Nuclear magnetic resonance spectromety - Analytical Chemistry (ACS

Alan P. Uthman , Jerry P. Koontz , Judy. Hinderliter-Smith , W. Stephen. Woodward , and Charles N. Reilley. Analytical Chemistry 1982 54 (11), 1772-17...
4 downloads 0 Views 954KB Size
Anal. Chem. 1980, 52, 9 0 R - 9 5 R (E64) Chilver, M. J.; Harrison, J.; Webb, T. J. B. J. Am. Soc. Brew. Chem. 1978, 3 6 , 13-18. (E65) Belser, L. W.; Schmidt, E. L. Mlcrobiology(Washington, D.C.) 1978, 348-51. (E66) Schulrnan, S. G.; Naik, D. V. Drug Fate Metab. 1978, 2 , 195-256; Chem. Abstr. 1978, 8 8 , 163523. (€67) Terhaar. D. A.; Porro, T. J. Guide/. Anal. Toxicol. Programs 1977, 2 , 153-70: Chem. Abstr. 1978. 8 9 . 122786. (E68) Whitehead, T. P.; Kricka, L. J.1 Carter, T. J. N.; Thorpe, G. H. G. Clin. Chem. 1979, 2 5 , 1531-46. (E69) Chakraborte, S. K. Ciln. Chem. 1979, 2 5 , 592-5. (E70) Majeski, E. J.; Seitzer, E. J.; Carter, P. L.; Howlett, D. R.; Stuart, J. D. Cih. Chem. 1977, 2 3 , 1976-83. (E71) Harnmond, J. E.; Phillips, J. C.; Savory, J. Clin. Chem. 1979, 2 4 , 631-4. (E72) Frattini, P.; Cucchi, M. L.; Santagostino, G.; Corona, G. L. Clin. Chem. Acta 1979, 9 2 , 353-60. (€73) Pochron, S. P.; Mitchell, G. A.; Albareda, I.; Huseby, R. M.; Gargiulo, R. J. Thromb. Res. 1978, 13, 733-9. (E74) Lawson, D. E.; Mitchell, G. A.; Huseby, R. M. Thromb. Res. 1979, 14. 323-32. (E75) ACRawi, S. H.; Tabaqchali, S. J. Antimicrob. Chemother. 1979, 5, 81-6. (E76) Navon, G.; Panigel, R. Clin. Chim. Acta 1979, 9 1 , 221-4. (E77) Nagaoka, S.; Cowger. M. L. Anal. Biochem. 1979, 9 6 , 364-77. (E78) Rollen, 2. J.; Yert. A. W.; Needham, L. L. Clln. Chem. 1978, 2 4 , 840. (E79) Twitchett, P. J.; Fletcher, S.M.; Sullivan, A. T.; Moffat, A. C. J. Chromatogr. 1978, 150, 73-84. (€80) Levi, S.;Reisfeld, R . Anal. Chim. Acta 1978, 9 7 , 343-7. (E81) Schwedt, G. Fresenius' 2. Anal. Chem. 1978. 293, 40-44. (E82) Turk, J.; Weiss, S. J.; Davis, J. E.; Needleman, P. Prostaglandins 1978, 16, 291-309. (E83) Sams, R. Anal. Len. 1978, B1 1, 697-707. (E84) Guentert, T. W.; Riegelman, S. Ciln. Chem. 1978, 2 4 , 2065-6. (EM) Gupta, R. N.; Eng, F.; Lewis, D.; Kumana, C. Anal. Chem. 1979, 51, 455-8. (€86) Decker, W. J.; Thompson, J. D. Clin. Toxicoi. 1978. 13, 545-9. (E87) Chan, K. K.; Wong, C. D. J. Chromatogr. 1979, 172, 343-9. (E88) Williams, R. L. I n "Molecular Spectroscopy", West, A. R., Ed.; Heyden: London, 1977; pp 535-54. (€89) Calloway, A. R.; Jones, P. F. J. forensic Sci. 1978, 2 3 , 263-73. (E90) Hoggett, J. G. "Specialist Periodical Report Series: Amino Acids, Peptides, and Proteins", Vol. 9, The Chemical Society: London, 1978; pp 243-63. (E91) Partanen, S. Prog. Hisrochem. Cyfochem. 1978. 10, 45 pp. (E92) Creaser, E. H.; Hughes, G. J. J . Chromatogr. 1977, 144. 69-75. (E93) Cronin, J. R.; Pizzarello, S.; Gandy, W. E. Anal. Blochem. 1979, 9 3 , 174-9. (E94) Davis, T. P.; Gehrke, C. W.; Gehrke, C. W., Jr.; Cunningham, T. D.; Kuo, K. C.; Gerhardt, K. 0.; Johnson, H. D.; Williams, C. H. Ciin. Chem. 1978, 2 4 , 1317-24. (E95) Lee, K. S.; Drescher, D. G. J. Biol. Chem. 1979, 254. 6248-51. (E96) Lindroth. P.; MODDer. K. Anal. Chem. 1979. 51. 1667-74. iE97j Castell, J. V.: Cetiera; M.; Marco, R. Anal. Biochem. 1979, 99, 379-91. (E98) Lai, C. Y. Methods Enzymol. 1977, 4 7 , 236-43. (Egg) Stein, S.Pept. Neurobiol. 1977, 9-37; Chem. Abstr. 1979, 90,117300.

(E100) Udenfriend, S.; Stein, S. Pept., Proc. Am. Pept. Symp., 5th 1977, 14-26; Chem. Abstr. 1978, 8 8 , 148327. (E101) Stephens, R. E. Anal. Biochem. 1978, 8 4 , 116-26. (E102) Krstuiovic, A. M.; Powell, A. M. J. Chromatogr. 1979, 171. 345-56. (€103) Chen, R. F. Anal. Left. 1978, 8 1 1 , 249-55. (€104) Udenfriend, S. Versatiiity Proteins (Proc. Int. Symp. Proteins) 1978, 23-37; Chem. Abstr. 1979, 91. 136335. (€105) Vandemark, F. L.; Schmidt, G. J.; Shvin, W. J. Chromatogr. Sci. 1978, 16, 465-9. (E106) De ia Torre, J. C.; Surgeon, J. W. Neuroscience 1976, 1; 451-3. (€107) Douglass, S.A.; LaMarca, M.E.; Mets. L. J. Dev. Blochem. 1978, 2 , 155-65. (€108) Ragland, W. L.; Benton, T. L.; Pace, J. L.; Beach, F. G.; Wade, A. E. Dev. Biochem. 1978. 2 . 217-30. (E109) Nairn, R. C. fiuoresc. Protein Tracing, 4th ed. 1976, 109-24; Chem. Abstr. 1977, 8 7 , 180009. (€110) Steinhart, H. Anal. Chem. 1979, 5 1 , 1012-16. ( E l 11) Yaron, A.; Carmel, A,; Katchalski-Katzir, E. Anal. Blochem. 1979, 9 5 , 228-35. ( E l 12) Carmel, A.; Yaron, A. Eur. J. Biochem. 1978, 8 7 , 265-73. (€113) Steven, F. S.;Podrazky. V.; Foster, R. W. And. Biochem. 1978, 9 0 , 183-9 1. (E114) Stenberg, P.; Stenflo. J. Anal. Biochem. 1979, 9 3 , 445-52. ( E l 15) Lorand, L.; Siefring, G. E., Jr.; Tong, Y. S.; Bruner-Lorand, J.; Gray, A. J., Jr. Anal. Biochem. 1979, 9 3 , 453-8. ( E l 16) Handcock, D. M.; Chang, P. L.; Davidson, R. G. Anal. Biochem. 1978, 8 8 , 327-31. (E117) Stoehr, M.; Vogt-Schaden, M.; Knobloch, M.; Vogel, R.; Futterman, G. Stain Technoi. 1978, 5 3 , 205-15. (E116) Brunk, C. F.; Jones, K. C.; James, T.W. Anal. Biochem. 1979, 9 2 , 4.9 - 7. -5- 0.0- . (El 19) Davis, P.; Burrington. M.; Russell, A. S.; Morgan. A. R. Arthritis Rheum. 1978. 2 1 . 407-13. (€120) Hase, S.;Ikenaka, T.; Matsushima, Y. Biochem. Blo~hvs. . . Res. Commun. 1978, 8 5 , 257-63. (E121) London, E.; Feigenson, G. W. Anal. Biochem. 1978, 8 8 , 203-11. (E122) Kaszynski, E.; Bernstein, E. 0. Bull. Soc. Pharmacol. Envlron. Pathol. 1978. 8 , 8-11. (€123) Froehlich, P. I n "Modern Fluorescence Spectroscopy", Wehry, E. L., Ed.; Plenum Press: New York, 1976; Vol. 2, pp 49-89. (E124) Badley, R. A. I n "Modern Fluorescence Spectroscopy", Wehry, E. L.. Ed.; Plenum Press: New York, 1976; Vol. 2, pp 91-168. (€125) Lee, A. G. Recept. Recognition, Ser. A 1978, 5, 79-131. (€126) DePetris, S. Methods Memb. Biol. 1978, 9 . 1-201. (E127) Hoss, W. Prog. Clin. Bid. Res. 1978, 2 7 , 179-203. (€128) Lakowicz, J. R.; Hogan, D. Adv. Exp. Med. Blol. 1977, 8 4 , 509-46. (E129) Waggoner, A. S. Methods Enzymol. 1978, 55, 689-95. (E1301 Azzi, A. Methods Enzymol. 1979, 56, 496-501. (E131) Stryer, L. Ann. Rev. Biochem. 1978, 47, 819-46. (E132) Kaiyanasundaram, K. Chem. Soc. Rev. 1978, 7 , 453-72. (€133) Gratzel, M.; Thomas, J. K. I n "Modern Fluorescence Spectroscopy", Wehry. E. L., Ed.; Plenum Press: New York, 1976; Vol. 2, pp 169-216. (E134) Churchich, J. E. I n "Modern Fluorescence Spectroscopy", Wehry. E. L., Ed.; New York: Plenum Press, 1976; Vol. 2, pp 217-37.

