37 N M R Relaxation of Water in Zeolite 13-X
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch037
H. A. RESING and J. K. THOMPSON Naval Research Laboratory, Washington, D. C. 20390
The nuclear magnetic resonance relaxation times for the protons of water adsorbed to saturation in a high-purity specimen of zeolite 13-X have been measured between 200° and 500°K. The data can be accounted for by the model of an intracrystalline fluid which is about 30 times as "viscous" as bulk water at room temperature, shows a broad distribu tion of molecular mobilities, and is about as dense as liquid water. The median correlation time (time between molecu lar flights) is -12
τ* = 2.8 Χ 10
ttTntracrystalline
fluid"
exp [417/(T - 189)]
is t h e t e r m chosen b y B a r r e r to d e s c r i b e t h e
state o f w a t e r a n d other m o l e c u l e s c o n d e n s e d i n t h e pores of zeolites ( 1 ) . T h i s r e p o r t presents a d e t e r m i n a t i o n of t h e fluidity of w a t e r a d s o r b e d t o s a t u r a t i o n i n zeolite 1 3 - X . A s a m e a s u r e of t h e fluidity, t h e t i m e b e t w e e n m o l e c u l a r j u m p s or c o r r e l a t i o n t i m e , r , is e m p l o y e d ; i t has b e e n d e r i v e d f r o m measurements of n u c l e a r m a g n e t i c resonance ( N M R ) r e l a x a t i o n times via the t h e o r y of B l o e m b e r g e n , P u r c e l l , a n d P o u n d ( B P P ) ( 2 ) . F o r a b u l k l i q u i d , this c o r r e l a t i o n t i m e is r e l a t e d t o t h e v i s c o s i t y , η, b y a n e q u i v a l e n t of t h e D e b y e e q u a t i o n ( 2 ) : τ =
χ η α / ( 6 kT) 3
(1)
w h e r e a is t h e m o l e c u l a r d i a m e t e r . F o r m a l l y , a viscosity f o r t h e i n t r a c r y s t a l l i n e fluid c o u l d b e d e f i n e d thus, b u t w o u l d b e w i t h o u t o p e r a t i o n a l significance; f u r t h e r d i s c u s s i o n of
fluidity,
therefore, w i l l b e c a r r i e d o u t
i n terms o f T . T h e z e o l i t e s p e c i m e n u s e d i n t h e present studies w a s p r e p a r e d f r o m zone-refined a l u m i n u m a n d s i l i c o n ; its f e r r i c i o n i m p u r i t y content of < 6 p p m is l o w e n o u g h to ensure that o n l y " i n t r i n s i c " N M R r e l a x a t i o n is observed
( I I ) a n d that t h e effects of p a r a m a g n e t i c i m p u r i t i e s , w h i c h
t r o u b l e d p r e v i o u s studies (4, 6, 8, 10), are c o m p l e t e l y suppressed. T h e 473 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
474
MOLECULAR SIEVE ZEOLITES
1
b r o a d - l i n e N M R a b s o r p t i o n studies of K v l i v i d z e ( 5 ) , w h i c h w e c a l l u p o n for s u p p o r t i n this p a p e r , w e r e d o n e o n samples of u n s p e c i f i e d p u r i t y . Arguments given previously
(10),
however,
i n d i c a t e that at the
low
temperatures of h e r e x p e r i m e n t s , the presence of p a r a m a g n e t i c i m p u r i t i e s w o u l d n o t affect her interpretations to a n y significant extent. T h e s p e c i m e n u s e d i n this s t u d y w a s a l l o w e d to c o m e to e q u i l i b r i u m w i t h w a t e r v a p o r at a r e l a t i v e pressure P / F =
1. T h e t o t a l w e i g h t was 0.2886 g r a m ,
0
of w h i c h 0.0766 g r a m is H 0 . 2
T h e p u l s e d N M R a p p a r a t u s (12 M H z ) a n d m e t h o d s of Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch037
h a v e b e e n d e s c r i b e d p r e v i o u s l y (JO, 13). T, 2
procedure
T h e spin—spin r e l a x a t i o n t i m e ,
e q u i v a l e n t to the inverse a b s o r p t i o n l i n e w i d t h , is a t i m e constant
for the e x p o n e n t i a l d e c a y s p i n system.
t o w a r d i n t e r n a l e q u i l i b r i u m i n the n u c l e a r
T h e s p i n - l a t t i c e r e l a x a t i o n t i m e , T i , is the t i m e constant
for the e x p o n e n t i a l d e c a y t o w a r d e q u i l i b r i u m b e t w e e n the n u c l e a r spins a n d a l l other degrees of f r e e d o m of the system. T h e d a t a are p r e s e n t e d i n F i g u r e 1. N o t e t h a t at h i g h e r temperatures T
500 10
τ (-κ)
300
400
250
2
is m u c h l o w e r t h a n Τχ.
