Nuclei Off the Line of Stability - American Chemical Society

Backbending i s known f o r 1 0 4 , 1 0 6 p d [GRA76] but only schematic comparisons ... present discussion will center around 1 0 2 R u and 1 0 3 Rh ...
0 downloads 0 Views 566KB Size
47 Massive Transfer Reactions and the Structure of Transitional A ~ 100 Nuclei D. R. Haenni, H. Dejbakhsh, and R. P. Schmitt Cyclotron Institute, Texas A&M University, College Station, TX 77834 Band crossings and other features of the mass 100 transitional nuclei have been studied with massive transfer and fusion reaction based γ-ray spectroscopy.

Experimental blocking

argument results and calculations agree that υh 2 alignment is responsible for the band crossing in Ru. 11/2

102

soft core of

The

103

Rh is influenced by the configuration of the

odd proton; however, the mechanism for this is not clear. High-spin features of the t r a n s i t i o n a l ( Z < 5 0 , N>50) a r e i n t e r e s t i n g

but not well

change between 58 and 60 n e u t r o n s . three d i f f e r e n t

closed o r b i t a l

B a c k b e n d i n g i s known f o r w i t h cranked s h e l l

model

present discussion w i l l

1

0

4

,

1

0

configurations 6

pd

T h e r e i s an a b r u p t

c e n t e r around

1 0 2

comparisons

have been made [ S T A 8 4 ] .

R u and

1 0 3

The

R h w h i c h bave N=58 and a r e

closures.

Most o f t h e n u c l e i

The i n v e s t i g a t i o n o f h i g h - s p i n

v i a in-beam γ - r a y spectroscopy w i t h the usual h i n d e r e d by t h e l a c k o f s u i t a b l e

to

( Z = 4 0 , Z = 5 0 , and N = 5 0 ) .

t o s t u d y s i n c e t h e y l i e on t h e n e u t r o n

side o f the v a l l e y o f s t a b i l i t y .

shape

are a l s o t r a n s i t i o n a l

[GRA76] b u t o n l y s c h e m a t i c

midway between t h e 40 and 50 p r o t o n o r b i t a l

i n general

i n t h e mass 100 r e g i o n

studied.

These n u c l e i

(CSM) p r e d i c t i o n s

t h i s mass r e g i o n a r e d i f f i c u l t

nuclei

(ΗΙ,χηγ)

in

rich

phenomenon

fusion reactions

is

targets.

P a r t o f t h e s p e c t r o s c o p y program a t TAMU i s t h e d e v e l o p m e n t o f t h e so c a l l e d massive t r a n s f e r structure

studies.

of a projectile

(MT) o r b r e a k - u p f u s i o n r e a c t i o n s f o r

B a s i c a l l y these heavy-ion r e a c t i o n s

discrete-line

involve the

transfer

fragment t o the t a r g e t w i t h the remaining energetic

fragment

being emitted i n the forward d i r e c t i o n .

W i t h MT r e a c t i o n s one t e n d s

to

o b s e r v e a b e t t e r p o p u l a t i o n o f h i g h - s p i n s t a t e s when compared t o t h e corresponding fusion r e a c t i o n . also provide a sort of e x i t the study o f nuclei

D e t e c t i o n o f t h e e m i t t e d l i g h t f r a g m e n t can

channel

filter.

These f e a t u r e s can be u s e f u l

in

w h i c h a r e more n e u t r o n r i c h t h a n n o r m a l l y a c c e s s i b l e by 0097-6156/86/0324-0311$06.00/ 0 © 1986 American Chemical Society

312

NUCLEI OFF THE LINE OF STABILITY

( H I , χηγ) r e a c t i o n s , , Further d e t a i l s concerning γ-ray spectroscopy MT r e a c t i o n s can be f o u n d e l s e w h e r e [HAE82] .

with

E x p e r i m e n t a l l y p a r t i c l e - γ and p a r t i c l e - γ - γ c o i n c i d e n c e s a r e m e a s u r e d . W i t h beams h e a v i e r t h a n L i a γ - r a y m u l t i p l i c i t y select high-multiplicity energetic particles measurement i t

filter

i s needed t o

MT e v e n t s f r o m o t h e r r e a c t i o n s w h i c h r e s u l t

b u t low m u l t i p l i c i t i e s .

in

From a s i n g l e MT s p e c t r o s c o p y

i s p o s s i b l e t o s i m u l t a n e o u s l y o b t a i n much o f t h e

usual

4803 4052 -(25/2*)

3431

3214

3109

2704

21/2* 19/2*

2318

1874-

1554

2

4

1

8

1716-

1400 1332 642 590

2802

-

*

2680-

-23/2*

2804

-17/2*

2132-

-19/2*

2 I / 2

2

93 - L - L 9/2*

^

3 / 2

1

774 -

i /2-

2

9/2* Τ 772*

-

5

1.