Nuclear Magnetic Resonance Spectrometry John R. Wasson"' and Jorge E. Salinas Ellestad Research Laboratories, Lithium Corporation of America, P.O. Box 795, Bessemer City, North Carolina 280 16

This review covers the published literature from July 1977 to July 1979 although a few references to other work are also included. As noted previously ( I ) , thousands of papers containing information on NMR spectrometry are published in t h e two-year period covered by this review and space limitations preclude citing more than a few of the publications. Comments on the literature of NMR spectrometry and its usage have been made in previous review ( I , 2). T h e Chemical Society (London) Specialist Reports on NMR spectrometry are the best continuing series of comprehensive reviews on the subject and are recommended for literature searching a topic of recent vintage or finding applications to particular systems. In addition to sources mentioned earlier ( I , 2), a new source of current computer searches of the magnetic resonance For biographical material, see the review on Electron Spin Res-

onance. 90 R

0003-2700/80/0352-90R$O 1.OO/O

literature has become available from the Institute for Scientific Information, 325 Chestnut Street, Philadelphia, Pa. 19106. Such computer searched current awareness services have become almost obligatory for the NMR practioner who must keep abreast of the subject. To summarize the recent NMR literature in a short space is clearly an impossibility. However, it is hoped that where this review fails as a review, it succeeds in capturing the flavor of this dynamic research area and serves as a useful guide to the current literature on NMR spectrometry.

BOOKS AND REVIEWS The books (3-25) on NMR spectrometry emphasize the growth of other-than-proton spectroscopy. In particular, the increasing number of books dealing with carbon-13 NMR underscore the activity in that area. The book by Levy and Lichter on nitrogen-15 NMR (20) affords a significant starting

0 1980 American Chemical

Society

NUCLEAR MAGNETIC RESONANCE SPECTROMETRY

Table I. Reviews topic CIDNP-t hermal homolytic rearrangements Polymer spectroscopy Carbon-13 NMR Metal ion solvation Cellular applications of 31Pand I3C NMR Alkaloids S t e r ~ i d s ’ ~NMR C Theory and analysis of dynamic NMR spectra Organotin c o m p o u n d ~ - ” ~ Schemical n shifts Dinitrophenyl-binding mouse IgA myeloma protein 315 Living, contracting muscle-”P NMR CMR-unsaturated fatty acids and esters NMR of anionic surfactants Synthetic macromolecules Hydrogen bonded materials Deuterium NMR-applications Spin-spin coupling Experimental techniques Multiple resonance Nuclear spin relaxation in fluids Paramagnetic molecules Solid state Liquid crystals and micellar solutions Solvent effects in NMR Lipids in membranes Membranesfluorescence and NMR studies Histones Tritium NMR Fossil fuels Coals and polymerssolid state NMR Metal hydrides Fluorine NMR in biochemistry Natural macromolecules 23Naand 39KNMR in biological systems Paramagnetic probes in biological systems Base pairing and solution structure of transfer RNA Polysaccharides Helium-3 Kinetic applications Computerized NMR Solvation Alkali biuhenvl ion uairs Alkali ions in nonaqueous solvents-multinuclear NMR studies High resolution 13CNMR of solid polymers Fiber science Variable temperature CMR NMR software NMR at high pressures Pulsed and Fourier transform NMR spectroscopy Fluorine-19 NMR and fluoro-complexes of d o transition metals Lanthanide shift reagents Peptide unit distortions-liquid crystal solvents Amino acids, peptides, and proteins A



ref.

topic

I5N NMR of amino sugars Negative spin temperatures Head group structure of phospholipids in mernbrane~-~’PNMR Biologically relevant isotopes other than hydrogen-NMR studies Drug-induced phospholipidosis Hydrodynamics in biophysical chemistry Blue copper proteins Biological systems Cellular metabolism Phytoxanthones 11 EDTA complexes in solution 12 Structure of electrolyte solutions 13 Crown and crypt and complexation 14 Quinolizidine derivatives 15 Ferromagnetic intermetallic compounds16 magnetic coupling and crystallo17 graphic order 18,78 Mobility of adsorbed molecules I d , 102 Shift reagents 20 Metals and alloys 21,129 Proton-binding sites by “NMR titrations” 22, 42, 7 9 , 1 3 1 Analysis by optimized GC-IR-NMR 23, 76, 9 6 techniques 24 Drug-nucleic acid interactions 25 Application of the chemical shift 26 Nuclear shielding-theoretical and physical 27 aspects 28 Intermolecular effects in NMR 29, 31, 48, 49 Nuclear spin-spin coupling 30, 31 Cancer and heart disease 32 Saccharides-CMR 33 Two-dimensional Fourier transformation 34,133 in NMR 35 MO theory of magnetic resonance 36,95 parameters 37 I3C NMR natural abundance-proteins Fourier and Hadamard transforms in 38 pattern recognit ion 39,55 I3C NMR-methodology and applications 40 I3C NMR-applications t o stereochemistry 41 ”C NMR-biosynthetic pathways 43 Internal motion in globular uroteins 44 31PNMR-biologic2 membranes 45 Detection and determination of alkjmes Molecular rotation and nuclear spin 46 47 relaxation Deuterium NMR techniques and 51, 65 applications 50 Peptide sequence determination 56 Deuterium NMR-lipid membranes 57, 5 8 , 5 9 , 109 23Na-NMR 31PNMR-enzyme reactions 60 Dynamic NMR Wide-line NMR-reference list 61, 62 64 Phase structure-linear polyethylene 66, 68, 69, 70, 7 1 Pesticide residues Flow and stopped-flow NMR

1, 6 3 106, 2, 54, 89 3 4 5 6 7. 132 8 ; 52 9, 53, 67 10

place for undertaking 15NNMR studies. The book edited by Harris and Mann (25)provides useful surveys of NMR studies of the various elements in the periodic table. Table I lists reviews of various aspects of NMR spectrometry. For convenience, the references in Table I are collected separately in the bibliography.

