1
Nonclassical
Activation
of C a r b o n
Monoxide
by
Organoactinides TOBIN J. MARKS, JUAN M . MANRIQUEZ, and PAUL J. FAGAN Department of Chemistry, Northwestern University, Evanston, IL 60201
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
VICTOR W. DAY, CYNTHIA S. DAY, and SARAH H . V O L L M E R Department of Chemistry, University of Nebraska, Lincoln, NE 68588 Abstract This article reviews recent r e s u l t s on the c a r b o n y l a t i o n chemistry of b i s ( p e n t a m e t h y l c y c l o p e n t a d i e n y l ) thorium and uranium h y d r o c a r b y l and d i a l k y l a m i d e complexes. F a c i l e migratory insertion of carbon monoxide i n t o metal-carbon and m e t a l - n i t r o g e n bonds is observed. I n s e v e r a l cases bihaptoacyl and bihaptocarbamoyl complexes were i s o l a t e d and c h a r a c t e r i z e d by s i n g l e crystal X-ray diffraction. The great s t r e n g t h of the metal-oxygen bonding i n these species i s evident in m e t r i c a l and s p e c t r a l d a t a , as w e l l as in the r e a c t i o n chemistry, which is d e c i d e d l y alkoxycarbene -like. In the case of the b i s ( p e n t a m e t h y l c y c l o p e n t a d i e n y l ) actinide dialkyls, the final c a r b o n y l a t i o n products are C-C coupled cis-1,2-enediolate complexes, w h i l e for the corresponding bis(dialkylamides), the products are bis(carbamoyl) s p e c i e s . Both types of compound have been c h a r a c t e r i z e d by X - r a y diffraction. The carbon monoxide chemistry observed here may be of relevance to mechanistic d i s c u s s i o n s of catalytic CO r e d u c t i o n , e s p e c i a l l y t h a t i n v o l v i n g a c t i n i d e oxide or a c t i n i d e oxide supported catalysts. Introduction Our recent research i n a c t i n i d e organometallic chemistry Q - 5 ) has sought to e x p l o i t those features of f-element ions which d i f f e r from t r a n s i t i o n metal i o n s . The goal of our e f f o r t has been to d i s c o v e r and to understand to what degree the l a r g e i o n i c r a d i i and f valence o r b i t a l s might f o s t e r a unique new organometallic c h e m i s t r y . E x p l o r a t i o n has been at both the chemi c a l and physicochemical l e v e l s w i t h the c e n t r a l issues concerning the p r o p e r t i e s of a c t i n i d e - t o - c a r b o n sigma bonds and r e l a t e d f u n c t i o n a l i t i e s . We have learned that the thermal s t a b i l i t y and chemical r e a c t i v i t y of these l i n k a g e s can be modulated to a cons i d e r a b l e degree (and often i n opposite d i r e c t i o n s ) by changes i n the supporting l i g a n d s w i t h i n the a c t i n i d e i o n c o o r d i n a t i o n sphere. 0-8412-0568-X/80/47-131-003$06.25/0 © 1980 American Chemical Society Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4
LANTHANIDE AND
ACTINIDE CHEMISTRY AND
SPECTROSCOPY
Thus, w h i l e the c o o r d i n a t i v e s a t u r a t i o n of the t r i s c y c l o p e n t a d i e n y l a l k y l s , a l k e n y l s , a l k y n y l s , and a r y l s (hydrocarbyls) of thorium and uranium, M(7] -C H ) R (^ J_ S_ 9), a f f o r d s c o n s i d e r a b l y enhanced thermal s t a b i l i t y over that of the simple homoleptic d e r i v a t i v e s (10,11,12), i t i s at the expense of chemical r e a c t i v i t y . I n an e f f o r t to more f i n e l y tune the c o o r d i n a t i v e s a t u r a t i o n of a c t i n i d e hydrocarbyls and to provide g r e a t e r than one metalcarbon bond f o r r e a c t i o n , we have i n i t i a t e d an i n v e s t i g a t i o n of b i s c y c l o p e n t a d i e n y l thorium and uranium chemistry (6,13,14). Systems based upon the pentamethylcyclopentadienyl l i g a n d have proved to be some of the most i n t e r e s t i n g and form the b a s i s of t h i s a r t i c l e . The advantages of the 77 -(CH ) C5 l i g a n d are that i t makes f a r g r e a t e r s t e r i c demands than 7) -C H (thus reducing the number of l a r g e , bulky l i g a n d s which can be accommodated at the metal center) w h i l e imparting f a r g r e a t e r s o l u b i l i t y and c r y s t a l l i z a b i l i t y . I t a l s o appears that the methyl C(sp3)-H bonds of t h i s l i g a n d are more i n e r t with respect to s c i s s i o n than c y c l o p e n t a d i e n y l C ( s p ) — H bonds; t h i s has the e f f e c t of h i n d e r i n g a common thermal decomposition process, i n t