ORISKANY NATURAL GAS Composition +++
Properties a
A number of natural gas fields have been discovered i n the Oriskany sand. O n e is located near the chemical industries i n the Kanawha Valley and has produced about 600 billion cubic feet of natural gas as of January 1,1944. The Weld also produces from zero to 1500 gallons of distillate with each million cubic feet of gas. The gas consists of methane, ethane, propane, iso- and nbutanes, iso- and n-pentanes, hexanes, heptanes, and higher-boiling hydrocarbons. Large reserves of these compounds are available for chemical industries. The areal composition varies from almost pure methane along the eastern border of the sand to gases that contain a total of 18-1 5% ethane and higher-boiling hydrocarbons associated with some 85% methane along the center of the geosynclinal basin. The methane content varier inversely with all the otherhydrocarbonspresent. This fact may b e a clue to the reactions which originated the natural gas. Shown A b o v e I s a Deh dration-Desulfurization Plant for Naturd Gas Which btilizes the Girbotol Process (Courtesy, Colunblan 6 h n Company and Glrdlar Corporation)
A. 1. W. Headlee and James 1. Hall' L
."
WEST VIRGINIA GEOLOGICAL SURVEY, MORGANTOWN, W. VA.
T
HE Oriskany sand extends Over the greater part of the northern half of the Appalachian ~ ~ province, ~ as l shown by numerous logs and the many outcrops east
of the Allegheny Front. The area covered by the sand (Figure 1) includes most of West Virginia, western Pennsylvania, the emtern border counties of Ohio, and several counties of N~~ York north of Tioga County, Pa. A number of natural gas fields have been discovered in this sand. The largest has produced about 600 billion cubic feet of gas. This Kanawha-Jackson County field produced about 110 billion cubic feet of natural gas during 1942. A few small oil fields have been discovered in this sand, the largest being in Guernsey Coanty, Ohio. Highly concentrated salt brines have been found over large acreages of the sand.
.
1 At
The original reservoir pressure of the Kanawha-Jackson field was from 1800 to 2000 pounds per square inch. Therefore it is a distillate structure; that is, retrograde condensation takes place as the declines. Large quantities of clear con~ reservoir ~ pressure i ~ densate are produced by these wells. The bulk of the analytical from this data consists Of The samples represent the gas phase produced a t the wellhead. They were collected from the top of the tubing soon after the well was completed. Thirty-nine of the samples were taken from new wells while shut in against reservoir pressure. Most of the others were collected while feeding into a line pressure of 200 to 500 Pounds Per square inch. Many of these were feeding through an Orifice Plate so that there was 500-1500 pounds per square inch gas. 4417 4643 471~6oo, and 613 were On the collected with the well open to the air. Samples 471, 600, and 613 were low-volume wells and abandoned. The geographical location of the fields and isolated wells are identified by map' numbers on Figure 1 that correspond to those in Table I.
present on leave of absEi5e k i t h the d m e d forces.
299
INDUSTRIAL A N D ENGINEERING CHEMISTRY
300
Vol. 36, No. 4
The original reservoir pressure in the Kanawha-Jackson field was about 1800 and in the Campbell Creek field, 1200 pounds per square inch. The numerical order of the wells is approximately the same as the time of development of the field (Table 11). An attempt was made to take the samples before production had affected the composition of the gas. The butanes and lighter content of most of the samples have not been affected by production. The leases are small, usually less than 100 acres, and are held by numerous companies throughout the field. N o technically planned method of production is in use. The pentanes and higher-boiling hydrocarbon content of the gas tends to deciease until the reservoir pressure is about 500 pounds, after which they increase. The amount of condensate per million cubic feet of gas for certain of the wells is as follows: We11 No.
439 438 451
ORISKANY SAND LEGEND mP
G A S FIELD GAS WELL G A S SHOW
WHAn LIMITS
OF SANt
Table Sample No.
&{ethane, Ethane, Propane,
%
%
%
Butanes, % n-
160-
-
1. n-
WeII No.
Barrels Well No. Barrela
8 10 12
460 459 462
468 477 630
2.5 19 25
A 1-cubic-foot sample tank was connected to the top of the wellhead, and the valve on the well cracked so that the gas passed through the tank at about 1 pound per square inch above atmospheric pressure at a rate of 1 to 2 cubic feet per minute for 20 minutes. The downstream valve on the tank was then closed and the sample closed in at not more than 100 pounds pressure. The analyses and tests consisted of low-temperature fractional distillation analysis using liquid nitrogen as a refrigerant, total heating value (T.H.V.) in a Sargent automatic gas calorimeter, specific gravity by means of Headlee (6) gas density balance, nitrogen from T.H.V.-specific gravity data, carbon dioxide by absorption in potassium hydroxide, water vapor by psychrometer,
Analyses
Pentanes? % 160-
Barrels 9 36 10
of Oriskany Gas
%
%
%
Water Vapor,
Cor,
T.H.V., B.T.U.