APPARATUS AND TECHNIQUES A correlation NMR spectrometer has been described (26) and several problems inherent in the implementation of the correlation techniques on a minicomputer have been discussed. Applications of the techniques, e.g., study of histidine in egg white lysozyme, have been outlined. By using the J crosspolarization technique, natural abundance 15N NMR spectra of liquid samples have been examined (27) and expected signal enhancements due to coupling of I5N to one or more protons

ref. 72 73 74 75 77 80 81 82,122 83 84 85 86 87 88 90 91 92 93 94 97 98 100 99 103 101 104 105 107 108 110 111

11.2 113 114 115 116 117 118 119 120 121 123 124 125 126 127 128 130

were realized. A programmable pulse generator for protonenhanced I3C high-resolution NMR in solids has been described (28). Utilization of NMR in biochemistry using very stable fields from superconductors in the study of proton exchange rates and nuclear Overhauser effects in transfer RNA has been reported (29). NMR signals may be spatially resolved by magnetic field gradients. This technique known as zeumatography, has been applied to the sorption of n-C4Hloin NaCaA zeolites and water in NaX zeolites (30). A flash photolysis experiment using a pulsed N2 laser with FT-NMR detection has been reported (32) which appears to be of general application. A simple device has been reported (32) for a spinning high-pressure glass cell which eliminates the use of a hand pump and Bourdon gauge in performing high-pressure highresolution NMR. A single-coil (solenoid) double resonance ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

91 R

NUCLEAR MAGNETIC RESONANCE SPECTROMETRY

NMR sample probe, suited for a wide variety of solid-state studies has been detailed (33). The use of small coils makes it possible to conduct NMR experiments with samples of a few milligrams or micrograms. 13C and PMR microsample spectra have been presented (34). A 50-mm diameter furnace which fits in the gap of a magnet and has a temperature gradient of less than 10°/m in the range 25-1600 "C has been described (35). A simple, inexpensive apparatus for washing NMR tubes has been described (36). Use of precision coaxial tubing in quantitative analysis by NMR has been assessed (37) and experimental conditions optimized for accuracy. An inexpensive temperature controller, which can be used with NMR and ESR spectrometers, consisting of a heater-sensor assembly, a feedback amplifier, and a power supply has been described (38). The construction and behavior of a Pt wire NMR thermometer for use down to 0.55 mK has been reported (39). CD,OD and ethylene glycol-d, can be used as general NMR thermometers over the temperature range -31 < T < 167 "C in spectrometers featuring an internal heteronuclear D lock, with an uncertainty of +1.5 "C or less over most of this range (40). The suggestion of CHBN02as an external reference in 15N NMR has found su port (41) and a mixture of CHk5N02 and CD,'4N02 proposexas a combination lock and reference. A technique for drying small amounts of solvents for use in NMR spectroscopy has been reported (42). Tris(ethy1enediamine)chromium (111) chloride has been employed (43) as a relaxation reagent in CMR.

SPECTRAL ANALYSIS A simple algorithm has been given (44) for analysis of ABX systems. It depends on early consideration of intensity ratios in the X region, thus eliminating one of the two conjugate solutions compatible with the AB part. Equations have been given (45) for calculating decoupling intensities and for using such values to determine proton chemical shifts from 13C spectra. The data needed for each calculation are from two spectra, each obtained by the technique of off-resonance proton spin-decoupling a t a discrete frequency. A mathematical method for the separation of the NMR signals in polymers, which correspond to the different kind of motions of the polymers, has been presented (46). This method enables the structural properties of polymers at a broad temperature range to be elucidated. Orientational distributions in partially ordered solids as determined from NMR and ESR line shapes have been examined theoretically and experimentally (47). The calculation of the paramagnetic term according to the Pople formalism of the chemical shift has been expanded (48) to replace the hitherto constant value of the energy gap between the ground state and the excited states b the value of the lowest lyin excitation. An examination of YC chemical shifts of monosugstituted methanes, ethanes, ethylenes, and benzenes had led to the proposal of a new inductive substituent parameter (49). Ring current calculations for the downfield (aromatic proton) NMR spectrum of lysozyme have been performed based on the coordinates of the protein after real refinement and the Johnson-Bovey equation has been applied to aromatic amino acids and employed in spectral assignments (50). An empirical Johnson-Bovey model has been used (51) to calculate porphyrin ring current-induced shifts and applied to a conformation analysis example. An expression has been given (52) for the dependence of the NMR chemical shift due to x electrons on the position of the nucleus relative to an aromatic ring. An improved model for describing magnetic susceptibilities and chemical shifts of planar aromatic hydrocarbons with hexagonal symmetry, based on exact calculation of certain integrals, has been reported (53).

COMPUTER APPLICATIONS The possibilities for the use of computer techniques in bioanalytics and the technology of such systems has been discussed (54). A microprocessor can be interfaced with a high-resolution NMR spectrometer equipped with a digital integrator and used to quantitatively determine organic compounds (55). The rewriting of the Fourier transform to scale data only when arithmetic overflow occurs, rather than before each pass, results in a twofold increase in the available dynamic range (56). A microcomputer program for estimation of 13C-NMR chemical shifts (57) and a Fortran program for simulation of quadrupole distorted NMR powdei patterns (58) 92R

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

have been reported. A data base and search system was assembled containing ca. 4000 13C-NMRspectra. These data are available for an international computer network (59). A computer-based method to predict 13C-NMRchemical shifts using computations of molecular descriptors from topological and 3-dimensional representations of molecules has been reported (60). A computer program that uses on-line generated substructures of organic compounds as input and retrieves the corresponding distributions of 13Cchemical shifts has been developed (61). The use of 13C-NMRin structure elucidation of alkanes usin computer-generated isomeric structures has been describecf(62). Computer simulation of NMR spectra using the NMRIOO and SHIFT programs has been described for use in a senior-level course (63). The LAOCOON III method fails to converge for some strongly coupling AA'BB' spin systems unless trial coupling constants and chemical shifts within a few tenths of a Hz of the real parameters are used to initiate the iteration (64). The program DNMR-5 for iterative analysis of complex exchange broadened NMR bandshapes is based on an interpolation between the gradient and Gauss-Newton methods of minimization (65). SYMTRY (66),a computer program for systems with general symmetry, allows the calculation of the number and type of irreducible representations, the symmetry adapted basis product functions, the energy level diagram, and the subspectra of the system. The computer program combines group theory with computer-compatible representations of symmetry-adapted basis product functions and it is not restricted to twofold symmetry elements.

ANALYTICAL APPLICATIONS Theory of error for target factor analysis with applications to mass spectrometry and NMR spectrometry has been reported (67). Broad-line PMR has been employed (68) to provide evidence for distinct water species in oriented rayon and cotton. A computer interfaced with a high resolution NMR spectrometer equipped with a fluorine accessory can be employed (69) for the quantitative determination of the fluorine content of organic and inorganic compounds. Trifluoroacetanilide has been used as an internal standard in a lSF-NMR method developed (70) for the determination of covalently bonded fluorine in organic compounds. It has been demonstrated (71) that PMR measurements with an internal standard are not suitable for the observation of complex formation in solution, especially with magnetically anisotropic substances. DSS was found to be unsuitable as a reference compound for H chemical shifts (72) in aqueous solutions involving aromatic solvent molecules exemplified by ATP. The DSS Me resonance signal is not stable and shifts as ATP concentration varies. Quantitative analysis of mixtures using 13C NMR have been described (73). A semi-empirical formula has been developed for the calculation of the concentration of low spin heme compounds that are highly anisotropic (74). The accumulation of Fourier-transform NMR data for substituted phenylhexadecanes and their p-sulfonates has been applied (75) to the analysis of an alkylbenzene-sulfonate mixture containing alkyl groups. Structure determination of polymer detergent aggregates (76) in water using 13C,'H, 23Nanuclei has been detailed. Determination of HLB (hydrophilic-lyophilic balance) of nonionic dispersants by NMR has been shown (77) to agree with those determined by other methods. A method for the determination of solid fat content of commercial fats by pulsed NMR has been detailed (78). NMR techniques can be used to reliably discriminate among the oils most typically used in modification of alkyd resins and polyurethanes (79). The analysis of di-sec-butylamine stereoisomeric mixtures has been described (80). Adequately separated signals in the NMR spectra of mixtures of cyclocitrals allow assignment to the individual components. The rapidity and nondestructive nature of the NMR analysis are superior to the fractional crystallization of the semi-carbazonesand gas chromatographic techniques previously utilized (81). An analytical procedure for the determination of furosemide in ampules and tablets has been reported (82). A PMR method for antazoline hydrochloride has also been described (83). Chlorbutol can be analyzed by NMR using benzene as an internal standard (84). The technique also enables determination of acetone as a degradation product of chlorbutol. A PMR method for the determination of clofibrate