r a m o l e c u l a r hydrogen atom a b s t r a c t i o n (7_,8,15., 16,17), hence of p r e s e r v i n g the metalto-carbon sigma bond f o r other chemical t r a n s f o r m a t i o n s . The net r e s u l t i s that pentamethylcyclopentadienyl a c t i n i d e hydrocarbyls form the b a s i s f o r an e l a b o r a t e and extremely r e a c t i v e new c l a s s of o r g a n o m e t a l l i c compounds. The purpose of t h i s a r t i c l e i s to review the chemical, physicochemical, and s t r u c t u r a l p r o p e r t i e s of b i s ( p e n t a m e t h y l c y c l o p e n t a d i e n y l ) a c t i n i d e compounds w i t h respect to one reagent: carbon monoxide. The i n t e r a c t i o n of o r g a n o m e t a l l i c complexes w i t h carbon monoxide i s a s u b j e c t of enormous t e c h n o l o g i c a l importance. Vast q u a n t i t i e s of a c e t i c a c i d , a l c o h o l s , e s t e r s , and other imp o r t a n t chemicals are p r e s e n t l y produced u s i n g organic feedstocks, carbon monoxide, and homogeneous c a t a l y s t s of the Group V I I I t r a n s i t i o n metals (18,19,20). Much of t h i s chemistry i s now w e l l understood from model s t u d i e s and i s based upon the c l a s s i c a l migratory i n s e r t i o n r e a c t i o n of carbon monoxide i n t o a metal-tocarbon sigma bond to form an a c y l d e r i v a t i v e (A) (equation ( l ) ) (21,22,23). An i n d u s t r i a l l y important example of t h i s type of chemistry i s the rhodium c a t a l y z e d h y d r o f o r m y l a t i o n c y c l e i l l u s * t r a t e d i n F i g u r e 1 (18). I t i s not c l e a r , however, that the 5
5
5
3
9
9
9
5
3
5
5
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
5
5
2
, f
CHj I M +
GHg CH3 I I CO^dMf-CO f=^M-C=0
M
(l)
A c l a s s i c p i c t u r e of CO a c t i v a t i o n e s t a b l i s h e d f o r low-valent, " s o f t , mononuclear, Group V I I I metal complexes i s complete or accurate i n d e s c r i b i n g the mechanisms of Fischer-Tropsch (24-28), methanation (24-28), ethylene g l y c o l s y n t h e s i s (29), and other 1 1
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1.
MARKS E T A L .
Nonclassical
Activation
of Carbon
5
Monoxide
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
r e a c t i o n s i n which d r a s t i c changes i n the CO molecule such as f a c i l e deoxygenation and homologation are o c c u r r i n g . C l e a r l y there i s a n e c e s s i t y to develop new carbon monoxide chemistry and to e l u c i d a t e new r e a c t i o n p a t t e r n s . Such research i s e s s e n t i a l to understanding the fundamental aspects of processes which w i l l be of e v e r - i n c r e a s i n g importance i n an economy s h i f t i n g to coal-based feedstocks. I t w i l l be seen that the c a r b o n y l a t i o n r e a c t i o n s of b i s ( p e n t a m e t h y l c y c l o p e n t a d i e n y l ) a c t i n i d e hydrocarbyls and r e l a t e d compounds d i f f e r d r a m a t i c a l l y from the " c l a s s i c a l " p a t t e r n and a f f o r d a b e t t e r i n s i g h t i n t o the r e a c t i v i t y of carbon monoxide at metal centers which e x h i b i t both h i g h oxygen a f f i n i t y and h i g h c o o r d i n a t i v e u n s a t u r a t i o n . I n the s e c t i o n s which f o l l o w we cons i d e r f i r s t the chemical and then the s t r u c t u r a l aspects of t h i s problem. Synthesis and Chemistry The sequence shown i n equations (2) and (3) o f f e r s an e f f e c t i v e route to monomeric, h i g h l y c r y s t a l l i n e , t h e r m a l l y s t a b l e thorium and uranium organometallies w i t h e i t h e r one or two metal2 ( C H ) C - + MC1 3
5
5
t 0 4
^gg>M[(CH ) C 1 Cl 3
5
5
2
+ 2Cl"
2
(2)
M = Th,U
M[(CH ) C ] C1 3
5
5
2
et
+ 2RLi ggj ° > M [ ( C H ) C 1 R
2
r
3
5
5
2
4- 2L1C1
2
(3)
M « Th, R * CH , C H S i ( C H ) , C H C ( C H ) , C H C H , C H M « U, R * CH , C H S i ( C H ) , C H C H 3
3
2
2
3
3
3
3
2
2
3
6
3
2
6
5
6
5
5
carbon sigma bonds (6,30,31.) . A l l compounds shown i n these and subsequent r e a c t i o n s were thoroughly c h a r a c t e r i z e d by elemental a n a l y s i s , c r y o s c o p i c molecular weight i n benzene ( s o l u b i l i t y perm i t t i n g ) , i n f r a r e d and NMR spectroscopy, and, i n s e v e r a l cases, by s i n g l e c r y s t a l X-ray d i f f r a c t i o n . S t r u c t u r e s B and C are proposed f o r these new compounds i n s o l u t i o n .
