO2 at room temperature. In addition, we demonstrated the first example of carboxylation of pyridinyl substrates to give the pyridinyl acids. We further developed a one-pot conversion of phenols



REFERENCES

(1) (a) Otera, J.; Nishikido, J. Esterification: Methods, Reactions, and Applications, 2nd ed.; Wiley: Hoboken, NJ, 2009; Vol. 1. (b) Larock, R. C. Comprehensive Organic Transformations, A Guide to Functional Group Preparations, 2nd ed.; Wiley-VCH: New York, 1999, Vol. 1. (c) Otera, J. Chem. Rev. 1993, 93, 1449. (d) Ogliaruso, M. A.; Wolfe, J. F. Synthesis of Carboxylic Acids, Esters and Their Derivatives, 1st ed.; Wiley: New York, 1991. (2) (a) Suib, S. L. New and Future Developments in Catalysis, 1st ed.; Elsevier: Waltham, 2013. (b) Aresta, M. Carbon Dioxide as Chemical Feedstock; Wiley-VCH: Weinheim, 2010. (3) Selected reviews on catalytic carboxylation: (a) Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G.-Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.G. Coord. Chem. Rev. 2018, 374, 439. (b) Gui, Y.-Y.; Zhou, W.-J.; Ye, C

DOI: 10.1021/acs.orglett.9b00836 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters J.-H.; Yu, D.-G. ChemSusChem 2017, 10, 1337. (c) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. (d) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956. (e) Martín, R.; Kleij, A. W. ChemSusChem 2011, 4, 1259. (f) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435. (g) Correa, A.; Martín, R. Angew. Chem., Int. Ed. 2009, 48, 6201. (h) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (i) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (4) Selected examples on catalytic carboxylation: (a) Song, L.; Cao, G.-M.; Zhou, W.-J.; Ye, J.-H.; Zhang, Z.; Tian, X.-Y.; Li, J.; Yu, D.-G. Org. Chem. Front. 2018, 5, 2086. (b) Song, L.; Zhu, L.; Zhang, Z.; Ye, J.-H.; Yan, S.-S.; Han, J.-L.; Yin, Z.-B.; Lan, Y.; Yu, D.-G. Org. Lett. 2018, 20, 3776. (c) Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.-Q.; Zhou, L.-P.; Yuan, D.; Sun, Q.-F.; Li, G. Nature Catal. 2018, 1, 469. (d) Cai, Z.; Li, S.; Gao, Y.; Li, G. Adv. Synth. Catal. 2018, 360, 4005. (e) Suga, T.; Mizuno, H.; Takaya, J.; Iwasawa, N. Chem. Commun. 2014, 50, 14360. (f) Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 1251. (g) Inomata, H.; Ogata, K.; Fukuzawa, S.-I.; Hou, Z. Org. Lett. 2012, 14, 3986. (h) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Angew. Chem., Int. Ed. 2010, 49, 8670. (i) Ackermann, L. Angew. Chem., Int. Ed. 2011, 50, 3842. (j) Boogaerts, I. I. F.; Fortman, G. C.; Furst, M. R. L.; Cazin, C. S. J.; Nolan, S. P. Angew. Chem., Int. Ed. 2010, 49, 8674. (k) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858. (5) Recent examples on catalytic carboxylation: (a) Tortajada, A.; Ninokata, R.; Martin, R. J. Am. Chem. Soc. 2018, 140, 2050. (b) Gaydou, M.; Moragas, T.; Juliá-Hernández, F.; Martin, R. J. Am. Chem. Soc. 2017, 139, 12161. (c) Juliá-Hernández, F.; Moragas, T.; Cornella, J.; Martin, R. Nature 2017, 545, 84. (d) Liao, L.-L.; Cao, G.M.; Ye, J.-H.; Sun, G.-Q.; Zhou, W.-J.; Gui, Y.-Y.; Yan, S.-S.; Shen, G.; Yu, D.-G. J. Am. Chem. Soc. 2018, 140, 17338. (e) Ju, T.; Fu, Q.; Ye, J.-H.; Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Tian, X.-Y.; Luo, S.-P.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2018, 57, 13897. (6) Selected reviews: (a) Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948. (b) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739. (c) Chen, Y.-G.; Xu, X.-T.; Zhang, K.; Li, Y.-Q.; Zhang, L.-P.; Fang, P.; Mei, T.-S. Synthesis 2018, 50, 35. (7) Selected examples on catalytic carboxylation of aryl halides: (a) Meng, Q.-Y.; Wang, S.; König, B. Angew. Chem., Int. Ed. 2017, 56, 13426. (b) Tran-Vu, H.; Daugulis, O. ACS Catal. 2013, 3, 2417. (c) Ebert, G. W.; Juda, W. L.; Kosakowski, R. H.; Ma, B.; Dong, L.; Cummings, K. E.; Phelps, M. V. B.; Mostafa, A. E.; Luo, J. J. Org. Chem. 2005, 70, 4314. (8) Correa, A.; Martin, R. J. Am. Chem. Soc. 2009, 131, 15974. (9) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2012, 134, 9106. (10) Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 9467. (11) (a) Granda, M.; Blanco, C.; Alvarez, P.; Patrick, J.; Menendez, R. Chemicals from Coal Coking. Chem. Rev. 2014, 114, 1608. (b) Pilato, L. Phenolic Resins: A Century of Progress, 1st ed.; Springer: Heidelberg, 2010. (c) Rappoport, Z., Ed. The Chemistry of Phenols; Wiley: Chichester, UK, 2003. (12) Nogi, K.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Org. Chem. 2015, 80, 11618. (13) Rebih, F.; Andreini, M.; Moncomble, A.; Harrison-Marchand, A.; Maddaluno, J.; Durandetti, M. Chem. - Eur. J. 2016, 22, 3758. (14) Correa, A.; León, T.; Martin, R. J. Am. Chem. Soc. 2014, 136, 1062. (15) (a) Guo, T.-J.; Meng, G.-Y.; Zhan, X.-J.; Yang, Q.; Ma, T.-C.; Xu, L.; Sharpless, K. B.; Dong, J. Angew. Chem., Int. Ed. 2018, 57, 2605. (b) Gao, B.; Zhang, L.; Zheng, Q.; Zhou, F.; Klivansky, L. M.; Lu, J.; Liu, Y.; Dong, J.; Wu, P.; Sharpless, K. B. Nat. Chem. 2017, 9, 1083. (c) Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Chem. - Eur. J. 2016, 22, 5692. (d) Liang, Q.; Xing, P.; Huang, Z.; Dong, J.; Sharpless, K. B.; Li, X.; Jiang, B. Org. Lett. 2015, 17, 1942. (e) Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem.,