200
τ. H
H 0 on Z E O L I T E 13-X 2
I I I 3.0 Itf Τ
I L 4.0 (°Κ"') I
J_JL 5.0
Figure 1. T and T vs. reciprocal temperature at ω = 12 MHz for water in zeolite 13-X t
2
m = τ* ο = τ, 0 = =
T of Kvlividze Best fit of theoretical expres sions to data 2
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
37.
NMR
RESiNG AND T H O M P S O N
Rehxation
of
Water
475
T h i s effect is g e n e r a l i n s o l i d - w a t e r a d s o r p t i o n systems ( 8 ) a n d is c a u s e d at least i n some cases b y a n exchange process b e t w e e n the protons surface h y d r o x y l groups a n d the protons of w a t e r m o l e c u l e s
(15).
a b o u t 4 0 0 ° K , the h f e t i m e of a w a t e r m o l e c u l e p r o t o n w i t h respect exchange i n t o this other phase is a b o u t =
of At to
T , i.e., 10 msec. W e i n t e n d to 2
discuss this m o r e t h o r o u g h l y i n a f u t u r e p u b l i c a t i o n , a n d i n this p a p e r w e r e s t r i c t o u r d i s c u s s i o n of T
2
to t e m p e r a t u r e s s u c h t h a t 1 0 / T > 3
I n the l o w - t e m p e r a t u r e r e g i o n , a r o u n d 1 0 / T = of T
2
3.6.
5 ( F i g u r e 1) 2 v a l u e s
3
are i n d i c a t e d for a g i v e n t e m p e r a t u r e ; h e r e the " T " process 2
was
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch037
d e s c r i b a b l e as a s u p e r p o s i t i o n of 2 decays, t h e r e l a t i v e i n t e n s i t y v a r y i n g w i t h temperature. ( g i v e n as T
2
E q u i v a l e n t l y , the a b s o r p t i o n l i n e of K v l i v i d z e
(5)
i n F i g u r e 1) w a s c o m p o s e d of a b r o a d a n d n a r r o w c o m
p o n e n t i n this t e m p e r a t u r e i n t e r v a l . T h i s is the " a p p a r e n t p h a s e t r a n s i t i o n effect" c a u s e d b y a b r o a d d i s t r i b u t i o n of c o r r e l a t i o n t i m e s ( 8 ) , as w i l l be e x p l a i n e d . The
fluidity
of associated l i q u i d s i n g e n e r a l is r e p r e s e n t e d w e l l b y
the free v o l u m e m o d e l (3), a c c o r d i n g to w h i c h τ* = τ exp [A/(Τ
-
0
T )]
(2)
0
where T a n d A depend on molecular parameters, a n d where T 0
0
is the
t e m p e r a t u r e at w h i c h free v o l u m e d i s a p p e a r s . S u c h a m o d e l is consistent w i t h the d a t a of this study. A n a d d e d a s s u m p t i o n w h i c h m u s t b e m a d e , h o w e v e r , is t h a t at a n y t e m p e r a t u r e , τ is s p r e a d o v e r a b r o a d r a n g e of v a l u e s ; the d i s t r i b u t i o n f u n c t i o n a s s u m e d is the often u s e d l o g - n o r m a l distribution
(9) Ρ(τ)άτ
=
(B/Vk)
exp ( -
B Z*)dZ
(3)
2
Ζ = In (τ/τ*) Β = α (Τ -
(4)
To)
(5)
w h e r e Β is a s p r e a d p a r a m e t e r d e p e n d e n t o n t e m p e r a t u r e a n d τ* is the m e d i a n of the d i s t r i b u t i o n . T h i s b r o a d d i s t r i b u t i o n is necessary to e x p l a i n the a p p a r e n t " t w o - p h a s e " r e l a x a t i o n d e s c r i b e d a b o v e B P P (2)
(9).