B M = U
C M =
Th,U
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
6
LANTHANIDE AND ACTINIDE CHEMISTRY AND SPECTROSCOPY
The r e a c t i o n of T h [ ( C H ) C ] ( C H ) and U [ ( C H ) C ] ( C H ) w i t h carbon monoxide i s q u i t e r a p i d (6,32,33.) • A t -80°C i n t o l u ene s o l u t i o n , these compounds absorb 2.0 e q u i v a l e n t s of carbon monoxide fet l e s s than one atmosphere pressure) w i t h i n 1 hour. Upon warming to room temperature, the d i m e r i c products ( l ) are i s o l a t e d i n e s s e n t i a l l y q u a n t i t a t i v e y i e l d (equation ( 4 ) ; . The i n f r a r e d s p e c t r a (Vg-Q - 1655 cm" ; i / _ = 1252, 1220 cm" ) as w e l l as the s i n g l e methyl resonance i n the H NMR spectrum strongl y suggests that C-C c o u p l i n g of the i n s e r t e d carbon monoxide 3
5
5
2
3
2
3
5
5
2
1
3
2
1
c
0
1
2M[(CH ) C ] (CH ) 3
5
5
2
3
2
+ 4C0
t 0 l U
^ 6 >fM[ (CH ) C ] (0C(CH )= C(CH^O^ -80 3
5
5
2
3
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
( 4 )
l a M = Th ( c o l o r l e s s c r y s t a l s ) l b M = U (brown c r y s t a l s ) molecules has occurred t o form e n e d i o l a t e m o i e t i e s (D). Confirma t i o n o f t h i s h y p o t h e s i s was achieved by s i n g l e c r y s t a l X-ray d i f CH
CH c=c -o' o3
3
N
v
D
f r a c t i o n s t u d i e s on ^a. (6,32,33). As can be seen i n F i g u r e 2, four carbon monoxide molecules have been coupled t o form four thorium-oxygen bonds and, s t e r e o s p e c i f i c a l l y , two c i s - s u b s t i t u t e d carbon-carbon double bonds. Two T h [ ( C H ) C ] u n i t s i n the common "bent sandwich" c o n f i g u r a t i o n (34) are components o f a t e n atom m e t a l l o c y c l e . The e n e d i o l a t e l i g a n d s are e s s e n t i a l l y p l a n a r w i t h genuine C-C double bonds ( C i - C = C - C ' = 1.33(2)A). Furt h e r s t r u c t u r a l remarks are reserved f o r the f o l l o w i n g s e c t i o n . As a prelude to d i s c u s s i n g a d d i t i o n a l f-element chemistry, i t i s a t t h i s p o i n t worth n o t i n g the r e s u l t s of c a r b o n y l a t i o n experiments w i t h the b i s c y c l o p e n t a d i e n y l s o f e a r l y t r a n s t i o n metals. As i s the case f o r the a c t i n i d e s , these elements i n the h i g h e r o x i d a t i o n s t a t e s e x h i b i t a great a f f i n i t y f o r oxygen-donating l i g ands (35,36), and t h e i r chemistry w i l l p l a c e f u r t h e r a c t i n i d e r e s u l t s i n a more meaningful p e r s p e c t i v e . F l o r i a n i and coworkers have c a r r i e d out an e x t e n s i v e i n v e s t i g a t i o n of the r e a c t i o n of b i s c y c l o p e n t a d i e n y l t i t a n i u m , zirconium, and hafnium b i s h y d r o c a r b y l s and h a l o h y d r o c a r b y l s w i t h carbon monoxide (equations(5) and (6)) (37.>38^39_). Only monocarbonylation i s observed. S i m i l a r 3
5
5
2
,
2
M(C H ) R 5
5
2
2
1
2
+ CO ^=± M ( C H ) ( C 0 R ) R 5
5
(5)
2
M = Z r , Hf R = CH , C H C H , ( C H 3
2
6
5
6
5
not r e v e r s i b l e )
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Nonclassical
MARKS E T A L .