Partial

102

level

10 - (A) 1 0 4

Pd GSB

Τ

l04

Ru

0 "

l 0 2

l 0 0

excita­

t i o n f u n c t i o n , c r o s s bombardment,

angular

lcÎ2

R u GSB

its

Ru

" ^ " ^

( ίι,χηγ) 7

Rh9/2*

1 0 1

R u GSB 0.2

03 0.4 0.5 h ω (MeV)

These

Each

results

MT r e a c t i o n s 1 0 0

Mo

t a r g e t a t 49

and 77 MeV, r e s p e c t i v e l y and c o n v e n t i o n a l

T c 9/2*

, 0 2

and

i n d u c e d on a m e t a l l i c

l 0 l

l 0 3

Ru and

neighbors are given i n F i g . 1 .

Institute with \ i

s

5 - RuH/2l0l

schemes f o r

were o b t a i n e d a t t h e TAMU C y c l o t r o n

I T ^ R u 7/2* Ru5/2* _ l0,

l 0 3

level

band c o n t a i n s new l e v e l s .

2

' (C)

several

channels. 102

Partial

Ru7/ **V

Rhi/2>^

for

R u GSB"

\

5 l03

2.

nuclei.

G S B / ^

'

l 0 3

Fig.

-15/2-

' -

experimental γ - r a y data ( s i n g l e s ,

RuGSB"V^

10

0

-I9/2"

4

Ru and n e i g h b o r i n g

adjacent e x i t

0 10

-23/2"

d i s t r i b u t i o n , and c o i n c i d e n c e )

5

M

-27/2"

2132

,443-

i — l 9/ «

Fig.

3080-

0.6

P a r t i c l e alignment

vs

r o t a t i o n a l f r e q u e n c y f o r bands 102 Ru and n e i g h b o r i n g n u c l e i .

s p e c t r o s c o p y a t 45 MeV.

For

R u o t h e r bands were a l s o p o p u l a t e d

but

t h e y c o u l d n o t be e x t e n d e d t o h i g h e r s p i n s than p r e v i o u s l y r e p o r t e d [KLA82]. The 104 Ru l e v e l

scheme a g r e e s w i t h

Coulomb e x c i t a t i o n work

recent

[STA84].

Massive Transfer Reactions

47. HAENNI ET AL.

313 102

The y r a s t cascade i n ι

π—

1

backbend w i t h a c r o s s i n g f r e q u e n c y o f

1

l 0 2

Ο.370ω and an a l i g n m e n t g a i n o f 9 . 5 t f . The u s u a l a l i g n m e n t p l o t s [BEN79] i n F i g . 2a 102 compare Ru w i t h a d j a c e n t e v e n - e v e n 104 nuclei. Except f o r Pd t h e r e f e r e n c e 102 band f o r Ru i s used t o g e n e r a t e t h e s e plots. Both R u [VOI76] and R u show upbends w i t h t h e f o r m e r a t a h i g h e r 102 frequency than Ru. The e x p e r i m e n t a l in?

Ru

w V\ v\ V

\\

\

^ \* \

Ii_ _y_ Neutron

-0.5



B

0.14

10°

C

0.20

-10°

D

\

2

0.17

Proton ~

i/hn, ll/

A

\

Y

-

1 0 0

wai 0.05

w

-60°

A

\ -

04 ticu

1 0 4

R o u t h i a n [BEN79] f o r

(MeV)

w i t h CSM p r e d i c t i o n s Fig.

3. in?

for

Experimental

Ru shows a

routhian

u

Ru i s compared

(triaxial

version)

[FRA83] i n F i g . 3 assuming e i t h e r t h e vh or ïïg alignment. From t h e s e LL/ά via 1 0 2 1

Ru compared w i t h CSM.