SP. Gr.
... ... ...
.. ..
0.671 0.671
....
.. ..
0.0
0.0
1006 1004
.... ....
..
0.4
1029
0.5710
0.0 0.1 0.0
1022 lQ20 1030
0.6732 0.5755 0.58
0.1
.. .. ..
.... ....
0.70
0.10
1000
0.5661
0.10
3.9
0.00
962
0.5740
0.70
0.00
987
0.5604
0.08
0.01
1103
0.6361
0.12
0.05
1001
0.5682
0.12
0.11
1014
0.5768
0.04
0.02 0.02
1105 1120
0.6484 0.6499
0.06 0.06
0.01
1101
0.6707
Hexanes, Heptanes, Octanes f, Sz,
%
%
%
ALLENFIELD, ALLEGHWY COUNTY, N. Y . , FIGURE1, N o . 1
25 13 (3)
83.7 83.7 80.9
10.4 10.4 8.1
2.8 2.8 2.9
*.
1 1 (91 12 ( 3 )
97.2a 97.70
1.5 1.1
.,
61 (8)
97.1a
2.4
..
1.1 1.1 1.1
..* .
0.7 0.7 0.6
u .. .. .. ..
1.0 1.0 6.5
..
WAYNE-DUNDEE FIELD,S C H U Y LCOUNTY, ~R N. Y.,F ~ G U R1,ENo.2 *. 1.3 *. 1.2 POTTER COUNTY F I ~ L DP, O T T COUNTY, ~ PA.*FIQURE 1, No. 3 0.1
..
..
..
....
...*
.. ..
.. .. .. .. .. .. .. .... .. .... 00.5 .4 .. .... .. .. .. *... .. .. 0.4 LIGONIER WELL,WESTMORELAND COUNTY, Pa., FIGURE1, No. 5 .. 1.0 .. .... .... .... ..*. .... .. 2.4 PA., FIGURE1, NO. 6 .. GDARY .. WXLL,..WASHINQTON .. COUNTY. *. .. .. 9.1 ,.
..
..
TIOGA FIELD,TIOQA COUNTY, P A . ,F I G U R1 ~ , No. 4
96.9" 96.5a 99.65
2.6 2.7 0.0
a .
64 ( 1 )
83A (81 838 (81
96.3O 95.2a
2.5 2.4
0.1
87 (4)
65.1a
24.8
62 (8) 63 (8)
.. ..
a .
..
I
.
9 .
0.1
...
a .
..
..
.. .. .. ..
.. .. ..
SUMZIIT FIDLD,FAYETTB COUNTY, Pa., FIGURE1, No. 7
521
97.73
1.41
0.05
,727
..
m .
..
..
..
HUMBERSON WELL,GARRETT COUNTY, &ID.,F I Q U R1,~ No. 8
..
0.01
..
613
95.26
0.74
0.08
614
98.69
0.12
0.01
6.24
LEONORA RAMSEY No. 1 WELL,HANCOCK COUNTY, W. VA., FIQURB 1, No. 10 1.92 0.13 0.66 0.08 0.27 0.18 0.12 1.23
692
89.16
..
..
C. L. S ~ U D ENo. R 1 WELL,ROCKINQHAM COUNTY, VA., FIQURE1, No. 9 1.18
..
..
..
..
..
..
H. C. GREERWELL,MONONQALIA COUNTY, W. Va., FIQURE1, No. 11
..
..
..
..
..
600
97.18
1.68
0.08
651
95.75
2.72
0.23
476
s+:i7
7.02
...
2:bi
A L F R ~WOOFTER D WELL,L E W ICOUNTY, ~ W. VA., FIGURE1, No. 12 1.01 0.06 0.06 0.02 0.04 RAYENSWOOD WELLB,JACKSON COUNTY, W. Va., FIQURE1, No. 13 2.30 o:i3 o:i5 o:io o:ie o:is o:is ,. 1.50
471
83.73
6.38
3.28
J. K. GRIMM W ~ L LWOOD , COUNTY, W. VA., FIGURB1, No. 14 ,. 4.65 0.20 1.08 0.22 0.16 0.16 0.13
475
..
..
1.00
..
..
6
0.26
INDUSTRIAL AND ENGINEERING CHEMISTRY
April, 1944
Table Sample NO.
Methane, Ethane, Propane,
%
%
%
1.