s h o w e d t h a t the m o d u l a t i o n of the i n t e r n u c l e a r m a g n e t i c
field b y the t r a n s l a t i o n a n d r o t a t i o n of m o l e c u l e s is a n effective n i s m for besides
relaxation.
mecha
T h e other i m p o r t a n t p a r a m e t e r i n t h e i r t h e o r y
the c o r r e l a t i o n t i m e is the s e c o n d
n u c l e a r d i p o l a r field seen b y a n u c l e u s ( σ ) 0
2
moment
or m e a n
squared
(14):
σο» = | γ * Α » / ( / + 1 ) Σ ΐ - ο · -
β
(6)
w h e r e the s u m is t a k e n over a l l i n e i g h b o r i n g n u c l e i . B e c a u s e the n u c l e a r s e p a r a t i o n r is r a i s e d to the s i x t h p o w e r , the s e c o n d m o m e n t is a sensitive i ;
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
476
MOLECULAR SIEVE ZEOLITES
1
m e a s u r e of the d e n s i t y of m o l e c u l a r p a c k i n g . W e assume t h a t i t is n o t necessary to d i s t i n g u i s h b e t w e e n r o t a t i o n a l j u m p s ( w h i c h m o d u l a t e the i n t r a m o l e c u l a r field) a n d t r a n s l a t i o n a l j u m p s ( w h i c h m o d u l a t e the e x t r a molecular
field).
I n a n associated l i q u i d , b o t h processes s h o u l d h a v e
r o u g h l y the same r a t e ; thus, b o t h fields are i n c l u d e d i n E q u a t i o n 6.
The
r e l a x a t i o n t i m e d a t a s h o w s e v e r a l features i n a c c o r d w i t h the B P P t h e o r y : there is a m i n i m u m i n T
a n d at l o w t e m p e r a t u r e s T
2
decreases as the
t e m p e r a t u r e is l o w e r e d . H o w e v e r , the r a t i o of T i to T
2
a n d the v a l u e of
u
T i at the m i n i m u m are inconsistent w i t h t h e i r theory.
Further, their
t h e o r y does n o t p r e d i c t the t w o - p h a s e T b e h a v i o r . A l l of these d e p a r t u r e s Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch037
2
f r o m the B P P t h e o r y c a n b e t a k e n i n t o a c c o u n t b y a l l o w i n g a b r o a d d i s t r i b u t i o n of c o r r e l a t i o n times ( 9 ) .
A t h i g h temperatures, exchange
b e t w e e n sites of different τ is sufficiently r a p i d t h a t a n " a v e r a g e " T o b s e r v e d ( 16).
2
is
A t l o w t e m p e r a t u r e s , the a v e r a g i n g is n o l o n g e r effective;
t h e r e are 2 values of T — t h e m o b i l e T 2
a n d the r i g i d lattice T , — a n d as
2
2
the t e m p e r a t u r e is l o w e r e d f u r t h e r , the f r a c t i o n of n u c l e i i n the m o b i l e state
(f ) m
(1 — f ) m
decreases w i t h
a complementary
increase i n the f r a c t i o n
of n u c l e i i n the r i g i d state. T h e effect of the d i s t r i b u t i o n o n Γι
is o n l y to b r o a d e n the m i n i m u m a n d to raise the e x p e c t e d v a l u e of T i at the m i n i m u m ; n o b r e a k - d o w n i n a v e r a g i n g occurs, i n contrast to T . 2
equations u s e d are
The
(9) 00
r , - ' = l «'{tL-fïpW*
+f [J£^
—00
+ ^] T
PMdj (7)
?
—CO
(8)
/« = jp{t)dx
CO
—00
T
2r
=
T = c
where t
c
(σο )" 2
(σο )~ 2
(10)
1 / 2
(11)
1/2
is the cut-off a b o v e w h i c h a v e r a g i n g i n T
2
n o l o n g e r occurs.
T h e t o t a l n u m b e r of p a r a m e t e r s i n the m o d e l is 5: 3 to fit the free v o l u m e m o d e l for τ, 1 to c h a r a c t e r i z e the d i s t r i b u t i o n w i d t h , a n d the s e c o n d moment.