Activation
HRh(CO)L
of Carbon
Monoxide
3
/
L=
15 min. 2 M=Th, R=CH C(CH )3 3a M=Th, R = C H S i ( C H ) 3b M=U,R=CH Si(CH ) 3
2
2
3
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
2
M[(CH ) C ] C1 3
5
5
2
2
e t h e r
+ RLi
3
3
3
> M[(CH ) C ] (C1)R + L i C l (9) k M=Th, R=CH C(CH ) *5a M=Th, R = C H S i ( C H ) 5b M=U, R = C H S i ( C H ) 3
5
5
2
2
3
2
3
3
2
3
3
3
The r e a c t i o n o f 4 w i t h one e q u i v a l e n t o f carbon monoxide proceeds r a p i d l y and i r r e v e r s i b l y a t room temperature t o y i e l d a product which, on the b a s i s o f the i n f r a r e d spectrum, can be assigned a b i h a p t o a c y l c o o r d i n a t i o n geometry (equation (10)) (33). An i n t e r -
CH / , Th
2 C (CH ) 3
3
/^Th
CO
— C-CH C(CH ) 2
3
3
CI (10)
0 /
\
.Th2. 6 >2.9 >2.9
2.292(2) 2.194(14) 2.290(4) 2.37(2)
>2. 8 >2.8 >2.6 >3.1 146.7(3)° 154.0(16)° 159.8(5)° 169 (2)°
119.0(4)° 115. 68(20)° 112. 03(13)° 121.2(9)° 86.1(2)° 79.7(6)° 78. 6(4)° 73 (1)°
124.3(4)° 126. 94(23)° 125. 29(15)° 120.9(10)°
»M-C-Q
1.322(7) 162.7° 1.286(16) 168 (1)° 1.37(5)
73. 3° 72! 1(8)°
1.36(3) 126 (3)° 115 (3)° 1.251(10) 121.4(7)° 121.2(7)° 1.228(15) 123. 1(12)° 120.1(15)°
1.19(1) 1.18(2) 1.211(8) 1.18(3)
1.193(6) 1.206(4) 1.191(2) 1.211(16)
M~Q(k) C-O(l) »M-C-X
O ' I M-C
IN ACYL AND CARBAMOYL COMPLEXES
TABLE H . COMPARISON OF METRICAL AND SPECTRAL PARAMETERS
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
"co^
111
^
123. 96(60)° 120. 0(1)°
118 (4)° 117.4(8)° 116.7(20)°
127.2(3)° 126.3(13)° 121.6(6)° 118 (2)°
1676 1523 1516
1550 1610 or 1540 1610 or 1540
1585 1620 1545 1469
116.7(5)° 1683,1648 117. 37(26)° 1630 122.67(18)° 117.7(12)° 1616,1591
K)-C-X
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Churchill, M . R . ; Fennessey, J . P . , Inorg. Chem., 1968 , 7 , 953- 959.
Carmona-Guzman, E . ; Wilkinson, G , ; Atwood, J . L . ; Rogers, R. D . ; Hunter, W. E . ; Zaworotko, M. J . , J.Chem.Soc. Chem. Comm., 1978, 465-466, and Atwood, J . L . , private communication.
d
e
Reference 64.
Reference 22.
Reference 37.
Reference 66.
n
Reference 62.
"^Reference 68.
1
k
Disordered structure.
* Chipman, D . M . ; Jacobson, R . A . , Inorg. Chim. Acta., 1967, 1, 393-396 (tetragonal modification). Breneman, G . L . ; Chipman, D . M . ; Gailes, C . J . ; Jacobson, R . A . , Inorg. Chim. Acta., 1969, 3, 447-450 (monoclinic modification).
1
n
g
Reference 38.
Churchill, M . R . ; DeBoer, B . G . ; Hackbarth, J . J . , Inorg. Chem.. 1974, 13, 2098-2105.
c
f
Churchill, M . R . ; Chang, S . W . Y . , Inorg. Chem., 1975, 14, 1680-1685.
Cotton, F . A . ; Frenz, B . A . ; Shaver, A . , Inorg. Chim. Acta., 1973, 7, 161-169.
b
a
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
24
LANTHANIDE AND ACTINIDE CHEMISTRY AND SPECTROSCOPY
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
Conclusions This work underscores the very h i g h chemical r e a c t i v i t y that d e r i v e s from a c t i n i d e h y d r o c a r b y l and r e l a t e d complexes c o n t a i n i n g the a p p r o p r i a t e supporting l i g a n d s . I n the case of carbon monoxide chemistry, f a c i l e migratory i n s e r t i o n r e a c t i o n s are u b i q u i tous. This CO a c t i v a t i o n process does not adhere t o the c l a s s i c a l t r a n s i t i o n metal p a t t e r n , but r a t h e r the h i g h oxygen a f f i n i t y and c o o r d i n a t i v e u n s a t u r a t i o n of the thorium and uranium centers gives r i s e t o b i h a p t o a c y l and bihaptocarbamoyl complexes• The tendency of the b i h a p t o a c y l s t o r e a c t as alkoxycarbenes i s a s t r i k i n g f a c e t of the chemistry and one that i s q u a l i t a t i v e l y reminiscent of e a r l y t r a n s i t i o n metal o r g a n o m e t a l l i e s . Given