NUCLEAR MAGNETIC RESONANCE SPECTROMETRY CH3

CI ~

0

o - c - c - o I c 2II ~ i ,

I CH3

and its capsules has been presented (85). Among other peaks, t h e NMR spectrum of clofibrate has a well-defined singlet system which was chosen for quantitative measurements. The principle of the method involves comparing the integral of this signal t o t h a t of the sharp singlet (positioned a t 0.00 ppm) of hexamethylcyclotrisilizane which is used as an internal standard. A NMR procedure has been described (86) for the quantitative analysis of chlorpromazine hydrochloride in bulk chemical as well as final dosage form. A PMR method for determining disulfiram in the bulk product and in the formulated material has been reported (87). Methadone hydrochloride can be detected (88) by NMR in sustained-release tablets by the upfield shifts in N-Me and P h signals. 1Ephedrine hydrochloride and d-pseudoephedrine hydrochloride can be qualitatively and quantitatively determined by 13C NMR (89). This technique has been applied to the analysis of basic fractions from various Ephedra products. The results obtained were comparable to those obtained by gasliquid chromatography but with many advantages. High resolution 31P-NMRspectra of normal and malignant muscle tissue from mice, obtained a t 100 MHz, have been reported (90).The spectrum of malignant muscle tumor was comprised of only inorganic and sugar phosphate peaks-the inorganic phosphate peak was shifted 70 Hz downfield from the location seen in normal muscle. This was taken to indicate the potential usefulness of this NMR method for diagnosis. - T h e chemical shifts and other features of the major aromatic components of fresh and aged beer of various types has been characterized (91). An approximate determination of the monomeric catechins in beer extracts using NMR was developed as an additional parameter in beer fingerprinting and quality monitoring. Trace organic pollutants in water samples can be extracted with carbon tetrachloride and identified using pulsed Fourier transform P M R spectroscopy (92).

SELECTED ORGANIC SYSTEMS Vicinal C-H coupling constants have been determined for tert-butyl derivatives and compared to the vicinal H-H coupling constants in the analogous isopropyl derivatives (93). A significant effect has been reported (94) of the NMR shift reagents E ~ ( f o dand ) ~ L a ( f ~ don ) ~ the J values for vicinal coupling of esters of 2,3-diphenyl-3-hydroxypropionicacid. An additivity relation for vicinal carbon-proton spin-spin coupling constants has been described (95) as have CND0/2 and MINDO/3 calculations for [14]- and [Hl-annulene (96). 13C-NMR has been used to establish the structures of Lascorbic acid 2-phosphate, L-ascorbic acid 2-sulfate, and 30-methylascorbic acid (97) as well as the most favored conformation of L-ascorbic acid in deuterium oxide (98). A variety of organophosphorus compounds have been employed (99) in experiments designed to teach hosphorus coupling in 13C and proton NMR spectra. 'H and C NMR of anisole, thioanisole, selenoanisole, and telluroanisole as well as of several of their para-substituted derivatives have been reported (100). A linear relation exists between the proton and carbon chemical shifts in the anisole series. A heavy atom effect must be invoked for the tellurium compoands. A study of isomerization of 1-butene on a synthetic near-faujasite germanium zeolite using 13C-NMR has been reported (101). The 15N-13C spin-spin coupling constants of cis- and trans- l-alkyl-2-anyl-3benzoylaziridines were studied and assigned. These values agree with the predictions of Wasylishen based on INDO-MO calculations (102). A proton and 13C NMR study of the organic substituents in different solvent-refined coals as a function of the feed coal has been reDorted (103). I3C-NMR has been amlied (104) to the deterAination of organic structures present& oil shales. By using proton-enhanced nuclear induction spectroscopy, a fair resolution of aliphatic and aromatic carbon signals was achieved. The 13C NMR spectra of gem quality and industrial diamonds exhibit two resonances of sp3 carbon with the more intense rebonance a t high field. The spectra of graphites of high and low iron content show the greater intensity resonance of sp2 carbon to be a t lower field (195). Natural-abundance 15N NMR spectroscopy has been employed to examine the

'Y

effect of pH on the 15N chemical shifts of L-arginine and the effects on 15N chemical shifts and T1values of the complexation of L-arginine with chloride and phosphate ions and ATP in aqueous solutions. Guanidine carbonate and protamine sulfate solutions with some of these ions were also examined (106). Spin lattice relaxation and nuclear Overhauser effect for 6Li, 7Li, and 13C in MeLi, BuLi, and PhLi were measured (107). 6Li in solution was found to behave as a spin -112 nucleus and can be used as an alternative to 7Li NMR. The technique of 2-dimensional J-resolved PMR spectroscopy has been extended (108) to handle the very wide spectra of proteins and other macromolecules a t 360 MHz. The 3-dimensional analysis of structures involving &RNA in solution (109) can be determined by using data generated by NMR and analysis of t-RNA in the solid phase. 'H NMR studies of A- and k-type Bence-Jones proteins reveal that they are basically similar in conformation in the constant domain. However, the constant domain of the iz-type proteins appear to be more compact than that of the A-type protein (110). The 13C NMR data of three related secondary metabolites isolated from Colletotriclium Nicotianae were recorded and signal assigned (111). Based on these data, a biosynthetic pathway for the three metabolites was suggested. The suggested metabolite route is acetate-mevalonate-geranyl-gernayl pyrophosphate-terpene, The 13CNMR data of grayanotoxin I and grayanotoxin I11 were gathered and peaks were assigned, except for the C-9 and C-13 position of grayano-oxin I (112). The crystalline structure of polyethylene was studied by measuring spin-spin relaxation (T,) of the protons in the compound using a pulse spectrometer. The signal generated was fitted into a function (sin a t ) exp(-bt2) where a and b are constants and t is time in p s (113). Work has shown that the microstructure of polymers having monomer units with a length of four atoms can be determined by CMR spectroscopy. Long-range steric effects observed on the methyl group of both saturated and unsaturated polymers allow a measurement of the tacticity index (114). Correlations of CMR data and vinyl moiiomer reactivity have been examined (115) and shown to be of utility for aliphatic monomers. The reactivity ratios a t high conversions in the copolymerization bf methyl msthacrylate and styrene have been determined (116) by performing the polymerization in a sample tube and measuring the comonomer concentration as a function of time. NMR studies of 1,3-dienes with bis(a-crotylnickel iodide) show that the terminal group of the polymer chain is of the a-allylic type (117). The relative content of syn and anti isomers of the adduct is influenced by the type of alkyl substituent. The 19FNMR spectra of poly(tetrafluoroethy1ene) has been obtained (118) as a function of polymer crystallinity and temperature using a multiple pulse line narrowing sequence. The polymer crystallinity was determined and the line shapes permitted identification of different types of molecular motion in crystalline and amorphous fractions as a function of temperature.

