Organometallic Derivatives of Sucrose as Pesticides RC POLLER and

Chemistry Department, Queen Elizabeth College, University of London,. Campden Hill Rd. ... light and microorganisms (1,2) and these pesticides, theref...
0 downloads 0 Views 1MB Size
11

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

Organometallic Derivatives of Sucrose as Pesticides

R. C. POLLER and A. PARKIN Chemistry Department, Queen Elizabeth College, University of London, Campden Hill Rd., London W8 7AH, England

Organotin p e s t i c i d e s , u s u a l l y containing three t i n c a r b o n bonds ( R S n X ) , a r e u n i q u e i n t h a t b i o l o g i c a l a c t i v i t y d i s a p p e a r s when t h e o r g a n i c g r o u p s a r e removed from t h e m e t a l . T h i s p r o c e s s o c c u r s on e x p o s u r e t o l i g h t and m i c r o o r g a n i s m s (1,2) and t h e s e p e s t i c i d e s , t h e r e f o r e , p r e s e n t no t h r e a t t o t h e e n v i r o n m e n t . Their major d i s a d v a n t a g e s a r e h i g h c o s t and l a c k o f s p e c i f i c i t y s o t h a t p r e y a s w e l l a s p r e d a t o r , may b e a t t a c k e d . The a i m o f t h e p r e s e n t w o r k w a s t o e x a m i n e t h e e f f e c t on b i o l o g i c a l a c t i v i t y o f m a k i n g a major change i n t h e s o l u b i l i t y o f R S n X compounds by i n t r o d u c i n g a sucrose residue i n t o the X group. T h i s method o f i n c r e a s i n g s o l u b i l i t y seemed a t t r a c t i v e s i n c e g l y c o s i d e f o r m a t i o n commonly i s u s e d i n n a t u r e t o e f f e c t t r a n s port i n tissue c e l l s of otherwise insoluble materials. Because o f the nature o f the f u n c t i o n a l groups p r e s e n t i n c a r b o h y d r a t e s , few o f t h e i r o r g a n o m e t a l l i c d e r i v a t i v e s have been r e p o r t e d . Organotin groups have been l i n k e d t o c e l l u l o s e by a v a r i e t y o f methods (3,4). I n a few i n s t a n c e s h y d r o g e n atoms o f h y d r o x y l groups i n sugars have been r e p l a c e d by o r g a n o t i n groups (5-7) b u t t h e s e a l k o x y d e r i v a t i v e s u s u a l l y a r e s e n s i tive to water. M o r e r e c e n t l y , we h a v e d e s c r i b e d some more s t a b l e compounds i n w h i c h an o r g a n o m e t a l l i c g r o u p i s j o i n e d t o a sugar by a s u l p h u r atom (8). None o f t h e s e m e t h o d s seemed a p p r o p r i a t e t o o u r p u r p o s e a n d we d e c i d e d t o p r e p a r e o r g a n o t i n c o m p o u n d s from s u c r o s e hydrogen p h t h a l a t e and s u c r o s e hydrogen s u c c i n a t e , s i n c e t h e s e c o u l d be o b t a i n e d by d i r e c t r e a c t i o n s between s u c r o s e and p h t h a l i c o r s u c c i n i c a n h y d r i d e s , as shown i n F i g u r e 1. The m a l e a t e was d i f f i c u l t t o i s o l a t e so t h a t l a t e r w o r k was c o n f i n e d t o the p h t h a l a t e and s u c c i n a t e . 3