1

/

0

Q/0

c a l c u l a t i o n s t h e backbend i n

Ru s h o u l d

a r i s e from v h ^ ^ alignment w i t h a small positive ε

d e f o r m a t i o n and perhaps a

2

s l i g h t l y positive γ deformation. T h i s c o n c l u s i o n s h o u l d be t e s t e d t h r o u g h b l o c k i n g arguments based on t h e s i n g l e q u a s i p a r t i c l e bands i n t h e a d j a c e n t odd-A n u c l e i . 102 been o b t a i n e d t h r o u g h t h i s work f o r a l l t h e n e i g h b o r s o f bands based on v d ^ f r e q u e n c y as

1 0 2

2

, vg^

a 2

n

d

π

>

Ρι/2

x

n

i

D

1

t

Ru.

I n F i g . 2b

c r o s s i n g s a t a b o u t t h e same

R u and t h u s a r e n o t t h e cause o f t h e o b s e r v e d a l i g n m e n t . 1Ω2

Bands based on t h e v h ^ n

2

o r b i t a l , F i g . 2c, block the

p r e t a t i o n o f the results f o r the π g first

e

New d a t a has

Ru b a c k b e n d .

Inter­

bands i s n o t as s t r a i g h t f o r w a r d . To ' 101 103 order a p l o t of the favored states f o r Tc and Rh i n d i c a t e t h a t

this orbital

Q / 9

a l s o b l o c k s t h e backbend.

In other t r a n s i t i o n a l

odd-A n u c l e i , h o w e v e r , band c r o s s i n g s a r e known

t o change t h e s i g n a t u r e s p l i t t i n g unfavored s t a t e s )

( s t a g g e r i n g between t h e f a v o r e d and

and t h e B ( M 1 ) / B ( E 2 )

ratios.

T h i s o c c u r s when t h e odd

n u c l é o n and t h e a l i g n i n g p a i r a r i s e f r o m t h e u n i q u e p a r i t y o r b i t s i n respective shells.

In both

8 1

K r [FUN83] and

1 5 9

Tm

their

[LAR84] f o r example t h e

s i g n a t u r e s p l i t t i n g i s r e d u c e d above t h e band c r o s s i n g and t h e B ( M 1 ) / B ( E 2 ) r a t i o s are enhanced.

Frauendorf

[FRA84] has e x p l a i n e d t h e s e f e a t u r e s

with

t h e a s s u m p t i o n t h a t t h e u n p a i r e d n u c l é o n s p r o d u c e c o n f i g u r a t i o n dependent γ deformations o f the s o f t t r a n s i t i o n a l

core.

For t h e mass 100 r e g i o n an odd

314

π 9

9/2

NUCLEI OFF THE LINE OF STABILITY w

o

u

l

g e n e r a t e a n e g a t i v e γ d e f o r m a t i o n and l a r g e s i g n a t u r e

d

splitting.

A l i g n i n g a v h ^ ^ p a i r w i t h i t w o u l d push γ t o n e a r 0 ° and remove t h e ^ ~ _ ~ J-. .

l ^ j - x ^

signature ïïg

Ατ

Λ

ι

ι

ι

£

ι_

j.1

1 η / o"^~

ο ι

J

/

ι

Ί _

_c

splitting Α Δ Ι = 1 band f e e d s t h e 1 9 / 2 and 2 1 / 2 l e v e l s o f t h e 103 . . 2 band i n Rh and may r e p r e s e n t such a ^ 9 / 2 ^ 1 / 2 b a n d . T h i s band Λ

D U

9/2

3Q/9

has l e v e l s a t 3 3 9 6 , 3 6 3 0 , 3 9 3 7 , 4 3 2 0 , 1

1

1

1

4 7 0 5 , 5 1 9 5 , 5 6 6 2 , and 6205 keV w i t h

I

23/2

10

^9/2 F i g . 4 . A back­ bend o c c u r s a t a f r e q u e n c y c o n s i s t e n t 102

π R

l 0 2

0

h

Trg9£

RuGSB

ι

O.I

ι ·1

) 0

R u GSB

0.2 0.3 Q4 Q5 *w (MeV)

-

b

with

06

a

n

d

1 S

Ru.

s

n

o

w

n

i

n

The π ς ^ 9

b

a

n

d

i

observed

s

2

above t h e band c r o s s i n g r e g i o n . Fig. 4.