SELECTED INORGANIC SYSTEMS Tl and T z measurements of 7Li resonances demonstrate thermally activated motion of Li+ in the ionic conductors aand b- Li5A10 , LiOH, and LiAlO, (119). Pulsed NMR has been employed to study Na+ in cellular environments (120). Both the spin lattice relaxation time ( T I )and the spin-spin relaxation time (Tz)of zNa+ in skeletal muscle were measured with the spin-echo technique. The T , curve follows almost a single exponential decay whereas the T z curve is complex and can be fitted with a double exponential function. Extending Hubbard's theory, the quadrupole relaxation of z3Na+ was analyzed and gave numerical evidence that most of the Na+ is associated with charged macromolecular sites. 'H, 23Na, 27A.,and 35ClNMR measurements of fused (Na,K) A1 Cli a t 170 "C and fused (Na,K) A12Cli containing NH4+showed (121) that the structure of the melt is essentially ionic. The equilibrium constant for the decomposition: A12C17- A1C14+ A1Cl3 was 6 X lo-,. NMR study of the complexation of '%+tetraphenylborates with 18-crown-6 in pyridine solutions (122) and the chemical shift of the 133Csresonance has been studied (123) as a function of the mole ratio of cryptand C222 to Csf a t various temperatures in six solvents. 'H-'07Pb double-resonance experiments have been used to determine P b chemical shifts in 33 organolead compounds. The '07Pb chemical shift parallels that of Il9Su in similar compounds,

-

ANALYTICAL CHEMISTRY, VOL. 52, NO. 5, APRIL 1980

93R

NUCLEAR MAGNETIC RESONANCE SPECTROMETRY

but the former is three times more sensitive to the chemical environment (124). LITERATURE CITED (1) Wasson, J. R.; Corvan, P. J. Anal. Cbem. 1978, 5 0 , 121R-30R. (2) Wasson, J. R.; Lorenz, D. R. Anal. Cbem. 1978, 48, 246R-61R. (3) "NMR in Biology" (Proc. Br. Biophys. SOC. Spring Meet.); Dwek, R. A,, Campbell, I.D., Richards, R. E., Eds.; Academic: London, 1977. (4) "Carbon-13 NMR Spectroscopy", 2nd ed., Breitmaier, E.; Verlag Chemie: New York, 1978. (5) "Carbon-I3 NMR Shin Assignments of Amines and Alkaloids", Shamma, M.; Hindenlang, D. M.; Plenum Press: New York, 1979. (6) "NATO Advanced Study Institute, Series B, Vol. 22: Nuclear Magnetic Resonance in Solids", Van Gerven. L.. Ed.; Plenum: New York, 1977. (7) "Progress in NMR Spectroscopy. Fluorine Coupling Constants", Emsley, J. W., et al.; Pergamon Press: Oxford, 1977. (8) "Annual Reports on NMR Spectroscopy", Vol. 7, Webb, G. E., Ed.; Academic Press: London, 1977. (9) "Annual Reports on NMR Spectroscopy", Vol. 8, Mooney, E. F., Ed.; Academic Press: London, 1979. (IO) "High-Resolution NMR Spectroscopy in Solids", Mering. M.; SpringerVerlag: New York, 1976. (11) "American Petroleum Research Institute. Project 44, Suppl. Vol. No. G 6 : Selected Carbon-I3 NMR Spectral Data", Thermodynamic Research Center, American Petroleum Institute, New York, N.Y., 1977. (12) "NMR, 14: NMR Spectroscopy of Boron Compounds", North, H.; Springer: Berlin, 1978. (13) "Interpretation of Carbon-I3 NMR Spectra", Wehrli, F. W.; Heyden: London, 1978. (14) "Carbon-I3 NMR based Organic Spectral Problems", Fuch, P. L.; Bunnell, C. A.; J. Wiley and Sons: New York, 1979. (15) "Carbon-I3 NMR in Polymer Science", Pasika, W. M., Ed.; American Chemical Society: Washington, D.C., 1979. (16) "Proton and Carbon-13 NMR spectroscopy: An Integrated Approach", Abraham, R. J.; Loftus, P.; Heyden: London, 1978. (17) "Polymer Sequence Determination: Carbon-I3 NMR Method", Randall, J. C.; Academic Press: New York, 1978. (18) "Handbook of NMR Spectral Parameters", Bruegel, W.; Heyden: London, 1979. (19) "Specialist Periodical Reports-NMR", Vol. 6 (1977), Vol. 7 (1978), Abraham, R. J., Ed.; Chemical Society: London. (20) "Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy", Levy, G. C.; Lichter, R. L.; Wiley: New York, 1979. (21) "Atlas of Carbon-I3 NMR Data", Breitmaier, E.; Haas, G.; Voelter, W.; Heyden: Philadelphia, Pa., 1979; Vols. 1-3. (22) "Topics in Carbon-I3 NMR Spectroscopy", G. C. Levy, Ed.; Wiley: New York, 1979; Vol. 3. (23) "Magnetic Resonance of Phase Transitions", Owens, F. J., Poole, C. P., Jr., Farach, H., Eds.; Academic Press: New York, 1979. (24) "Biobaical Maanetic Resonance", Berliner, L. J.. Reuben, J., Eds.; Plenum: New Yoyk, 1978; Vol. 1. (25) "NMR and the Periodic Table", Harris, R. K., Mann, 8. E., Eds.; Academic Press: New York, 1979. (26) Arata, Y.; Ozawa, H.; Ogino, T.; Fujiwara, S. Pure Appl. Cbem. 1978, 50, 1273-60. (27) Bertrand, R. D.; Moniz, W. B.; Garroway, A. N.; Chingas, G. C. J. Magn. Reson. 1978, 3 2 , 465-7. (28) Van Os, J. W. M.; Veeman, W. S. Rev. Sci. Instrum. 1979, 5 0 , 445-9. (29) Redfield, A. G. J. Magn. Magn. Mater. 1979, 11(1-3), 197-9. (30) Heink, W.; Kaerger, J.; Pfeifer, H. Cbem. Eng. Sci. 1978, 3 3 , 1019-23. (31) Closs, G. L.; Miller, R. J. J. Am. Cbem. SOC. 1979, 101, 1639-41. (32) Yamada, H.; Fujino, K.; Nakatsuka, M.; Sera, A. Cbem. Lett. 1979, 2 17-18. (33) Stoll, M. E.; Vega, A. J.; Vaughn, R. W. Rev. Sci. Instrum. 1977, 4 8 , 800-803. (34) Shoolery, J. N. Topics Carbon- 13 NMR Spectrosc. 1979, 3 , 28-38. (35) Shaham, M.; El-Hanany, U. J. Pbys. E . 1979, 12, 359-60. (36) DeLucchi; Miozzo, G. F. J. Cbern. Educ. 1979, 56, 124. (37) Hatada, K.; Terawaki, Y.; Okuda, H. Org. Magn. Reson. 1977, 9, 518-22. (38) Chiu, V. J. H.; Griller, D.; Ingold. K. U.; Knittel, P. J. Pbys. Ed. 1979, 12, 274-5. (39) Buchal, C.; Hanssen, J.; Mueller, R. M.; Pobell, F. Rev. Sci. Instrum. 1978, 49, 1360-61. (40) Pearson, G. A.; Vietti, D. E. Anal. Cbem. 1978, 50, 1717-19. (41) Srinivasan, P. R.; Lichter, R. L. J. Magn. Reson. 1977, 2 8 , 227-34. (42) Alper, J. B. Anal. Cbem. 1978, 50. 381-2. (43) Bose. K. S . ; Witherup, T. H.; Abbott, E. H. J. Magn. Reson. 1977, 2 7 , 385-92. (44) Borremans, F.; Tavernier, D. Org. Magn. Reson. 1977, 9 , 417-19. (45) MacDonald, J. C.; Marurek, M. J. Magn. Reson. 1977, 2 8 , 181-90. (46) Unterforsthuber, K.; Bergmann, K. J. Magn. Reson. 1979, 33(3),483-95. (47) Hentschel, R.; Schliner, J.; Sillescu. H.; Spiess, H. W. J . Cbem. Phys. 1978, 68, 56-66. (48) Sterk, H.; Suschnigg. J. J. 2. Naturforscb. A 1977, 32. 1541-3. (49) Inamoto. N.; Masuda, S. Tetrahedron Lett. 1977 (37). 3287-90. (50) Perkins, S. J.; Johnson, L. N.; Phillips, D. C.; Dwek, R. A. FESS Lett. 1977, 82, 17-22. (51) Riche, C.; Gouedard, M.; Gaudemer, A. J. Cbem. Res. ( S ) 1978, 34-5. (52) Memory, J. D. J. Magn. Reson. 1977, 2 7 , 241-4. (53) Roberts, H. G. F. J. Magn. Reson. 1978, 29, 7-9. (54) Fahr, E. Frensenius' 2. Anal. Cbem. 1977, 287, 97-103. (55) Morlev, F.; O'Neill, I. K.; Prinaner, M. A,: Stockwell. P. B. Anal. Chem. 1979, 5.1, 579-81. (56) Cooper, J. W.; Mackey, I.S.;Pawle, G. B. J. Magn. Reson. 1977, 2 8 , 405- 15.