Butanes, % 150-
Analyses of Oriskany Pentanes, %
Iao-
11.-
Gas (Continued)
Hexanes, Heptanes, Ootanes
%
11.-
%
%
f,
NI,
%
472 473 474 627 625 626 631 630 629 628 694 698 671 461 462 463 469 470 457
84.22
8.01
85 i7 85.08 84.37 85.91 85.71 86.49 84.70 86.38 85.30 84.25 85.95 85.74 84.70 84.82 84.58 84.48 86.07
7.91 9.15 7.25 8.09 8.26 7.87 8.95 8.77 8.36
KANAWHA-JACKSON FIBLD, JACKSON COUNTY, W. VA., FIQURB 1, No. 15 0.04 2.70 3.21 0.35 0.96 0.22 0.18 0.10 2.00 1.62 0:06 218s o:i4 0:94 o:i4 o;io o:ii 1.41 0.04 0.17 0.34 1.10 0.12 3.18 0.17 .. 2.05 0.04 0.99 0.15 0.21 0.13 3.43 0.20 1.43 0.11 0.21 0.01 2.73 0.25 0.93 0.18 1.18 0.06 0.10 0.25 2.95 0.16. 0.96 0.18 1.67 0.02 0.86 0.14 0.24 0.06 2.63 0.12 1.81 0.03 1.07 0.21 0.27 0.12 3.07 0.19 .. 1.39 0.04 2.68 0.13 1.01 0.19 0.31 0.16 .. 2.84 0.14 0.88 0.12 0.23 0.11 0.01 2.44 0.09 o:ii 1.40 3.01 0.44 0.93 0.21 0.25 0.15 2.75 0.22 1.09 0.22 0.35 0.15 0.10 .. 1.90 2.47 0.25 0.84 0.14 0.21 0.14 0.10 2.00 2.94 0.25 1.03 0.25 0.34 0.30 0.21 1.70 0.19 2.20 2.77 0.34 0.95 0.18 0.37 0.31 2.95 0.25 0.89 0.18 0.29 0.24 0.08 1.58 3.02 0.25 0.95 0.27 0.21 0.20 0.09 1.75 2.67 0.25 0.85 0.16 0.23 0.06 0.04 0:Ol 1.28
437 460 673 450 435 436 440 451 452 674 453 454 459 400 672 401 438 439 455 458 464 465 467 468 477 441 442 402 443 456 403 404 405 406 407 408 409 410 411 412
86.11 85.88
6.78 7.37
2.36 2.72
s0:is 86.70 87.93 86.83 88.89
6.79 6.61 6.60 5.71
KANAWHA-JACXSON FIPILD, KANAWHA COUNTY, W. VA.,FIQURPI 1, NO. 15 2.43 0.27 0.35 0.07 0.08 0.32 0.91 0.30 2.10 0.23 8.20 0.07 0.20 0.98 0.20 1.40 2.20 0103 o:is 0183 0:io 0:io o:ii 0:09 2136 2.34 0.10 0.21 2.22 0.81 0.29 0.20 0.24 0.09 2.10 0.04 2.04 0.67 0.08 0.14 0.19 0.05 0.12 2.40 2.29 0.08 0.29 0.08 0.27 0.83 0.10 0.20 0.02 1.88 2.19 0.67 0.18 0.14 0.04 0.12 0.15
...
6.14
2:91
8i:82 85.60 88.63 84.29 86.96 86.64
414 415 416 447
424 425
449
:
8 i 02
.
.... .. .. .. .. ..
~
... 7.00 ...
... ...
~
~~
.. .. ..
..
7.29 7.16 7.05 8.50 6.73 6.85
2:il 2.28 1.78 2.80 2.30 2.25
0:30 0.36 0.08 0.41 0.19 0.27
8.96 7.51 9.09 7.28
3.07 2.51 3.81 2.35
i:io
81.44 79.04 84.05 83-44 84.83 85.39 84.00 84.88 82.68 83.08 82.11 84.35 83.63 84-77 83.28 84.56 84.04 83.88 84.98 85.21 84.90 81.66
6.84 7.12 6.80 7.65 6.49 6.65 7.34 6.54 7.53 6.61 6.79 6.02 7.39 6.75 7.59 7.31 6.39 6.49 6.87 7.49
86:26 85.35
7.37 6.24
84.75 85.79
...
2.32 2.30 2.49 2.45 2.26 2.43 2.67 2.22 2.71 2.37 3.60 2.36 2.37 2.34 3.86 3.70 3.71 4.60
2:hS 2.00
0.24 0.23 0.38 0.20 0.39 0.17 0.24 0.32
1:63
0:36
..
..