P a r t i c l e a l i g n m e n t vs

rotational πg

frequency f o r the

band i n

spins

An a l i g n ­

+

ment p l o t f o r t h i s band c r o s s i n g w i t h t h e

V\

'x

to 37/2 , respectively.

+

R h assuming a 9/2 change i n s i g n a t u r e s p l i t t i n g . 1 0 3

The s t a r t

o f an up-bend i s f o u n d above 0.5Ηω. present level

scheme f o r ^ T c

e x t e n d h i g h enough t o show a s i m i l i a r c r o s s i n g band. The c o m p l e x i t y o f o u r a n g u l a r t r i b u t i o n s p e c t r a do n o t p e r m i t

extraction o f mixing r a t i o s

The

does n o t

f o r the I + I - l

transitions

i n the

dis­

reliable b

a

n

d

-

Assuming t h a t t h e s e a r e p u r e M l , a 10 f o l d i n c r e a s e i n t h e e x p e r i m e n t a l B(M1)/B(E2)

i s o b s e r v e d between t h e one and t h r e e q u a s i p a r t i c l e

Donau and F r a u e n d o r f

bands.

[D0N83] have s u g g e s t e d t h a t s i n c e t h e r o t a t i o n a x i s

is

n o t t h e same as t h e a l i g n m e n t a x i s i n a h i g h Κ b a n d , p a r t i c l e a l i g n m e n t can enhance Ml t r a n s i t i o n r a t e s .

T h i s o c c u r s when t h e g f a c t o r

opposite sign f o r the i n i t i a l

and t h e a l i g n i n g q u a s i p a r t i c l e s .

semi c l a s s i c a l 9

e x p r e s s i o n f o r the B(M1)/B(E2)

ratios.

r a t i o o v e r t h e same range o f

R

has an

They gave a

With a s t r o n g

9 / 2 proton (K=9/2) t h i s expression gives a f a c t o r o f 3

B(M1)/B(E2)

(g^-g )

coupled

increase i n the

spin.

The s i g n a t u r e s p l i t t i n g o b s e r v e d i n t h e g ^ g

b

a

n

d

d

o

e

s

2

n

o

t

necessarily

i m p l y c o n f i g u r a t i o n dependent γ d e f o r m a t i o n s as p r o p o s e d by F r a u e n d o r f .

A

similiar splitting in A g was r e p r o d u c e d [P0P79] w i t h a q u a s i p a r t i c l e p l u s - r o t o r (SR) model i n c l u d i n g a VMI t r e a t m e n t o f t h e s o f t c o r e . The l e v e l 103 scheme f o r Rh shows many o f t h e same f e a t u r e s as t h e Ag i s o t o p e s b u t i s 103 1 0 5 , 1 0 7

more c o m p l e t e .

To e x p l o r e t h i s f u r t h e r t h e l e v e l s

in

c a l c u l a t e d u s i n g t h e SR, IBFM-1 [ J 0 L 8 5 ] , and t r i a x i a l models.

Rh have been rotor

(AR) [MAY 7 5 ]

P a r a m e t e r s f o r t h e SR model were chosen i n a manner s i m i l i a r

to the

47.

315

Massive Transfer Reactions

HAENNI ET AL.

(A)

4.0 L 2 5 / 2 ' -

(B)

21/2'3.0

h

17/2'-

21/219/2-

15/2"-

2

ω

2.0

17/2-

11/2"

1.0

15/2-

9/2" 5/2Ί 7/2"

13/2— 11/2(o) 5 / 2 -

5/2". 3/2'" "•g9/2Bo

0.0 IBFM-I

EXR S.R. T r p i / 2 Band

Fig.

5.

parity model

EXP

Comparison o f t h e n e g a t i v e 103 "Rh w i t h d b a n

i

Fig.

6 . Comparison o f t h e p o s i t i v e 103 Rh w i t h parity '

n

n

D

calculations.

Ag i s o t o p e s

[P0P79]

model

b u t u s i n g an a v e r a g e

n

d

Ί

J

η

n

calculations.

Ru -

parameters are from a recent c a l c u l a t i o n

a

Pd c o r e .

The IBFM-1

[ J 0 L 8 5 ] f o r o d d - A Rh i s o t o p e s

assuming t h a t Rh i s a h o l e i n t h e c o r r e s p o n d i n g Pd c o r e . Parameters f o r 102 104 AR model were a g a i n based on an a v e r a g e Ru Pd c o r e . 103 R e s u l t s o f t h e s e c a l c u l a t i o n s a r e compared t o

the

Rh i n F i g s . 5 , 6 .