-

94 R

ANALYTICAL CHEMISTRY, VOL.

52, NO. 5, APRIL 1980

(57) Clerc, J. T.; Sommerauer, H. Anal. Cbim. Acta 1977, 95(1-2), 33-40. (58) Von Meerwall. E. D. Comput. Pbys. Commun. 1977, 13(2), 107-15. (59) Smith, D. H.; Jens, P. C. J. Am. Cbem. SOC. 1978. 100, 3316-21. (60) Dalrymple, D. L.; Wilkins, C. L.; Milne, G. W. A,; Heller, S. R. Org. Magn. Reson. 1978, 1 1 , 535-40. (61) Zupan, J.; Heller. S. R.; Mllne, G. W. A.; Miller, J. A. Anal. Cbim. Acta 1978, 103, 141-9. (62) Surprenant, H. L.; Reilley, C. N. A . C . S . Symp. Ser. 1977, 54, 77-91. (63) Ben-Zion, M.; Goldschmldt, 2. J. Cbem. Educ. 1977, 5 4 , 669. (64) Manatt, S. L. Org. Magn. Reson. 1977, 9 ,224. (65) Stephenson, D. S.;Binsch, G. J. Magn. Res. 1978, 3 2 , 145-52. (66) Lueg, V.; Haegele, G. J. Magn. Reson. 1977, 2 6 , 505-11. (67) Malinowski, E. R. Anal. Cbim. Acta 1978, 103, 339-54. (68) Fleming, W. W.; Fornes, R. E.; Memory, J. D. J. Po&m. Sci., Powm. Phys. Ed. 1979, 17, 199-211. (69) Warren, R. J.; Bender, A. D.; Staiger, D. 8.; Zarembo, J. E. Anal. Cbem. 1978, 5 0 , 426-8. (70) Staiger, D. 8.; Warren, R. J.; Zarembo, J. E. Microcbem. J. 1977, 22, 557-60. (71) RoMewaM, P.; Wellmann, H. pharmazie 1978, 33(8), 516-21; C . A . 1978, 89, 152798s. (72) Lam Yio-Fai, Kotowycs, G. FEBS Left. 1977, 78, 181-3. (73) Mareci, T. H.; Scott, K. N. Anal. Cbem. 1977, 49,2130-36. (74) DeVries, S.; Albracht. S . P. J. Biocbem. Biophys. Acta 1979, 546, 334-40. (75) El-Emary, M.; Morgan, L. 0. J. Am. OllCbem. SOC. 1978, 55, 593-9. (76) Cabane, B. J . Pbys. Cbem. 1977, 8 1 , 1639-45. (77) Berguerio, J. R.; Bao. M.; Casares, J. J. An. Quim. 1978, 7 4 , 1441-2; C . A . 1979. 91, 22819e. (78) Madison, B. L.; Hill, R. C. J. Am. Oil Cbem. SOC. 1978, 5 5 , 328-31. (79) Rybicky, J. J. Appl. Polym. SC/. 1979, 2 3 , 25-38. (60) Chiarino, D.; Contrl, A. M. Farmaco, Ed. Scl. 1977, 32. 751-4. (81) Pepperman, A. B., Jr. Anal. Lett. 1979, 12. 278-88. (82) AbouCEnein, H. Y.; ACBadr, A. A.; El-Din Rashed, M. S. Spectrosc. Lett. 1979, 12, 323-31. (83) AbouKnein, H. Y.; Jado, A. I.; El-Din Rashid, M. S. Spectrosc. Lett. 1978, 1 1 , 931-8. (84) Fabregas, J. L. Ann. Pbarm. Fr. 1978, 3 6 , 485-8; C . A . 1979, 9 0 , 174755~. (85) ECFatatry, H. M.; AbouKneim, H. Y. Spectrosc. Lett. 1978, 1 1 , 921-30. (66) Zarembo, J. E.; Warren, R. J.; Staiger, D. B. J. Assoc. Off. Anal. Cbem. 1978, 6 1 , 52-4. (87) Sheinin. E. B.; Benson, W. R. J. Assoc. Off. Anal. Cbem. 1978, 6 1 , 55-9. (88) Johnson, D. A.; O'Donnell, J. P.; Ma, J. K. H.; Choulis, N. H. Pbarmazle 1978, 3 3 , 813. (89) Yamasaki, K.; Fujita, K. Cbem. Pharm. BUN. 1979, 2 7 , 43-7. (90) Koutcher. J. A.; Damadien, R. Pbysiol. Cbem. Pbys. 1977, 9 , 181-7. (91) Belleau, G.; Dadic, M. J. Am. Soc. Brew. Chem. 1977, 3 5 , 191-6. (92) Becconsall, J. K. Analyst (London) 1978, 103, 1233-8. (93) Forrest, T. P.; Sukumer, S. Can. J. Cbem. 1977, 55, 3686-8. (94) Porter, G. 6.; Simpson, J. Angew. Cbem. 1978, 90,51-2. (95) Spwrmaker, T.; DeBie, M. J. A. Red. Trav. Chem. Pays-Bas 1979, 98, 59-64. (96) Vogler, H., J. Mol. Struct. 1979, 5 1 , 289-93. (97) Kadford, T.; Sweeney, J. G.; Iacobucci, G. A.; Goldsmlth, D. J. J. Org. Cbem. 1979, 4 4 , 658-9. (98) Ogawa. T.; Uzawa, J.; Matsui, M. Carbobydr. Res. 1977, 59,C32-C35. (99) Krudy, G. A.; Macomber, R. S. J. Cbem. Educ. 1979, 56, 109. (100) Llabres, G.; Baievir, M.; Christiaers, L.; Denoel, J.; Laiten, L.; Piette, J. L. Can. J. Cbem. 1978, 56, 2008-12. (101) Nagy, J. B.; Guelton, M.; Derovane, E. G. J. Catal. 1978, 5 5 , 43-51. (102) Tarburton, P.; Edasery, J. P.; Kingsbuty, C. A,; Sopchik, A. E.; Cromwell, N. H. J. Org. Cbem. 1979, 44(12), 2041-2. (103) Wooton, D. L.; Coleman, W. M.; Glass, T. E.; Dorn, H. C.; Taylor, L. T. Adv. Cbem. Ser. 1978, 170, 37-53. (104) Vitorovic, D.; Vucelic, D.; Gasic, M. J.; Juranic, N.; Macura, S. Org. Geocbem. 1978, 1 , 89-91. (105) Wilkie, C. A.; Ehlert. T. C.; Haworth. D. T. J. Inorg. Nucl. Cbem. 1978, 4 0 , 1983-7. (106) Kanamori, K.; Cain, A. H.; Roberts, J. D. J. Am. Cbem. Soc. 1978, 100, 4979-81. (107) Wehrli, F. W. Org. Magn. Reson. 1978, 1 1 , 106-6. (108) Nagayama, K.; Wuethrich, K.; Bachmann, P.; Ernst, R. R. Blocbem. Siopbys. Res. Commun. 1977, 78, 99-105. (109)Robillard, G. T.; Tarr, C. E.: Vosman, F.; Sussman, J. L. Slopbys. Chem. 1977, 6(8),291. (110) Arata, Y.; Shimizu, A. Siocbemistry 1979, 18, 2513-20. (111) Klmura, Y.; Gohbara, M.; Suzuki, A,; Tamura, S. Heterocycles 1978, 10, 413-23. (112) Masutani, T.; Kawasu, K.; Uneyama, K.; Torii. S.; Iwasa, J. Agric. Biol. Cbem. 1979, 43, 631-5. (113) Kluever, W.; Ruland, W. Prog. ColloMPolym. Sci. 1978, 6 4 , 255-66. (114) Zetta, L.; Gatti, G.; Audisio, G. Macromolecules 1978, 1 1 , 763. (115) Herman, J. J.; Teyssie, Ph. Macromolecules 1978, 1 1 , 839. (116) Natansohn, A. Br. Polym. J. 1978, 10, 218-20. (117) Kormer, V . A.; Lobach, M. I.Macromolecules 1977, 10(3),572-9 (Eng). (118) English, A. D.; Vega, A. J.; Inagaki. H. Macromokules 1979, 12,353-4. (1 19) Foiistaedt, D. M.; Biefold, R. M. Condens. Matter 1978, 18, 5928-37. (120) Chang, D. C.; Woessner, D. E. J. Magn. Reson. 1978, 3 0 , 185-91. (121) Anders. U.; Plambeck. J. A. J . Inorg. Nucl. Cbem. 1978, 4 0 , 387-8. (122) Mei, E.; Dye, J. L.; Popov, A. L. J. Am. Cbem. Soc. 1977, 99(16), 5308-1 1.