the same l i g a n d a r r a y as a d-element i o n i t i s not s u r p r i s i n g that the l a r g e r a c t i n i d e ions would be more unsaturated and more r e a c t i v e . I n support of t h i s n o t i o n , the s p e c t r a l , s t r u c t u r a l , and chemical data s t r o n g l y argue that the p e r t u r b a t i o n of the b i h a p t o a c y l s and carbamoyls toward a c a r b e n e - l i k e species i . e . , an increased cont r i b u t i o n from resonance h y b r i d F, i s g r e a t e r f o r the f-element systems. I t i s p o s s i b l e t h a t d i f f e r e n c e s i n m e t a l - l i g a n d o r b i t a l overlap as w e l l as i n the tendency t o undergo redox processes a l s o c o n t r i b u t e t o r e a c t i v i t y c o n t r a s t s between the d and f systems • The present c a r b o n y l a t i o n r e s u l t s w i t h f-element organom e t a l l i c s are r e l e v a n t t o mechanistic d i s c u s s i o n s of c a t a l y t i c CO r e d u c t i o n a t two l e v e l s . I n terms o f general mechanistic schemes (of which a l a r g e number e x i s t ) (24-29, 75) the organoactinide r e a c t i o n s suggest modes f o r CO r e a c t i v i t y i n s i t u a t i o n s i n which the c a t a l y s t e x h i b i t s high oxygen a f f i n i t y and h i g h c o o r d i n a t i v e uns a t u r a t i o n . C o n s i d e r i n g the evidence i n heterogeneous systems f o r d i s s o c i a t i v e CO a d s o r p t i o n (25,76), l a b e l l e d a l c o h o l and ketone deoxygenation (26,77_), l a b e l l e d ketene deoxygenation (26, 78, 79), as w e l l as s u r f a c e a l k o x i d e and c a r b o x y l a t e (or p o s s i b l y b i h a p t o a c y l ) formation (80,81),the h i g h oxygen a f f i n i t y o f many or most CO r e d u c t i o n c a t a l y s t surfaces i s an e n t i r e l y reasonable assumption. The n e c e s s i t y of h i g h c o o r d i n a t i v e u n s a t u r a t i o n i s supported by the above observations and by k i n e t i c data which i n d i c a t e t h a t CO i n h i b i t s many o f the r e d u c t i o n c a t a l y s t s ( i . e . , i t competes w i t h s i t e s needed f o r CO d i s s o c i a t i o n and/or hydrogen adsorption) (24-28). The present r e s u l t s suggest a ready means f o r c a t a l y t i c a l cohol formation v i a c a r b e n e - l i k e bihapto formyl and a c y l species (e.g., equations (18) and ( 1 9 ) ) . Precedent e x i s t s f o r the a l k o x ide formation step of equation (19) (47,48,82,83). Chain growth could occur v i a the i n s e r t i o n of an unsaturated s u r f a c e s i t e i n t o a H C-0M(or R-OM) bond (an o x i d a t i v e a d d i t i o n ) t o y i e l d a metalcarbon bond, followed by f u r t h e r c a r b o n y l a t i o n , as i l l u s t r a t e d i n equations (20) and (21). There i s good precedent f o r the i n s e r t i o n o f metal ions i n t o carbon-oxygen bonds (84,85,86) . Hydro3
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1.
MARKS E T A L .
CO
Nonclassical
/
H
?
Activation
»
>
X MH
M
"
0 S C H
of Carbon
3
N
7T> M'° CH rlo
0-CH
0
3
/
x
7
25
CH3OH
(18)
CH3OH
(19)
3
/ \ /
M - M
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
CH
M-H
3
Monoxide
*
0 CH / \ / M M
M
M
(20) 0 0 / \ / •c M M*^' S
3
CO 7
CH
3
>
etc.
(21)
g e n o l y s i s o f the metal-carbon bond formed i n equation (20) would produce saturated hydrocarbons, ^-hydride e l i m i n a t i o n w i t h i n an e t h y l o r l a r g e r group would produce o l e f i n s ; both products a r e observed i n the Fischer-Tropsch r e a c t i o n (24*28) . The e n e d i o l a t e formation r e a c t i o n reported here suggests ways by which g l y c o l (29) o r hydrocarbon formation might occur (equations ( 2 2 ) - ( 2 5 ) ) .