T h e i n t r o d u c t i o n of the d i s t r i b u t i o n of c o r r e l a t i o n times i n t r o
duces o n l y 1 n e w p a r a m e t e r , the w i d t h p a r a m e t e r , b u t i t explains s e v e r a l d e p a r t u r e s f r o m the B P P t h e o r y .
Equations 7 and 9 were
fitted
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
simul-
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch037
37.
NMR Relaxation
RESiNG AND THOMPSON
I0 l ι 20 4
ι
ι I ι 3.0
ι
ι
I ι ι 4.0 IOVT (°K")
of
ι 1 ι 5.0
477
Water
ι
J 6.0
Figure 2. Median molecular jump rate (3τ*)~* vs. reciprocal temperature for liq uid water, water in charcoal pores, and water in zeolite 13-X Circles at about 10 represent the respective Ti minima. Those at about 10 represent the points at which only half the water remains in the respective mobile phases. 7
5
t a n e o u s l y to the d a t a of F i g u r e 2 b y a least squares r o u t i n e w h i c h also c a l c u l a t e d n u m e r i c a l l y the necessary integrals ( 1 0 ) . T h e "best-fit" t h e o r e t i c a l curves are g i v e n i n F i g u r e 2 a n d agree q u i t e w e l l w i t h the e x p e r i m e n t a l d a t a . T h e s e c o n d m o m e n t e x t r a c t e d f r o m the d a t a is 2.0 Χ 1 0 rad sec~ , w h i c h is r o u g h l y e q u a l to the 2.29 Χ 1 0 2
2
1 0
rad sec" 2
1 0
found by
2
K v l i v i d z e ( 5 ) f r o m the l o w - t e m p e r a t u r e b r o a d - l i n e N M R studies; these results c o n c u r i n s h o w i n g t h a t the n u m b e r of nearest n e i g h b o r
water
m o l e c u l e s is, o n t h e average, less t h a n i n i c e . T h e values of the m e d i a n j u m p t i m e , τ*, are p r e s e n t e d i n F i g u r e 2 i n the f o r m ( 3 τ * ) — i . e . , as _1
j u m p i n g r a t e s — a n d these are c o m p a r e d
w i t h the same q u a n t i t i e s for
w a t e r i n c h a r c o a l pores a n d f o r b u l k w a t e r ( h y p o t h e t i c a l ) temperatures. fitting
at v a r i o u s
T h e hypothetical curve for b u l k water was obtained b y
r o o m t e m p e r a t u r e d i e l e c t r i c d a t a a n d a n e s t i m a t e d glass t r a n s i t i o n
t e m p e r a t u r e to E q u a t i o n 2 ( 7 , 1 2 ) . A t r o o m .temperature, the j u m p i n g rate ( p r o p o r t i o n a l to
fluidity)
is a b o u t 100 times h i g h e r f o r b u l k w a t e r
a n d f o r w a t e r i n c h a r c o a l pores (dia 25 A ) t h a n f o r t h e z e o l i t i c " i n t r a crystalline-fluid" water.
N e v e r t h e l e s s , t h e z e o l i t i c w a t e r protons are at
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
478
MOLECULAR SIEVE ZEOLITES
least 1000 times m o r e m o b i l e t h a n t h e protons i n i c e at 0 ° C .
1
This and
the fact that the free v o l u m e m o d e l a p p l i e s to this system s h o w t h a t t h e w a t e r a d s o r b e d i n zeolite 1 3 - X is t r u l y a n i n t r a c r y s t a l l i n e fluid. Literature
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch037
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
Cited
Barrer, R. M., Ber. Bunsen Ges. Phys. Chem. 1965, 69, 786. Bloembergen, N., Purcell, Ε. M., Pound, R. V., Phys. Rev. 1948, 73, 679. Cohen, M . H., Turnbull, D., J. Chem. Phys. 1963, 39, 2783. Cohen-Addad, J. P., Farges, J. P., J. Phys. (Paris) 1966, 27, 739. Kvlividze, V. I., Kiselev, V. F., Serpinski, V. V., Dokl. Akad. Nauk SSSR 1965, 165, 1111. Pfeifer, H., Przyborowski, F., Schirmer, W., Stach, H., Z. Phys. Chem. (Leipzig) 1967, 236, 345. Pryde, J. Α., Jones, G. O., Nature 1952, 170, 685. Resing, Η. Α., Advan. Mol. Relaxation Processes 1968, 1, 109. Resing, Η. Α., J. Chem. Phys. 1965, 43, 669. Resing, Η. Α., Thompson, J. K., Ibid., 1967, 46, 2876. Resing, Η. Α., Thompson, J. K., Proc. Colloque Ampere XV, North Hol land, Amsterdam, 1969, p. 237. Saxton, J. Α., "Meteorological Factors in Radio Wave Propagation," p. 278, The Physical Society, London, 1946. Thompson, J. K., Krebs, J. J., Resing, Η. Α., J. Chem. Phys. 1965, 43, 3853 Van Vleck, J. H., Phys. Rev. 1948, 74, 1168. Woessner, D. E., J. Chem. Phys. 1963, 39, 2783. Zimmerman, J. R., Brittin, W. E., J. Phys. Chem. 1957, 61, 1328.