3

145

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

146

SUCROCHEMISTRY

sucroseOH + X

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

N

X

^COOsucrose COOH

+

CO

R M OH

CH -

I

J->

2

2

CH 2

HC-

• I

HC-

X

COOsucrose ÖDOH COOsucrose

NrcoMRg

M=Ge,Sn,Pb

Figure 1

We w e r e i n t e r e s t e d i n c o m m e r c i a l e x p l o i t a t i o n a n d c h o s e t o use f r e e s u c r o s e and a c c e p t t h a t , i n a d d i t i o n to v a r i a t i o n s i n the e x t e n t of s u b s t i t u t i o n , there w o u l d be c o m p l i c a t i o n s due t o r e g i o i s o m e r i s m . A l l of the b i o l o g i c a l t e s t s were c a r r i e d out w i t h the crude p r o d u c t s o b t a i n e d from the above r e a c t i o n s . Before g i v i n g d e t a i l s of the r e s u l t s of these t e s t s , r e f e r e n c e w i l l be made t o some a s p e c t s o f t h e w o r k we h a v e d o n e on c h e m i c a l c h a r a c t e r i s a t i o n o f t h e s u c r o s e e s t e r s . W i t h r e g a r d t o t h e d e g r e e o f s u b s t i t u t i o n , two approaches have been u s e d , i . e . s e p a r a t i o n o f s i l y l a t e d d e r i v a t i v e s by gas c h r o m a t o g r a p h y ( g l c ) w i t h mass s p e c t r o g r a p h s e x a m i n a t i o n o f t h e p e a k s and s e p a r a t i o n o f a c e t y l d e r i v a t i v e s by column c h r o m a t o g r a p h y . A typic a l g l c t r a c e i s shown i n F i g u r e 2. From r i g h t t o l e f t , t h e f i r s t p e a k i s due t o s o l - v e n t , t h e n e x t s h a r p peak i s o c t a ( t r i m e t h y l s i l y l ) s u c r o s e and t h e s i l y l a t e d s u c r o s e s u c c i n a t e s t h e n appear as a p o o r l y r e s o l v e d , composite peak. H e n c e , a l t h o u g h we c a n a c u r a t e l y e s t i m a t e t h e a m o u n t o f u n s u b s t i t u t e d s u c r o s e , we a r e l e s s c e r t a i n o f t h e r e l a t i v e a m o u n t s o f mono- a n d d i ester. The s e c o n d t e c h n i q u e , w h e r e b y s u c r o s e o c t a a c e t a t e and t h e v a r i o u s a c e t y l a t e d s u c r o s e e s t e r s a r e s e p a r a t e d by c o l u m n c h r o m a t o g r a p h y , y i e l d s more r e l i a ble information. I n T a b l e s I a n d I I t h e two m e t h o d s a r e c o m p a r e d a n d we s e e t h a t a g r e e m e n t i s g o o d i n t h e c a s e o f t h e p h t h a l a t e e s t e r , l e s s so f o r t h e s u c c i n a t e and t h a t b o t h p r o d u c t s c o n t a i n s u b s t a n t i a l amounts o f free sucrose.

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

11.

POLLER

AND PARKIN

Organometallic Derivatives

147

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

!

Figure 2. GLC trace of "sucrose succinate" after trimethylsilylation

Table I C o m p o s i t i o n o f Sucrose

Phthalate Method

Free sucrose Monoester Diester Higher e s t e r s

Separation o f Acetates (%) 36 37 26 1

Separation o f Me Si derivs. (%) 35 42 24 0 3

American Chemical Society Library

w.

1155 16th St. N. Hickson; Sucrochemistry Washington, D. C. Chemical 200%Society: Washington, DC, 1977. ACS Symposium Series; American

148

SUCROCHEMISTRY

Table I I Composition

of Sucrose

Succinate

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

Method Separation of Acetates (%) 22 43 34 1

Free sucrose Monoester Diester Higher e s t e r s

Separation of Me~Si d e r i v s . (%) 32

3

65 3

We a r e n o t i n a p o s i t i o n t o make a n y p r e c i s e s t a t e m e n t s a b o u t r e g i o i s o m e r i s m w i t h i n t h e mono- a n d d i e s t e r c l a s s i f i c a t i o n s b u t i n f o r m a t i o n c a n be g l e a n e d f r o m a somewhat s p e c u l a t i v e i n t e r p r e t a t i o n o f t h e l ^ C nmr ( n u c l e a r m a g n e t i c r e s o n a n c e ) s p e c t r a o f t h e s e p r o ducts. Work i n t h i s a r e a s t i l l i s i n p r o g r e s s a n d , f o r example, our t e n t a t i v e c o n c l u s i o n r e g a r d i n g sucrose p h t h a l a t e i s t h a t s u b s t i t u t i o n has o c c u r r e d a t the 6,6' a n d 4 p o s i t i o n s i n s u c r o s e . I t was o f i n t e r e s t t o i n c l u d e i n o u r b i o l o g i c a l t e s t s a compound i n w h i c h t h e s u c r o s e r e s i d u e was i n c o r p o r a t e d i n t o a n R g r o u p o f a n R^SnX c o m p o u n d . To t h i s e n d we u t i l i s e d t h e s e r i e s o f r e a c t i o n s shown i n F i g u r e 3, b e g i n n i n g w i t h t h e s o d i u m s a l t o f t h e c r u d e sucrose phthalate. Given the complexity of the s t a r t i n g m a t e r i a l , t h e f i n a l bromo compound, o f c o u r s e , i s a m i x t u r e b u t i t s a n a l y s i s , i n f r a r e d ( i r ) a n d nmr s p e c t r a c o r r e s p o n d t o t h e f o r m u l a shown. Cœsucrose ^SnCH CH CH Br

-f-

2

2

2

— ^

COONa

^.COOsucrose ^\:OOC

^COOsucrose

H £ H C H SnPh 2

2

3

^ ^ C O O C H

2

C H CH SnPh Br 2

2

2

Figure 3

T u r n i n g now t o t h e b i o l o g i c a l a c t i v i t y o f t h e s e compounds t h e r e s u l t s o f t e s t s a g a i n s t v a r i o u s o r g a n isms a r e summarized i n T a b l e s I I I - V I .