For

t h e n e g a t i v e p a r i t y l e v e l s t h e SR and IBFM-1 models p r o d u c e a r e a s o n a b l e agreement w i t h t h e d a t a . sets

The f i t s

to the g

g

^

D

a

n

d

w

l

t

n

t h e same p a r a m e t e r

[ ( A ) f o r t h e SR m o d e l ] a r e n o t as good and a p p e a r t o i n d i c a t e a

core than observed.

softer

The AR model p r e d i c t s s i g n a t u r e s p l i t t i n g f o r t h e g ^ g

band as do t h e o t h e r models b u t i t s a s s u m p t i o n o f a r i g i d r o t o r c o r e i s appropriate for a transitional can be improved (B) i f parameter C i s

nucleus.

the deformation ε

The SR model f i t

i s decreased ( 0 . 2 - 0 . 1 5 )

2

increased (0.006-0.02 MeV ).

d i r e c t i o n o f a s t i f f e r more s p h e r i c a l

to the g ^

3

core.

These changes a r e i n

g

b

2

not a

n

d

2

and t h e VMI the

316

N U C L E I OFF T H E LINE OF STABILITY

With core parameters d e r i v e d from n e i g h b o r i n g even-even n u c l e i t h e SR and IBFM-1 models g e n e r a t e a s i m i l i a r p a t t e r n o f r e s u l t s . band i s more o r l e s s r e p r o d u c e d w h i l e t h e g 103 provides evidence t h a t the s o f t core i n proton.

It

results

g

i s not c l e a r .

/

9

band i s c o m p r e s s e d .

band t h a n t h e p ^

2

2

This i n t e r a c t i o n

The

perhaps

has a l r e a d y been shown

[FED79] t o be t h e d e f o r m a t i o n d r i v i n g f o r c e i n t h i s mass r e g i o n w i t h ^9g/2

a

orbital

n

d

v g

7/2

o

r

D

l

t

would l i k e l y

a

l

s

playing

show e f f e c t s

particularly

transition

transitional

odd-A n u c l e i

key r o l e s . from t h i s

r a t e s f o r the g ^ g

2

Bands based on t h e interaction.

^9g/2

More d a t a ,

b a n d / b e t t e r models f o r

a r e needed t o draw more d e f i n i t e

the

such

conclusions.

References [BEN79] R.Bengtsson and S. Frauendorf, Nucl. Phys. A327 139 (1979). [DON83] F. Dőnau and S. Frauendorf, High Angular Momentum Properties of Nuclei edited by N. R. Johnson (Harwood Academic, New York) 281 (1983). [FED79] P. Federman and S. Pittel, Phys. Rev. C 20 820 (1979). [FRA83] S. Frauendorf and F. R. May, Phys. Lett. 125B 245 (1983). [FRA84] S. Frauendorf, International Symposium on In-Beam Nuclear Spectroscopy, Debrecen, Hungary (1984). [FUN83] L. Funke et a l . , Phys. Lett. 120B 301 (1983). [GRA76] J. A. Grau et al., Phys. Rev. C 14 2297 (1976). [HAE82] D. R. Haenni et al., Phys. Rev. C 25 1699 (1982). [JOL85] J. Jolie et al., Nucl. Phys. A438 15 (1985). [KLA82] W. Klamra et al., Nucl. Phys. A376 463 (1982). [LAR84] A. J. Larabee et al., Phys. Rev. C 29 1934 (1984). [MAY75] J. Mayer-ter-Vehn, Nucl. Phys. A249 111 (1975). ibid. 141. [POP79] Rakesh Popli et al., Phys. Rev. C 20 1350 (1979). [STA84] J. Stachel et al., Nucl. Phys. A419 589 (1984). [VOI76] M. A. J. de Voight et al., Nucl. Phys. A270 141 (1976). RECEIVED July

14, 1986

1

This

band.

I t may a r i s e f r o m γ d e f o r m a t i o n o r

f r o m n-p i n t e r a c t i o n s .

p

Rh i s i n f l u e n c e d by t h e odd

i s more a p p a r e n t f o r t h e g ^

cause f o r t h i s

Q

both

The