RECEIVED February 13,
1970.
Discussion N . G . Parsonage ( I m p e r i a l C o l l e g e , L o n d o n ) : Is there a n y u s e f u l i n f o r m a t i o n w h i c h c a n b e o b t a i n e d b y d e l i b e r a t e l y u s i n g zeolites w h i c h h a v e b e e n i o n - e x c h a n g e d so as to c o n t a i n almost s t o i c h i o m e t r i c amounts of p a r a m a g n e t i c ions? H . A . Resing: Effects of p a r a m a g n e t i c ions i n zeolites o n r e l a x a t i o n times h a v e b e e n
only cursorily examined
(Ducros,
Cohen, - A d d a d —
theses, U n i v e r s i t y of G r e n o b l e ) w i t h not too m u c h success.
L a r g e effects
c e r t a i n l y o c c u r , b u t m u c h i n t e r p r e t i v e w o r k appears to be r e q u i r e d . R. A . Munson ( B u r e a u of M i n e s , C o l l e g e P a r k , M d . 2 0 7 4 0 ) :
You
h a v e c o m p a r e d y o u r m o b i l i t i e s i n zeolites w i t h those i n p u r e w a t e r a n d ice. W o u l d i t n o t b e m o r e r e a l i s t i c to c o m p a r e w i t h electrolyte solutions of analogous concentration?
W h a t results w o u l d y o u expect for this case?
H . A . Resing: I b e l i e v e that electrolytes of s i m i l a r
concentration
w o u l d not l e a d to s u c h a 2 0 - f o l d l o w e r i n g of m o b i l i t y , b u t o n l y to a 2- or 3-fold effect at most.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
37.
RESING A N D T H O M P S O N
NMR
Relaxation
of
Water
479
D . M . R u t h v e n ( U n i v e r s i t y of N e w B r u n s w i c k , F r e d e r i c t o n , N . B . , C a n a d a ) : I w a s i n t e r e s t e d i n the c o n c l u s i o n t h a t the d e n s i t y of i n t r a c r y s t a l l i n e w a t e r is s i m i l a r to that of the b u l k l i q u i d . T h i s agrees rather w e l l w i t h the conclusions of D u b i n i n et al. w h i c h are b a s e d o n e q u i l i b r i u m s o r p t i o n studies i n N a X zeolite a n d also i n other systems. H . A . R e s i n g : Such information based on adsorption and crystallog r a p h y is c e r t a i n l y m o r e definitive t h a n that a d d u c e d i n o u r p a p e r .
This
" e x t e r n a l " i n f o r m a t i o n is i n the n a t u r e of a b o u n d a r y c o n d i t i o n o n o u r i n t e r p r e t a t i o n of the N M R results; i.e., i t is a c h e c k o n the correctness of Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch037
o u r interpretations. P . B . V e n u t o ( M o b i l O i l , P a u l s b o r o , N . J . 0 8 0 3 4 ) : I w o u l d l i k e to r e i n f o r c e y o u r c o m m e n t c o n c e r n i n g the d e c r e a s i n g m o b i h t y of w a t e r at v e r y l o w i n t r a z e o l i t e concentrations b y c i t i n g the e x t r e m e l y h i g h isosteric heats of a d s o r p t i o n , @ 3 0 - 4 5 k c a l / m o l e , r e p o r t e d at l o w θ some t i m e ago for s o d i u m faujasite b y B a r r e r a n d c o w o r k e r s .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.