H
H
I
\
M
M
2C0 7
H
H
»
1
C
C
0 V M
H
H \
/
C =C
0 */ M
0 >
0
I
I
M
M
(22)
I M * M>° °*M + HC ^ C H ^ A e t c . ( 2 4 )
\
OH OH >
=-2
) M
M + H C=CH — 7 e t c . 2
2
(25)
Reactions analogous t o the reverse o f equation (24) are w e l l documented (87,88) • Unsaturated hydrocarbons such as ethylene a r e r e a d i l y incorporated i n t o products under c a t a l y t i c c o n d i t i 6 n s (24-28). In regard t o s p e c i f i c c a t a l y t i c systems f o r CO r e d u c t i o n and
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
L ANTH AN IDE AND ACTINIDE CHEMISTRY AND SPECTROSCOPY
26
homologation, the o r g a n o a c t i n i d e c a r b o n y l a t i o n r e s u l t s d e s c r i b e d here are p a r t i c u l a r l y r e l e v a n t t o the i s o s y n t h e s i s r e a c t i o n (24-28, 8£-93_). I n t h i s c a t a l y t i c p r o c e s s , s y n t h e s i s gas (CO + H ) i s converted over t h o r i a , T h 0 , (alone o r promoted w i t h K C 0 o r A 1 0 ) i n t o branched p a r a f f i n s , o l e f i n s , a l c o h o l s , and a r o m a t i c s . U n t i l r e c e n t l y , the l a c k o f precedent f o r thorium-hydrogen and thorium-carbon bonds as w e l l as any c a r b o n y l a t i o n chemistry t h e r e o f , has rendered m e c h a n i s t i c d i s c u s s i o n o f i s o s y n t h e s i s i m p o s s i * b l e . The r o l e o f t h o r i a as a support i n t r a n s i t i o n metal c a t a l y z e d CO r e d u c t i o n (24*-28) may a l s o i n v o l v e some o f the chemistry discussed here. !f
lf
2
2
2
2
3
3
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
Acknowledgments We thank the N a t i o n a l Science Foundation (T.J.M., CHE 7684494 A01) and the U n i v e r s i t y of Nebraska Computer Center (V.W.D.) f o r generous support of t h i s r e s e a r c h . T.J.M. and V.W.D. a r e C a m i l l e and Henry Dreyfus Teacher-Scholars. Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
Marks, T.J.; F i s c h e r , R.D., Eds. "Organometallics o f the f-Elements," R e i d e l P u b l i s h i n g Co., Dordrecht, H o l l a n d , 1979. Marks, T.J. Prog. I n o r g . Chem., 1978, 24, 51-107; ibid., 1979, 25, 224-333. Marks, T . J . Acc. Chem. Res., 1976, 9, 223-230. T s u t s u i , M.; E l y , N.; Dubois, R. Acc. Chem. Res., 1976, 9, 217-222. Baker, E.C.; H a l s t e a d , G.W.; Raymond, K.N. S t r u c t . Bonding, (Berlin), 1976, 25, 23-68. Fagan, P.J.; Manriquez, J.M.; Marks, T.J. in r e f e r e n c e 1, Chapt. 4. Marks, T.J.; Seyam, A.M.; K o l b , J.R. J. Am. Chem. Soc., 1973, 95, 5529-5539. Marks, T.J.; Wachter, W.A. J . Am. Chem. Soc., 1976, 98, 703-710. K a l i n a , D.G.; Marks, T.J.; Wachter, W.A. J . Am. Chem. Soc., 1977, 99, 3877-3879. Marks, T.J.; Seyam, A.M. J . Organometal. Chem., 1974, 67, 61-66. K o h l e r , E.; Bruser, W.; T h i e l e , K.H. J . Organometal. Chem., 1974, 76, 235-240. Sigurdson, E.R.; W i l k i n s o n , G. J . Chem. Soc. D a l t o n Trans., 1977, 812-818. Secaur, C.A.; Day, V.W.; E n s t , R.D.; K e n n e l l y , W.J.; Marks, T.J. J . Am. Chem. Soc., 1976, 98, 3713-3715. E r n s t , R.D.; K e n n e l l y , W.J.; Day, C.S.; Day, V.W.; Marks, T.J. J . Am. Chem. Soc., 1979, 101, 2656-2664. Davidson, P.J.; Lappert, M.F.; Pearce, R. Chem. Rev., 1976, 76, 219-242, and r e f e r e n c e s t h e r e i n . r
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
1.
MARKS ET AL.
Nonclassical
Activation
of Carbon
Monoxide
27
16. E r s k i n e , G.J.; H a r t g e r i n k , J.; Weinberg, E.L.; McCowan, J.D. J. Organometal. Chem., 1979, 170, 51-61, and references t h e r e in. 17. K o h l e r , F.H.; P r o s s d o r f , W.; Schubert, U.; Neugebauer, D. Angew. Chem. Int. Ed. E n g l . , 1978, 17, 850-851. 18. Parshall, G.W. J . M o l . C a t a l . , 1978, 4, 243-270. 19. Eisenberg, R.; Hendriksen, D.E. Advan. C a t a l . , 1979, 28, in press. 20. F a l b e , J. "Carbon Monoxide in Organic S y n t h e s i s , " S p r i n g e r V e r l a g , Berlin, 1970. 21. Calderazzo, F. Angew. Chem. Int. Ed., 1977, 16, 299-311. 22. Heck, R.F., " O r g a n o t r a n s i t i o n Metal Chemistry," Academic Press, N.Y., 1974, Chapt. I X . 23. W o j c i c k i , A. Advan. Organometal. Chem., 1973, 11, 87-145. 24. Masters, C. Advan. Organometal. Chem., 1979, 17, 61-103. 25. Ponec, V. C a t a l . R e v . - S c i . Eng., 1978, 18, 151-171. 