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

11.

POLLER

Organometallic Derivatives

AND PARKIN

Table I I I

Activities

149

against paint-destroying No. o f f u n g i s h o w i n g of spore germination

Compound

inhibition (max 16) 1

i

Bu SnOCOC H COOsucrose

16

16

6

P h - SnOCOC^H„COO s u c r o s e 3 6 4

16

14

4

0

0

3

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

10 ppm

100 ppm

fungi

6

(C H 6

1 ; L

4

) SnOCOC H COOsucrose 3

6

4

3

Bu SnOCOCH CH COOsucrose

16

16

10

Ph SnOCOCH CH COOsucrose

16

15

9

SucroseOCOC^H-COO(CH ) SnPh Br

16

7

0

(Bu Sn) 0

13

13

12

3

2

3

2

2

2

0

6

4

2

3

9

3

2

Table IV A c t i v i t i e s a g a i n s t E n t e r o m o r p h a : compounds t e s t e d against Enteromorpha i n seawater modified w i t h algal nutrients.

Concentration Compound

1 ppm

Bu^SnOCOC^H ..COOsucrose 3 6 4 Ph^SnOCOC^H.COOsucrose 3 6 4

0.1 ppm

+

+

+

+

Bu SnOCOCH CH COOsucrose

+

+

Ph SnOCOCH CH COOsucrose

+

+

C

H

^ 6 11^3 3

S

n

O

C

2

3

O

C

H

6 4

C

O

O

s

u

c

r

O

S

e

2

2

2

SucroseOCOC^H.COO(CH )~SnPh Br 9

b

q

z

J

2

+=effective

+

+

-=not e f f e c t i v e

M i n i mmm u m cconcG oncentration

a t which

(Bu Sn) 0 i s effective 3

2

0.3 ppm

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

150

SUCROCHEMISTRY

Table

V.

Antibacterial

properties of organotin Escherichia coli

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

Compound

31

P h - SnOCOC ^ H„COO s u c r o s e 3 6 4

Cone (ppm)

Inhib

84

100

7%T

Bu SnOCOC H COOsucrose 3

6

4

SucroseOCOC^H-COO(CHJ SnPh Br 6

2

4

2

compounds Micrococcus denitrificans

1 1

11

Cone (ppm)

Inhib (%)

0.25

100

1

100

1

100

1 1

3

23

83

Table VI Molluscicidal

Activity

Compounds t e s t e d a g a i n s t a d u l t B i o m p h a l a r i a c f l a b r a t a . The L C 5 0 a s s e s s e d a f t e r a 120 h r e c o v e r y p e r i o d . Compound T r i p h e n y l l e a d Sucrose P h t h a l a t e T r i p h e n y l t i n Sucrose P h t h a l a t e T r i p h e n y l l e a d Sucrose Succinate T r i c y c l o h e x y l t i n Sucrose P h t h a l a t e T r i b u t y l t i n Sucrose P h t h a l a t e T r i p h e n y l t i n Sucrose Succinate T r i b u t y l t i n Sucrose Succinate

L C

50 Tppm) 0.1-0.2 0.2 0.1-0.2 0.05 0.1 >0.2 0.075-0.1

T h e s e r e s u l t s show t h a t t h e t r i b u t y l t i n a n d t r i phenyltin d e r i v a t i v e s o f sucrose are a t l e a s t equal i n b i o l o g i c a l a c t i v i t y t o t h e commercially used t r i b u t y l t i n o x i d e and f l u o r i d e and a r e s u p e r i o r w i t h r e g a r d t o a l g i c i d a l and f u n g i c i d a l p r o p e r t i e s (9/ 1 0 ) . This i s e v e n more r e m a r k a b l e when we c o m p a r e t h e t i n c o n t e n t s , see Table V I I . Except i n t h e case o f m o l l u s c i c i d a l a c t i v i t y t h e t r i c y c l o h e x y l t i n compounds a r e l e s s e f f e c t i v e a n d , i n most t e s t s , t h e l e s s a c c e s s i b l e compound w i t h t h e s u c r o s e r e s i d u e i n t h e R g r o u p s is inferior. T e s t s o n t h e o r g a n o l e a d compounds so f a r have b e e n c o n f i n e d t o m o l l u s c i c i d a l a c t i v i t y .

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

11.