NUCLEAR MAGNETIC RESONANCE SPECTROMETRY (123) Mei, E.; Popov, A. I.; Dye, J. L. J . Am. Chem. SOC. 1977, 99,6532-6. (124) Kennedy, J. D.; McFarhne, M.; Pyne, G. S. J , Chem. Soc., Dalton Trans. 1977, 2332-6. LITERATURE FOR TABLE I

(1) Lawson, A. J. Essays Chem. 1977, 6, 57. (2) "Applications of Polymer Spectroscopy", Brame, E. G., Ed.; Academic Press: New York. 1978. (3) Feeney, J. Essays Chem. 1977, 7,67. (4) "Metal Ions in Solution", Burgess, J.; Halsted Press: New York, 1978; Chapter 2. (5) Shulman, R. G.; Brown, T. R.; Ugurbil, K.; Ogawa, S.; Cohen, S. M.; den Hollander, J. A. Science 1979, 205, 160. (6) Crabb, T. A. "Annual Reports on NMR Spectroscopy", Mooney, E. F., Ed.; Academic Press: New York, 1978. (7) Smith, W. G. Ref. 6. (8) Szymanski, S.;Witanowski, M.; Gryff-Keller, A. Ref 6. (9) Smith, P. J.; Tupciauskas. A. P. Ref. 6. (10) Gettins, P.; Dwek, R. A. "NMR Biol. [Proc. Br. Biophys. SOC.,Spring Meeting] ", Dwek, R. A., Campbell, I. D., Richards, R. E., Eds.; Academic Press: London, 1977; pp 125-56. (11) Dawson, J.; Gadian, D. G.; Wilkie, D. R. Ref. 10, pp 289-322. (12) Pollard, M. R.; Gunstone, F. D.; Serimgeour, C. M.; Vedanayagam, H. S. "Actes Congr. blond.-Soc. Int. Etude Corps Gras, 13th", Sect. D, 1-2, Naudet, M., Ucciani, E., Uzzan, A. Eds.; ITEEG: Paris, France, 1976. (13) Koenig, H. Surf. Sci. Ser. 1977, 8 , 141-192. (14) Heatley, F. Nucl. Magn. Reson. 1977, 8, 141-153; 1978, 7 ,303-17. (15) Kollman, P. A. Mod. Theor. Chem. 1977, 4 , 109-52. (16) Mantsch, H. H.; Saito. H.; Smith, 1. C. P. Rogr. Nucl. Magn. Reson. 1977, 7 7 , Pt. 4, 211-72. (17) Pachler, K. G. R. Progr. Nucl. Magn. Reson. 1977, 7 , 1-50. (18) Hoult, D. I., Progr. Nucl. Magn. Reson. 1977, 6 , 51-66. (19) McFarlane, W.; Rycroft, D. S. Ref. 18, pp 67-91. (20) Holz, M.: Feidler, M. D. Ref. 18, pp 92-121. (21) Honeybourne, C. L. 1977, 6, 122-40; 1978, 7,260-80. (22) Allen, P. S. Ref. 18, pp 174-206. (23) Tiddy, G. J. T. Ref. 18, pp 207-32. (24) Foreman, M. I. Ref. 18, pp 233-253. (25) Seelig, J. Prog. Colloid Polym. Sci. 1978, 65, 172-9. (26) Lee, A. G. Recept. Recognition Ser. A 1978, 5 ,79-131. (27) Crane-Robinson, C. Biol. Magn. Reson. 1978, 7 , 33-90. (28) Elvidge, J. A.; Jones, J. R.; Chambers, V. M. A,; Evans, E. A. Isot. Org. Chem. 1978, 4 , 1-49. (29) Lang, I.; Sebor, G.; Kosina, M.; Kustka. M. Sb. Pr. UVP 1978, 35, 190-238; C . A . 1979, 90, 124113s. (30) Pembleton, R. G. Thesis, Iowa State University, 1978, 181 pp; University Microfilm's No. 7900203. (31) Aczel. T.; Gorbaty, M. L.; Maa, P. S.; Schlosberg, R . H. Prepr. Coal Chem. Workshop 1976, 165-73; Peters, H. M.. Ross, D. S., Eds. (32) Pedersen, 8. "Hydrides Energy Storage, Proc. Inst. Symp. 1977" (Pub. 1978), Andressen. A. F., Maeland, A. J., Eds.; Pergamon: Oxford, England; pp 83-95. (33) Gerig, J. T. Biol. Magn. Reson. 1978, 7 , 139-203. (34) Chapman. G. E. Nucl. Magn. Reson. 1978, 7 , 281-302, (1977); 6, 154-73. (35) Civan, M. M.; Shporer, M. Biol. Magn. Reson. 1978. 7 , 1-32. (36) Morris, A. T.; Dwek, R. A. 0.Rev. Biophys. 1977, 70. 421-84. (37) Reid, B. R.; Hurd, R . E. Acct. Chem. Res. 1977, 70, 396-402. (38) Seymour, F. R. A . C . S . Symp. Ser. 1977, 45, 114-27. (39) Lee, D. M. Liq. Solid Helium, Proc. Eur. Phys. SOC. Top. Conf. 1974 (Pub. 1975), pp 67-95. (40) Lincoln, S. F. Progr. React Kmet. 1977, 9 ,91 pp. (41) Anstev. P.: Harris. R. K. Chem Br. 1977. 73.303-8 (42j Griffin:'R. G. Anal. Chem. 1977, 49, 951'A-962A. (43) Symons. M. C. R . Annu. Rep. Prog. Chem., Sect. A : Phys. Inorg. Chem. 1976, 73,91-112. (44) DeBoer. E.; Klaassen, A. A. K.; Mooij, J. J.; Noordik, J. H. Pure Appl. Chem. 1979, 57, 73-83. (45) Popov, A. I. Pure Appl. Chem. 1979, 57, 101-10. (46) Schaefer, J.; Stejskal, E. 0. Top. Carbon- 73 NMR Spectrosc. 1979, 3 , 283-324. (47) Jones, D. W. Appl. Fibre Sci. 1978, 1 , 421-81. (48) Bartle, K. D.; Jones, D. W. Anal. Methods Coalprod. 1978, 2 , 75-101; Karr, C., Ed.; Academic: New York. (49) Retcofsky, H. L.; Link, T. A. Ref. 48, pp 161-207. (50) Dalrymple, D. L. Top. Carbon- 73 NMR Spectrosc. 1979, 3 , 53-61. (51) Anet, F. A. L. Ref. 50, pp 79-83. (52) Szymanski, S.; Witanowski, M . ; Gryff-Keller, A. Annu. Rep. NMR Spectfosc. 1978, 8. 227-89. (53) Smith, P. J.; Tupciauoskas, A. Ref. 52, pp 291-370. (54) Bovey, F. A. Contemp. Top. Polym. Sci. 1978, 1 . 31-52. (55) Richards, M. G. J . Phys.. COll09. (Orsay. F r . ) 1978, 6 , Vol. 3, 1342-7. (56) Jonas. J. NATO Adv. Study Inst. Ser., Ser. C 1978, 47. 65-110. (57) Farrar, T. C Transform Tech. Chem. 1978. 199-226; Griffiths. P. R., Ed., Plenum: New York.