26. S c h u l z , H. E r d o l , Kohle, Erdgas, Petrochem., 1977, 30, 123131. 27. Vannice, M.A. C a t a l . R e v . - S c i . Eng., 1976, 14, 153-191, and references t h e r e i n . 28. H e n r i c i - O l i v e , G.; O l i v e , S. Angew. Chem. Int. Ed. E n g l . , 1976, 15, 136. 29. P r u e t t , R.L. Ann. N.Y. Acad. Sci., 1977, 295, 239-248. 30. Manriquez, J.M.; Fagan, P.J.; Marks, T.J. J. Am. Chem. Soc., 1978, 100, 3939-3941. 31. Manriquez, J.M.; Fagan, P.J.; Marks, T.J. manuscript in preparation. 32. Manriquez, J.M.: Fagan, P.J.; Marks, T.J.; Day, C.S.; Day, V.W. J. Amer. Chem. Soc., 1978, 100, 7112-7114. 33. Manriquez, J.M.; Fagan, P.J.; Marks, T.J.; Day, C.S.; Vollmer, S.H.; Day, V.W., manuscript in p r e p a r a t i o n . 34. Petersen, J.L.; L i c h t e n b e r g e r , D.L.; Fenske, R.F.; Dahl, L.F. J. Am. Chem. Soc., 1975, 97, 6433-6441. 35. Keppert, D.L., "The Early T r a n s i t i o n M e t a l s , " Academic P r e s s , N.Y., 1972, Chapt. 1. 36. Pearson, R.G.,Ed., "Hard and S o f t A c i d s and Bases," Dowden, Hutchinson, and Ross, Stroudsberg, PA, 1973. 37. Fachinetti, G.; Floriani, C.; S t o e c k l i - E v a n s , H. J. Chem. Soc., Dalton Trans., 1977, 2297-2302. 38. Fachinetti, G.; Fochi, G.; Floriani, C. J. Chem. Soc., Dalton Trans., 1977, 1946-1950. 39. Fachinetti, G.; Floriana, C. J. Organometal. Chem., 1974, 71, C5-C7. 40. L a p p e r t , M.F.; Luong-Thi, N.T.; MiLne,C.R.C., J. Organometal. Chem., 1979, 174, C35-C37. 41. Maslowsky, E . , J r . " V i b r a t i o n a l S p e c t r a o f Organometallic Compounds," W i l e y - I n t e r s c i e n c e , N.Y., 1977, p. 155. 42. Green, M.L.H. "Organometallic Compounds," Vol. 2, Methuen, London, 1968, p. 257-261.
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
28
LANTHANIDE AND ACTINIDE CHEMISTRY AND SPECTROSCOPY
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
43. Lauher, J.W.; Hoffmann, R. J. Am. Chem. Soc., 1976, 98, 17291742. 44. Petersen, J.L.; Dahl, L.F. J. Am. Chem. Soc., 1975, 97, 64226433. 45. Green, M.L.H.; Douglas, W.E., J. Chem. Soc., D a l t o n Trans., 1972, 1796-1800. 46. E r k e r , G.; R o s e n f e l d t , F. Angew. Chem. I n t . Ed. E n g l . , 1978, 17, 605-606. 47. Manriquez, J.M.; M c A l i s t e r , D.R.; Sanner, R.D.; Bercaw, J.E. J. Am. Chem. Soc., 1978, 100, 2716-2724. 48. Manriquez, J.M.; M c A l i s t e r , D.R.; Sanner, R.D.; Bercaw, J.E. J. Am. Chem. Soc., 1976, 98, 6733-6735. 49. Manriquez, J.M.; Fagan, P.J.; Marks, T.J. manuscript in preparation. 50. Baron, W.J.; DeCamp, M.R.; Hendrick, M.E.; Jones, M.,Jr.; L e v i n , R.H.; Sohn, M.B.; in "Carbenes," Jones, J., Jr.; Moss, R.A.; eds., W i l e y - I n t e r s c i e n c e , N.Y., 1973, Vol. I, p. 128. 51. Moss, R.A.; in reference 50, p. 280. 52. Kirmse, W. "Carbene Chemistry," Academic P r e s s , N.Y., 1971, Chapt. 3, S e c t i o n E. 53. Hoffmann, R.W. Angew. Chem. I n t . Ed., 1971, 10, 529-540. 54. Wentrup, C., Topics C u r r . Chem., 1976, 62, 173-251. 55. Reference 50, p. 72. 56. Reference 52, Chapt. 12. 57. Robson, J.H.; Schechter, H., J. Am. Chem. Soc., 1967, 89, 7112-7113. 58. Eller, P.G.; B r a d l e y , D.C.; Hursthouse, M.B.; Meek, D.W., Coord. Chem. Rev., 1977, 24, 1095. 59. B r a d l e y , D.C., Advan. Chem. S e r . , 1976, 150, 266-272. 60. B r a d l e y , D.C. Chem. Brit., 1975, 11, 393-397. 61. Bradley, D.C. Advan. I n o r g . Chem. Radiochem., 1972, 15, 259322. 62. Manriquez, J.M.; Fagan, P.J.; Marks, T.J.; V o l l m e r , S.H.; Day, C.S.; Day, V.W. submitted f o r publication. 63. Manriquez, J.M.; Fagan, P.J.; Marks, T.J. unpublished results. 64. Dell'Amico, D.B.; Calderazzo, F.; Pelizzi, G., I n o r g . Chem., 1979, 18, 1165-1168, and references t h e r e i n . 65. Angelici, R.J., Acc. Chem. Res., 1972, 5, 335-341. 66. Müller, A.; Ulrich, S.; Werner, E. I n o r g . Chim. A c t a . , 1979, 32, L65-L66. 67. Anet, F.A.L.; Basus, V . J . J. Mag. Resonan., 1978, 32, 339343, and references t h e r e i n . 68. Manriquez, J.M.; Fagan, P.J.; Marks, T.J.; V o l l m e r , S.H.; Day, C.S.; Day, V.W. unpublished results. 69. Johnson, P.L.; Cohen, S.A.; Marks, T.J.; W i l l i a m s , J.M. J. Am. Chem. Soc., 1978, 100, 2709-2716. 70. Day, C.S.; Stults, B.R.; Marianelli, R.S.; Day, V.W., manuscript i n preparation. 71. A r d u i n i , A.; Takats, J.; Lukehart, C.M.; V o l l m e r , S.H.; Day, V.W., submitted f o r publication.