P O L L E R A N D PARKIN

Organometallic Derivatives

151

Table V I I

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

Tin content

of biocidal organotin

Compound

% Sn

T r i b u t y l t i n oxide Tributyltin fluoride Bu3SnOCOC5H4COO s u c r o s e Ph3SnOCOC5H4COO s u c r o s e

39.8 38.4 15.2 14.1

compounds

T r i b u t y l t i n sucrose p h t h a l a t e and s u c c i n a t e have been f o r m u l a t e d i n t o p a i n t s and s u b j e c t e d t o l a r g e r scale tests. The f u n g i c i d a l a c t i v i t y i s r e t a i n e d and t h e compounds a p p e a r t o g i v e e n h a n c e d p r o t e c t i o n t o w e a t h e r e d f i l m s o f e m u l s i o n p a i n t when c o m p a r e d w i t h t r i b u t y l t i n oxide. I n t h e t r i a l k y l a n d t r i p h e n y l compounds d e s c r i b e d above t h e sucrose group i s j o i n e d t o t i n v i a an f

-Sn-OCO-Ç- g r o u p . A l t h o u g h t h e b i o l o g i c a l t e s t s and o t h e r measurements i n d i c a t e t h a t t h i s g r o u p i s much m o r e r e s i s t a n t t o h y d r o l y s i s than might be expected, i t , n e v e r t h e l e s s , r e p r e s e n t s a p o i n t o f s t r u c t u r a l weakness i n t h e molecule. We t h e r e f o r e , h a v e b e e n e x a m i n i n g o t h e r m e t h o d s of j o i n i n g o r g a n o t i n groups t o sucrose, again c o n f i n i n g ourselves t o processes o f p o t e n t i a l commercial interest. The m o s t e f f e c t i v e o f t h e s e i s a s f o l l o w s : R S n S C H C O O M e + s u c r o s e O H - > R S n S C H C O O s u c r o s e + MeOH 3

2

3

2

As b e f o r e , t h e p r o d u c t l i k e l y i s t o be a m i x t u r e a n d we a s y e t d o n o t h a v e d e t a i l s o f i t s c o m p l e x i t y . The f u n g i c i d a l p r o p e r t i e s o f t h i s t y p e o f compound a r e being evaluated. Preliminary results indicate that t h e y a r e somewhat l e s s a c t i v e t h a n t h e p h t h a l a t e s a n d s u c c i n a t e s , b u t b e t t e r t h a n t r i b u t y l t i n o x i d e , on a weight f o r weight b a s i s . Acknowledgements We t h a n k t h e I n t e r n a t i o n a l S u g a r R e s e a r c h F o u n d a t i o n , I n c . , f o r s u p p o r t i n g t h i s work. We a r e g r a t e f u l to t h e P a i n t Research A s s o c i a t i o n f o r c a r r y i n g o u t t h e t e s t s a g a i n s t f u n g i a n d E n t e r o m o r p h a , t o D r . P. N o r r i s ( M i c r o b i o l o g y D e p a r t m e n t , Queen E l i z a b e t h C o l l e g e ) f o r c a r r y i n g o u t t h e t e s t s a g a i n s t b a c t e r i a and t o Dr. J Duncan ( C e n t r e f o r O v e r s e a s P e s t R e s e a r c h ) f o r t h e molluscicidal screening.

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

152

SUCROCHEMISTRY

Abstract Methods for attaching organotin groups to sucrose are discussed. Treatment of sucrose with phthalic (or succinic) anhydride gave a mixture of sucrose hydrogen phthalates (succinates) which reacted with organotin hydroxides, (RSnOH R=alkyl or aryl), to give organostannyl sucrose phthalates (succinates). The corresponding organolead and organogermanium compounds were prepared by similar methods. The biocidal activities of the organotin derivatives of sucrose were found to be much higher than would be expected from the tin content.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

3

Literature Cited 1.

Barnes, R.D., Bull, A. T., Poller, R.C., Pestic. S c i . , 1973, 4, 305. 2. Chapman, A. H., Price, J . W., Int. Pest Control, 1972, 14, 11. 3. Shostakovskii, M. F . , Polyakov, A. I . , Sinagin, V. V., Mirskov, R. G., Zh. P r i k l . Khim., 1968, 41, 2796. 4. Arcemova, Yu V . , Vinnik, A. D., Zemlyanskii, N.W., Rogevin, Z. A . , Cellulose Chem. Technol., 1971, 5, 319; (Chem. Abs., 1972, 76, 155815.) 5. David, S., and Thieffry, A . , C.R. Hebd. Seances, Acad. Sci. Ser. C., 1974, 279, 1045. 6. Wagner, D., Verheyden, J . P. H., and Moffatt, J.G. J . Org. Chem., 1974, 39, 24. 7. Crowe, A. J., and Smith, P. J., J . Organomet. Chem. 1976, 110, C59. 8. Husain, A. F., and Poller, R. C., J . Organomet. Chem., 1976, 118, C11. 9. Parkin, A., and Poller, R.C., British Patent Application No. 12168/76. 10. Parkin, A . , and Poller, R.C., Pesticide Science, in press. Biographic Notes Robert C. Poller, Ph.D., Reader in Chem. Educated at Univ. of Southampton. Chemist in the food industry; post-doctoral work at Birkbeck C o l l . ; organometallic chemistry and polymer stabilization. The Chemistry Department, Queen Elizabeth C o l l . , Univ. of London, Atkins Building, Campden H i l l Road, London W.8, England.