Int. Ed. 2014, 53, 9430. (f) Dong, J.; Sharpless, K. B.; Kwisnek, L.; Oakdale, J. S.; Fokin, V. V. Angew. Chem., Int. Ed. 2014, 53, 9466. (16) (a) Schimler, S. D.; Froese, R. D. J.; Bland, D. C.; Sanford, M. S. J. Org. Chem. 2018, 83, 11178. (b) Schimler, S. D.; Cismesia, M. A.; Hanley, P. S.; Froese, R. D. J.; Jansma, M. J.; Bland, D. C.; Sanford, M. S. J. Am. Chem. Soc. 2017, 139, 1452. (c) Revathi, L.; Ravindar, L.; Leng, J.; Rakesh, K. P.; Qin, H.-L. Asian J. Org. Chem. 2018, 7, 662. (d) Fang, W.-Y.; Leng, J.; Qin, H.-L. Chem. - Asian J. 2017, 12, 2323. (e) Hanley, P. S.; Ober, M. S.; Krasovskiy, A. L.; Whiteker, G. T.; Kruper, W. J. ACS Catal. 2015, 5, 5041. (f) McGuire, M. A.; Sorenson, E.; Owings, F. W.; Resnick, T. M.; Fox, M.; Baine, N. H. J. Org. Chem. 1994, 59, 6683. (g) Roth, G. P.; Fuller, C. E. J. Org. Chem. 1991, 56, 3493. (17) (a) Jiao, K.-J.; Li, Z.-M.; Xu, X.-T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K.; Mei, T.-S. Org. Chem. Front. 2018, 5, 2244. (b) Chen, Y.G.; Shuai, B.; Ma, C.; Zhang, X.-J.; Fang, P.; Mei, T.-S. Org. Lett. 2017, 19, 2969. (18) (a) Hansch, C.; Leo, A.; Taft, T. W. Chem. Rev. 1991, 91, 165. (b) Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96. (19) (a) León, T.; Correa, A.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1221. (b) Menges, F. S.; Craig, S. M.; Totsch, N.; Bloomfield, A.; Ghosh, S.; Kruger, H.-J.; Johnson, M. A. Angew. Chem., Int. Ed. 2016, 55, 1282. (c) Osakada, K.; Sato, R.; Yamamoto, T. Organometallics 1994, 13, 4645. (20) Sayyed, F. B.; Tsuji, Y.; Sakaki, S. Chem. Commun. 2013, 49, 10715.

D

DOI: 10.1021/acs.orglett.9b00836 Org. Lett. XXXX, XXX, XXX−XXX