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by 80.82.77.83 on May 13, 2017 | http://pubs.acs.org Publication Date: September 23, 1980 | doi: 10.1021/bk-1980-0131.ch001
1.
MARKS E T A L .
Nonclassical
Activation
of Carbon
Monoxide
29
72. Jamerson, J.D.; Takats, J., J. Organometal. Chem., 1974, 78, C23-C25. 73. Manriquez, J.M.; Fagan, P.J.; Marks, T.J.; Day, C.S.; Vollmer, S.H.; Day V.W., manuscript in p r e p a r a t i o n . 74. "Tables o f Interatomic Distances and C o n f i g u r a t i o n s in Molec u l e s and Ions," Chem. Soc., Spec. P u b l . , 1965, 18, m99s. 75. Casey, C . P . ; Andrews, M.A.p M c A l i s t e r , D.R., J. Am. Chem. Soc., 1979, 101, 3373, and references t h e r e i n . 76. B i o l o e n , P.; Helle, J.N.; S a c h t l e r , W.H.M. J. Catal., in press. 77. Kummer, J.T.; Emmett, P.H. J. Amer. Chem. Soc., 1953, 75, 5177-5183. 78. B l y h o l d e r , G.; Emmett, P.H. J. Phys. Chem., 1959, 63, 962965. 79. B l y h o l d e r , G.; Emmett, P.H. J. Phys. Chem., 1960, 64, 470-472. 80. B l y h o l d e r , G.; Goodsel, A . J . J. Catal., 1971, 23, 374-378. 81. B l y h o l d e r , G.; S h i h a b i , D.; Wyatt, W.V.; Bartlett, R. J. C a t a l . , 1976, 43, 122-130. 82. Fachinetti, G.; Floriani, C.; Roselli, A.; P u c c i , S. J. Chem. Soc., Chem. Comm., 1978, 269-270. 83. Wolczanski, P.T.; Threlkel, R.S.; Bercaw, J.E. J. Amer. Chem. Soc., 1979, 101, 218-220. 84. Schlodder, R.; I b e r s , J.A.; Lenorda, M.; G r a z i a n i , M. J. Amer. Chem. Soc., 1974, 96, 6893-6900. 85. Heck, R.F., "Organotransition Metal Chemistry," Academic P r e s s , N.Y., 1974, p. 255-260. 86. N o y o r i , R. in " T r a n s i t i o n Metal Organometallics in Organic Synthesis," A l p e r , H., ed., Academic P r e s s , 1976, Vol. 1, p. 145-146. 87. F i e s e r , L.F.; F i e s e r , M. "Reagents f o r Organic Synthesis," W i l e y , N.Y., 1967, Vol. 1, 759-764. 88. S h a r p l e s s , K.B.; W i l l i a m s , D.R. Tetrahedron Lett, 1975, 30453046. 89. N a t t a , G.; Colombo, U.; Pasquon, I. in " C a t a l y s i s , " Emmett, P.H., ed., R e i n h o l d , N.Y., 1957, Vol. 5, Chapter 2. 90. Cohn, E.M. in "Catalysis," Emmett, P.H., ed., R e i n h o l d , N.Y., 1956, V o l . 4, Chapt. 3. 91. Pichler, H.; Z i e s e c k e , H-H.; Traeger, B. Brennstoff-Chem., 1950, 31, 361-374. 92. Pichler, H.; Ziesecke, K.-H.; Fitzenthaler, E. B r e n n s t o f f Chem., 1949, 30, 333-347. 93. Pichler, H.; Z i e s e c k e , K.-H. Brennstoff-Chem., 1949, 30,1322. RECEIVED December 26,
1979.
Edelstein; Lanthanide and Actinide Chemistry and Spectroscopy ACS Symposium Series; American Chemical Society: Washington, DC, 1980.