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

Discussion

Question: Mr. K o s a k a , y o u r s u g a r e s t e r s w e r e duced u s i n g a s o l v e n t . What s o l v e n t d i d y o u u s e ? DMF?

pro-

Mr. K o s a k a : R y o t o d o e s n o t u s e DMF, b u t I do n o t d e n y t h a t t h e c o m p a n y i s u s i n g some k i n d o f s o l v e n t i n the process. Question: toxic?

I s i t an

edible solvent,

Mr. K o s a k a : I t i s one o f t h e s a f e s t however, the p r o d u c t s are s o l v e n t - f r e e .

and

i s i t non-

solvents,

Question: Dr. P a r k e r , have you done any e x p e r i ments i n m a k i n g y o u r s u g a r e s t e r by the s o l v e n t l e s s process u s i n g impure sugar r a t h e r than pure sucrose? I f so, what r e s u l t s d i d you g e t ? Dr. P a r k e r : We h a v e u s e d i m p u r e s u g a r b u t n o t m o l a s s e s , w h i c h h a s t o o h i g h an a s h c o n t e n t . The m a i n r e a s o n f o r not d o i n g so i s t h a t t h e s u g a r r e p r e s e n t s a r e l a t i v e l y m i n o r c o s t c o n s t i t u e n t , and traditionally we h a v e u s e d r e f i n e d s u g a r . We do n o t h a v e t o , b u t t h e r e i s no p a r t i c u l a r a d v a n t a g e i n n o t d o i n g s o . Question: M o n s i e u r B o b i c h o n , c o u l d you d i v u l g e some g e n e r a l way how y o u m a n a g e d t o r e d u c e t h e d i m e t h y l f o r m a m i d e t o 5 ppm?

in

Mr. B o b i c h o n : I c a n n o t a n s w e r t h a t i n t o o much d e t a i l - j u s t by t a k i n g p a i n s i n t h e p r o c e s s , being very c a r e f u l . I do n o t t h i n k t h a t t h e d i m e t h y l f o r m a m i d e i s r e a l l y s u c h a bad m a t e r i a l , and I a g r e e w i t h what Dr.Hass s a i d t h i s m o r n i n g about the i n a p p r o p r i a t e 153

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

154

SUCROCHEMISTRY

ness of

zero

tolerance for toxic materials.

Question;

What i s m e a n t b y

a half-day

diarrhea?

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

Mr. B o b i c h o n : We m e a s u r e t h e d i a r r h e a o f t h e a n i m a l s t w i c e a day by v i s u a l e v a l u a t i o n , and r e c o r d t h e t o t a l number o f o b s e r v a t i o n s and t h e number o f d e f i n i t e diarrhea. Question;

Is that after

84

Mr. B o b i c h o n ; A f t e r 84 d a y s 168 e v a l u a t i o n s . As a n e x a m p l e , positive diarrhea observations. 14 a s t h e n u m b e r f o r t h e h a l f - d a y

days of

feeding?

o f f e e d i n g , we h a v e we c o u l d h a v e 14 T h e n we w o u l d r e c o r d diarrhea.

Question; How d o t h e e c o n o m i c s o f t h e t h r e e f a c t a n t s compare w i t h t h e p e t r o c h e m i c a l l y - d e r i v e d d u c t s , on a c o s t / p e r f o r m a n c e b a s i s ?

surpro-

Dr. P a r k e r ; I t i s v e r y d i f f i c u l t t o answer f o r other processes. Our own w o r k was b a s e d on t h e f a c t t h a t we w i s h e d t o o b t a i n a s u c r o s e - d e r i v e d s u r f a c t a n t w h i c h was i n d e e d c o m p e t i t i v e w i t h l i n e a r alkylbenzene sulfonate-types of surfactants. Our p r o d u c t , a s p r o d u c e d a t t h e moment, i s somewhat c h e a p e r . We a l s o have a r a n g e o f more h i g h l y p u r i f i e d p r o d u c t s w h i c h a r e m o r e e x p e n s i v e , b u t a r e i n t e n d e d t o be c o m p e t i t i v e w i t h n o n - i o n i c s u r f a c t a n t s of the s o r b i t a n e s t e r - t y p e . I t h i n k p r o c e s s e s u s i n g s o l v e n t s i n e v i t a b l y m u s t be somewhat more e x p e n s i v e , b e c a u s e o f t h e n e e d t o r e d u c e s o l v e n t r e s i d u e s t o a minimum. We w e r e n o t a b l e t o s e e how we c o u l d do t h i s , b u t m a y b e , M o n s i e u r B o b i c h o n , could give h i s p o i n t of view. Mr. B o b i c h o n ; I t i s d i f f i c u l t for a surfactant to be c o m p e t i t i v e p r i m a r i l y b e c a u s e o f t h e pH s t a b i l i t y . We t r i e d many t i m e s t o f i n d a p p l i c a t i o n s i n s u r f a c t a n t s f o r o u r s u c r o g l y c e r i d e , b u t we f a i l e d b e c a u s e o f t h e i n s t a b i l i t y a t a l k a l i n e pH. Question; please?