(58) Cooper, J. W., Ref. 57, pp 227-55. (59) Larsen, R. D., Ref. 57, pp 333-53. (60) Il'in, E. G.; Buslaev, Yu A. Koord. Khim. 1978, 4 , 1179-94. (61) Kim, K. A.; Severs, R . E. Aldrichimica Acta 1977, 70, 54-62. (62) Reuben, J., Progr. Nucl. Magn. Spectrosc. 1975, 9 , 1-70. (63) Lawier, R. G. Ref. 62, pp 145-210. (64) Khetrapal, C. L.; Ramaprasad. S. J . Indian Inst. Sci. 1977, 59. 53-74. (65) Mann. B. E. Prog. NMR Spectrosc. 1977, 7 7 ( P t . 2), 95-114. (66) Thomas, W. A. Annu. Rep. NMR Spectrosc. 1976. 6 8 , 1-41, 223-8. (67) Kennedy, J. D.; McFarlane, W. Rev. Silicon, Germanium, Tin, Lead Compd. 1974, 7 , 235-98. (68) Howarth, 0. W.; Lilley, D. M. J. Prog. NMR Spectrosc. 1978, 72,1-40. (69) Egan, W.; Shindo. H.; Cohen. J. S. Annu. Rev. Siophys. Bioeng. 1977, 6, 383-417. (70) Kearns, D. R. Ref. 69, pp 477-523. (71) Rattle, H. W. E. Amino-Acids, Pept., Proteins 1976, 8 199-208. (721 Coxon. B. Pure A m / . Chem. 1977. 49. 1151-88. i73j Proctor, W. G.- S&: Am. 1978, 239, 90-99. (74) Seelig, J. Biochim. Biophys. Acta 1978, 575, 105-40. (75) Cohen, J . S. CRC Crif. Rev. Biochem. 1978. 5 ,25-43. (76) Emsley, J. W. Chem. Br. 1978, 74,243-9. (77) Blaschke, G.; Seydel, J. K.; Wasserman, 0. Pharm. Unserer Zeit. 1978, 7, 105-14. (78) Hoult, D. I.Nucl. Magn. Reson. 1978. 7 ,145-59. (79) Allen, P. S. Ref. 78, pp 226-59. (80) Bloomfield, V. A. Annu. Rev. Phys. Chem. 1977, 28, 233-59. (81) Ulrich, E. L.; Markley, J. L. Coord. Chem. Rev. 1978, 27, 109-40. (82) Campbell, 1. D.; Dobson, C. M. Methods Biochem. Anal. 1979, 25, 1-133. (83) Radda, G. K.; Seeley, P. J. Annu. Rev. Physiol. 1979, 47, 749-69. (84) Afzal, M.; ACHassan, J. M.; Hassan. J. M. Heterocycles 1979, 72, 421-50. (85) McConnell, A. A,; Nuttall, R. H.; Stalker, D. M. Tabnta. 1978. 25,425-34. (86) Covington. A. K.; Newman, K. E. Mod. Aspects Electrochem. 1977, 72, 41-1 29. (87) Dye, J. L. Progr. Macrocyclic Chem. 1979, 7 , 63-113. (88) Tourwe, D.; Van Binst, G. Heterocycles 1978, 9 ,507-33. (89) Urbanski, J. Handb. Anal. Synth. Po/ym. Plast. 1977, 142-61. (90) Dormann, E. J , Magn. Mater. 1977, 6 , 87-91. (91) Fripiat, J. J. J . Phys. (Paris) Colloq. 1977, 44-51. (92) Voronov, V. K.; Keiko, V. V.; Moskovskoya, T. E. Fh. Strakt. Khim. 1977, 78, 917-52. (93) Tompa, K. Mater. Sci. 1977, 3, 107-13. (94) Sarneski, J. E.;Reilley, C. N. Essays Anal. Chem. 1977, 35-49. (95) Dobson, C. M.; Levine, B. A. New Techno/. Biophys. Cell Bid. 1978, 3 , 19-91. (96) Wade. C. G. Annu. Rev. Phys. Chem. 1977, 28,47-73. (97) Gallaher. K. L.; Grasselli. J. G. Appl. Spectrosc. 1977, 37, 456-63. (98) Patel, D. J. Acc. Chem. Res. 1979, 72,118-25. (99) Raynes, W. T. Nucl. Magn. Reson. 1978, 7 ,1-25. (100) Jones, D. W. Ref. 99, pp 26-72. (101) Pachler, K. G.R. Ref. 99, pp 73-124. (102) McFarlane, W.; Rycroft. D. Ref. 99, PD 125-44. (103) Homer, J. Ref. 99, pp 318-40. (104) Hollis, D. P. Bull. Magn. Reson. 1979, 1 . 27-37. 1105) Suaivama. H. Heterocvcles 1978. 7 7 . 615-29. (106j Mgkiakov, A. I.; Derinovaskii, V. S. Usp. Khlm. 1979, 48, 749-71. (107) Freeman, R.; Morris, G. A. Bull. Magn. Reson. 1979, 7 , 5-26. (108) Beveridge, D. L. Mod. Theor. Chem. 1977. (Semiempirical Methods Electronic Structure Calc., Part B), 163-214. (109) O'Neil, I. K. Proc. Anal. Div. Chem. SOC. 1977, 7 4 ( 7 ) , 190. (110) Allerhand, A. Acc. Chem. Res. 1978, 7 7 , 469-74. (111) Wilkins, C. L.; Jurs, P. C. Transform. Tech. Chem. 1978. 307-32. (112) Hinton, J.; Oka, M., Fry, A. Isot. Org. Chem. 1977, 3 , 41-104. (113) Perlin. A. S. Isot. Org. Chem. 1977, 3, 171-235. (114) Kuneschi, G.; Povpat, C. Isot. Org. Chem. 1977, 3 , 105-70. (115) Wuetrig, K.; Wagner, G. Trends Biochem. Sci. 1978, 3 ,227-30. (1 16) Cullis, P. R.; McLaughlin, S. C. Trends Biochem. Scl. 1977, 2 , 196-9. (117) Connor, K. A. Chem. Carbon-Carbon Triple Bond 1978, 7 , 137-55. (118) Spiess, H. W. NMR: Basic Prim. Prog. 1978, 75, 55-214. (1 19) Smith, I. C. P. Aldrichimica Acta 1977, 10, 35-9. (120) Nieboer, E.; Fatten, H. Mol. Bioi. Biochem. Biophys. 1977, 25, 149-85. (121) Seelig, J. 0.Rev. Biophys. 1977, 70, 353-418. (122) Opella, S. J . Science 1977, 796. 158-65. (123) Laszlo, P. Angew. Chem. 1978, 90(4), 271-83. (124) Cohn, M.; Rao, B. D. Bull Magn. Reson. 1979, 1 , 38-60. (125) Steigel, A. NMR: Basic Prim. Prog. 1978, 15, 1-53. (126) Jaganuathan, N. R . ; Srinivasan, R. J . Sci. Ind. Res. 1978, 37,72-9. (127) Kitamaru, R.: Horii. F. Adv. Polym. Sci. 1978, 26. 137-78. (128) Cyr, N.; Cyr. T.: Hague, R. Anal. Methods Pestic. Plant Growth Regul. 1977, 51-73. (129) Bertini, I . J . Mol. Struct. 1978, 45, 173-97. (130) Fyfe, C. A.; Cocivera, M.; Damji, S. W. H. Acc. Chem. Res. 1978. 277-82. (131) Vaughan, R. W. Ann. Rev. Phys. Chem. 1978. 29. 397-419. (132) Blemt, J. W.; Stothers. J. B. Org. Magn. Reson. 1978, 438-64. (133) Forsen, S.; Lindman, B. Chem. Ber. 1978. 74,29-35.

ANALYTICAL CHEMISTRY, VOL. 5 2 , NO. 5, APRIL 1980

95R