Dr.

Parker, w i l l

you

comment on

that,

Dr. P a r k e r ; We f o u n d t h a t t h e s u c r o g l y c e r i d e s a r e s t a b l e o v e r a pH r a n g e f r o m 6 t o 1 2 . Obviously, they are not s t a b l e under a c i d i c c o n d i t i o n s , a n d t h i s c o n s t i tutes a limitation. B u t , t h e number o f a p p l i c a t i o n s r e q u i r i n g a c i d - s t a b l e s u r f a c t a n t s are r e l a t i v e l y few. We a r e n o t w o r r i e d b y t h i s , a l t h o u g h we w o u l d l i k e t o

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

155

DISCUSSION

h a v e one

f o r these p a r t i c u l a r

applications.

Question: Mr. K o s a k a , w o u l d y o u l i k e t h i n g about the economics of your product?

t o say

any-

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

Mr. K o s a k a : The r e c o v e r y o f s o l v e n t i n t h e R y o t o p r o c e s s i s g r e a t e r t h a n 99%. Thus, the c o s t of s o l v e n t i s n e g l i g i b l e , and o u r p r o d u c t s a r e s o l v e n t - f r e e . Question: Mr. K o s a k a , w o u l d you e l a b o r a t e on bakery uses of sucrose e s t e r s i n Japan?

the

Mr. K o s a k a : The u s e i n c a k e s i s m o s t p o p u l a r . J a p a n e s e b a k e r s a r e u s i n g a m i x t u r e o f s u g a r e s t e r and monoglyceride i n bread. Question: For high protein breads, or just l a r wheat bread? Mr.

Kosaka:

Question: agent? Mr.

Kosaka:

Just regular

bread.

I s t h a t a p p l i c a t i o n as an

Y e s , as an a n t i - s t a l i n g

Q u e s t i o n : How d i f f i c u l t i s s i d u a l methanol content,and the anol? I f t h e r e i s any p r o b l e m , use o f t h e e t h y l e s t e r s f o r the

regu-

anti-staling

agent,mostly.

i t to c o n t r o l the r e t o x i c i t y o f t h i s methhave you thought o f the transesterification?

Mr. K o s a k a : We t h o u g h t a b o u t u s i n g e t h y l e s t e r , but i t s cost i s higher than that of methyl ester. We cannot f i n d methanol i n our products. Dr. Hass: Minute t r a c e s o f methanol are not t o x i c . The p e c t i n s w h i c h a r e u s e d f o r m a k i n g j e l l i e s h a v e c a r bomethoxy groups w h i c h a r e s p l i t o f f i n t h e d i g e s t i v e s y s t e m t o f o r m t r a c e s o f m e t h a n o l , a n d t h e y do n o t h u r t anybody. Dr. H i c k s o n : W i t h r e g a r d t o t h e e t h a n o l - m e t h a n o l question,do not forget that ethanol b o i l s at a s l i g h t l y h i g h e r t e m p e r a t u r e and r e q u i r e s a l i t t l e more h e a t t o take i t o f f . The r e a c t i o n c a l l s f o r t h e d i s t i l l a t i o n of methanol t o p r o v i d e the d r i v i n g force t o create the sugar e s t e r . T h a t i s a m a j o r r e a s o n why t h e m e t h y l e s t e r was c h o s e n . Question:

P r o f e s s o r S e i b , what i s t h e

potential

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

156

SUCROCHEMISTRY

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

t o t a l volume o f t h e s u r f a c t a n t market, i n b a k i n g , i n the u n i t e d S t a t e s , alone? Professor Seib: I t r i e d t o i n t i m a t e what t h e t o t a l m a r k e t m i g h t be by t a b u l a t i n g t h e poundage o f t h e v a r i o u s baked foods i n t h e United S t a t e s . I f 70% o f t h a t poundage i s b r e a d and r o l l s , one c o u l d estimate a b o u t 90,000 l b / d a y o f s u r f a c t a n t f o r t h a t p a r t o f t h e market. The n e x t l a r g e s t u s e p r o b a b l y w o u l d b e c a k e . I c a l c u l a t e d a n o t h e r 10,000 l b o f e s t e r / d a y i n t h a t market. T h a t i s b a s e d o n a t o t a l o f 1.4 b i l l i o n l b of cake a n n u a l l y , which c o n t a i n s 3 t o 6 % s u r f a c t a n t i n t h e e m u l s i f i e d s h o r t e n i n g s w h i c h a r e u s e d i n c a k e manufacturing. I think that, c e r t a i n l y , i s not the t o t a l , b u t y o u c a n s e e how q u i c k l y y o u d r o p o f f i n m a g n i t u d e f r o m 14 - 17 b i l l i o n l b o f b r e a d a n d r o l l s down t o 1.4 b i l l i o n l b o f cake p e r year. I think that a potential m a r k e t o f a 100,000 l b / d a y o f s u g a r e s t e r s i n t h e baki n g i n d u s t r y i s a f a i r l y good a p p r o x i m a t i o n . M r . B e a t t y , o f C o n t i n e n t a l B a k i n g , h a s j u s t m e n t i o n e d t h a t 450,000 t o n s o f b r e a d f l o u r / y e a r i s u s e d b y h i s company a l o n e . Question; Dr. van V e l t h u i j s e n , i s t h e p r i c e o f t h e s u g a r a l c o h o l s much h i g h e r t h a n t h e p r i c e o f s u g a r ? How d o e s t h i s a f f e c t t h e t o t a l e c o n o m i c s o f t h e f i n a l product? Dr. v a n V e l t h u i j s e n ; The p r i c e o f t h e s u g a r a l c o h o l s i s about double o r t r i p l e t h e p r i c e o f sugar. Of course, t h i s enters i n the costing of the product. Even s o , t h e p r i c e o f t h e crude r e a c t i o n m i x t u r e i s i n t h e same p r i c e l e v e l a s t h e s u r f a c t a n t s , s u c h a s t h e g l y c e r o l m o n o s t e a r a t e s a n d s t e a r o y l l a c t y l a t e s , now a v a i l a b l e i n t h e foods market. Question; D r . P o l l e r , a r e t h e r e a n y p l a n s t o go f o r w a r d w i t h f i e l d t e s t i n g o f any o f t h e p e s t i c i d e s you m e n t i o n e d ? Dr. P o l l e r ; A s I i n d i c a t e d i n my t a l k , t h i s h a s been done f o r a p p l i c a t i o n s i n p a i n t s . Large-scale t e s t s have been c a r r i e d o u t . F o r more g e n e r a l u s e s — f o r i n s t a n c e , i n a g r i c u l t u r e — we a r e a t p r e s e n t j u s t coming t o t h e end o f s y n t h e s i z i n g l a r g e - s c a l e batches for e x a c t l y t h i s purpose. Professor V l i t o s ; The s c r e e n i n g o f compounds o f t h i s type i s rather d i f f i c u l t . The s y n t h e s e s u s u a l l y a r e done i n a u n i v e r s i t y l a b o r a t o r y , u s u a l l y i n t h e c h e m i s t r y d e p a r t m e n t , and t h e s c r e e n i n g h a s t o be done

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

157

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

DISCUSSION

by b i o l o g i c a l g r o u p s . Very o f t e n they are busy doing t h e i r own t y p e s o f r e s e a r c h . I f t h e r e i s any weakness i n the approach o f the I n t e r n a t i o n a l Sugar Research F o u n d a t i o n i t i s t h a t i t has b e e n f o u n d t o be v e r y d i f f i c u l t t o s c r e e n t h e u s e f u l n e s s o f t h e compounds t h a t have been s y n t h e s i z e d i n t h e r e s e a r c h programs. T h e r e a r e many, many c o m p o u n d s , w h i c h may h a v e , who k n o w s how many a p p l i c a t i o n s . We j u s t h a v e n o t h a d a c h a n c e t o r e a l l y l o o k a t them a l l i n t h e r i g h t t e s t systems. I t h i n k Dr. P o l l e r ' s work i n d i c a t e s : f i r s t , h e r e i s some i n t e r e s t i n g c h e m i s t r y ; a n d s e c o n d , h i s compounds h a v e a u s e w h i c h a l r e a d y h a s b e e n d e m o n s t r a t ed. Now, i t i s up t o somebody t o s y n t h e s i z e t h e m a n d s e l l them. That i s another problem. Question: Dr. P o l l e r a r e these m a t e r i a l s s o l u b l e enough i n w a t e r t o use them, o r a r e t h e y c o m p l e t e l y solvent-soluble? Dr. P o l l e r : The s o l u b i l i t i e s o f t h e s t a n d a r d , o r g a n o t i n p e s t i c i d e s c u r r e n t l y i n use a r e low — some o f them v e r y l o w , i n d e e d — i n parts per m i l l i o n . By p u t t i n g o n t h e s u c r o s e g r o u p , t h e s o l u b i l i t y g o e s up a r o u n d a t h o u s a n d f o l d , a s a r o u g h e s t i m a t e , b u t we h a v e no p r e c i s e f i g u r e s . T h i s i s an i n t e r e s t i n g q u e s t i o n . Is t h i s simply a s o l u b i l i t y e f f e c t , or i s i t something e l s e ? I conclude i t i s not simply a s o l u b i l i t y e f f e c t because, a t l e v e l s where t h e t r i b u t y l t i n o x i d e i s s o l u b l e , t h e a c t i v i t i e s o f t h e s u c r o s e compounds a r e h i g h e r . In t h e b e s t t e s t s , t h e s u c r o s e compound i s t h r e e t i m e s more e f f e c t i v e w i t h a r o u n d a t h i r d t h e amount o f t i n i n it. Most o f t h e t e s t s were c a r r i e d o u t a t c o n c e n t r a t i o n s where b o t h t h e s u c r o s e compounds and t h e r e f e r ence o r g a n o t i n p e s t i c i d e s were c o m p l e t e l y d i s s o l v e d and s o t h e i n c r e a s e d a c t i v i t i e s c a n n o t s i m p l y be a t t r i buted t o s o l u b i l i t y e f f e c t s . Question: Would t h e h i g h s o l u b i l i t y culties i n formulation?

cause

diffi-

Dr. P o l l e r : Not n e c e s s a r i l y . The o r g a n o t i n e s t e r s c a n be h y d r o l y s e d and i t i s p o s s i b l e t h a t , a f t e r t r a n s p o r t i n l i v i n g t i s s u e as t h e o r g a n o t i n sucrose e s t e r , h y d r o l y s i s o c c u r s and t h e i n s o l u b l e o r g a n o t i n oxide i s then deposited.

these

Question: What k i n d o f b r e a k d o w n p r o d u c t s d o s u c r o s e t i n c o m p o u n d s h a v e o n biodégradation?

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

158

SUCROCHEMISTRY

Dr. P o l l e r : We do n o t know. The s u c r o s e t i n d e r i v a t i v e s a r e v e r y new,and t h e y s t i l l a r e b e i n g t e s t ed. H o w e v e r , we h a v e d o n e some w o r k o n biodégradat i o n of t r i p h e n y l t i n p e s t i c i d e s . T h i s was d o n e b y s y n t h e s i z i n g l C - l a b e l l e d p e s t i c i d e s , p u t t i n g them i n t o s o i l u n d e r v a r i o u s c o n d i t i o n s , and t h e n c o l l e c t i n g t h e r a d i o a c t i v e l y l a b e l l e d carbon dioxide. The organic g r o u p s come o f f i n a s t e p w i s e f a s h i o n a n d b r e a k down completely, to carbon dioxide. Only i n o r g a n i c t i n r e mains .

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011

4

Question: I s i t d e f i n i t e l y i n o r g a n i c t i n , and some t i n - a l k y 1 d e r i v a t i v e s u c h a s a m e t h y l t i n compound?

not

Dr. P o l l e r : Yes. A l^C-labelled, radiochemicall y and c h e m i c a l l y p u r e compound i s a d d e d t o s o i l , and t h e r a d i o a c t i v i t y o f t h e 14co? e v o l v e d i s m e a s u r e d carefully. When a l l o f t h e 14c l a b e l a p p e a r s a s c a r b o n d i o x i d e t h e r e i s no d o u b t t h a t t h e c o m p o u n d i s b r o k e n down c o m p l e t e l y . T h i s i s t h e s o r t o f e v i d e n c e we have t h a t t h e t r i p h e n y l t i n compounds a r e c o n v e r t e d t o inorganic t i n . Question: A r e y o u c e r t a i n t h a t a n o r g a n o t i n comp o u n d c o u l d n o t f i n d i t s way i n t o t h e f o o d c h a i n some o t h e r way, p o s s i b l y t h r o u g h s o l u b i l i z a t i o n processes, t r a n s p o r t p r o c e s s e s , and so f o r t h ? Dr. P o l l e r : I t i s i m p o s s i b l e t o be c e r t a i n , b u t t h e e v i d e n c e we h a v e s u g g e s t s t h a t o r g a n o t i n p e s t i c i d e s a r e c o n v e r t e d t o i n o r g a n i c t i n on e x p o s u r e t o l i g h t and microorganisms. The w i d e u s e o f t i n - p l a t e d c a n s a s f o o d c o n t a i n e r s a n d much o t h e r e v i d e n c e i n d i c a t e s t h a t i n o r g a n i c t i n compounds a r e n o t t o x i c . Dr. Hass: I t was t h e i d e a o f one o f o u r librarians a t S u g a r R e s e a r c h F o u n d a t i o n t h a t t h e g e n e r a l app r o a c h o f c o m b i n i n g s u c r o s e w i t h p e s t i c i d e s m i g h t be effective. We f i r s t t r i e d i t i n a p r o j e c t a t B a t t e l l e f r o m w h i c h we n e v e r g o t a n y t h i n g t h a t was a s g o o d a s existing pesticides. I am d e l i g h t e d t h a t y o u a r e d o i n g i t , and t h a t we s i m p l y t r i e d t h e w r o n g c o m p o u n d s .

Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.