0:94 0.86 0.49 1.00 0.88 0.85
o:ie
0.17 0.08 0.33 0.17 0.20
o:is
0.35 0.12 0.29 0.26 0.27
o:ii
0.31 0.07 0.36 0.17 0.23
o:i2 0.13 0.05 0.13 0.05 0.10
0:io 0.22 0.15 0.26 0.18
0:22 0.32 0.30 0.39 0.25
o:i1
0:05
o:Oz
0.33 0.20 0.33 0.21
0.27 0.17 0.07 0.09
.. .. ..
i:iz
1.12 0.92 1.25 0.87 0:is 0.75 0.80 0.58 0.70 0.79 0.83 0.83 0.80 0.85 0.97 0.95 0.86 0.96 0.78 1.01 0.82 0.86 0.95 1.24 1.11 1.19 1.51
o:i5 0.10 0.15 0.07 0.13 0.17 0.15 0.22 0.20 0.11 0.25 0.07 0.18 0.19 0.09 0.15 0.13 0.22 0.20 0.20 0.15 0.16 0.20
0:32 0.30 0.29 0.14 0.14 0.23 02 0:28 0.30 0.26 0.30 0.36 0.25 0.25 0.15 0.25 0.29 0.28 0.24 0.33 0.30 0.32 0.41
033 0.22 0.23 0.07 0.20 0.20 0.16 0.28 0.24 0.18 0.30 0.23 0.28 0.26 0.11 0.15 0.28 0.26 0.21 0.21 0.20 0.22 0.22
0106 0.03 0.07 0.02 0.09 0.07 0.12 0.22 0.05 0.03 0.12 0.11 0.06 0.10 0.05 0.04 0.06 0.09 0.05 0.09 0.09 0.06 0.07
0:09 0.05 0.06 0.03 0.05 0.06 0.07 0.04 0.03 0.02 0.06 0.08 0.12 0.14 0.04 0.02 0.07 0.09 0.05 0.12 0.04 0.10 0.06
1.50 1.75 1.88 2.30 1.68 2.10 1.80 1.96 2.23 1.76 2.40 2.30 2.10 2.20 2.10 2.10 2.20 2.40 2.20 2.50 1.80 2.20 1.02 2.10 1.70 1.90 1 .go 1.35
..
....
o:is 0:09 0.04 0.10
,.
2:i5 2.60 1.63 1.80 2.23 2.24
COS
%’
0.01 0.02 0.01 0.01 0.01 0.03 0.03 0.03 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.00
0.01 0.01 0.02 0.02 0.05 0.01 0.02 0.01 0.03 0.03 0.01 0.01 0.01 0.03 0.02 0.02 0.00 0.02 0.00 0.02 0.001 0.01 0.01 0.03 0.04 0.00
0.01 0.01 0.02 0.02
Trace 0.01 0.01 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.005 0.01 0.00 0.00 0.00 0.005
KANAWHA , COUNTY, CAtdPBlLL CRBBK F X ~ L D w. VA., FIOUBB1, No. 16 0.26 0.22 0.06 0.08 * 1.00‘ 0.26 0.78 0.12 0.09 0.28 0.20 0.04 1.10 0.36 0.65 0.13 0.10 0.10 0.81 0.07 0.24 0.22 0.08 0.70 0.22 0.19 0.04 0.20 0.96 0.14 0.02 0.60 0.23 0.77 0.16 0.22 0.21 0.09 0.06 1.30 0.03 0.09 0.42 0.03 0.04 0.01 1.00 0.19 0.81 0.08 0.31 0.16 0.03 0.79 0.08 0.21 0.20 0.20 0.82 0.19 1.50 0.12 0.07 0.13 0.92 0.25 0.19 1.40 0.07 1.60 0.17 0.61 0.13 0.21 0.18 0.07 0.26 0.80 0.13 0.28 0.16 1.10 0.03 0.12 0.94 0.15 0.16 0.18 1.00 0.27 0.85 0.21 0.26 0.23 0.06 1.10 0.16 0.18 0.08 0.14 0.81 0.18 1.10 0.97 0.52 0.66 0.40 1.50 0.22 0.78 o:i3 0.29 o:i7 0:05 0.23 0.80 0.18 0.19 0.18 0.05 1.10 0.08 0.04 0.08 0.82 0.27 0.19 1.30 0.05 0.21 0.76 0.16 0.18 0.18 1.20 0.08 0.20 0.04 1.12 0.15 1.19 6.30 1.70 o:ii 0:67 o:is o:i7 0:22 0.50 0:68 032 0.25 0.61 0.07 0.15 0.15 0.07
..
..
CAMPBBLL C B ~ B FIBLD. K BOONSCOUNTY, W. VI.. FIOUBR 1, No. 16 0.10 0.70 0.10 0.23 0.14 0.07 0.03 0.61 0.10 0.65 0.10 0.20 0.16 0.12 0.a5
84.57 6.51 1-94 84.96 6.00 1.79 a Slow combustion analysis. Caloulated as if the gas oonsisted of methane and ethane only.
541
0:07
..
:
o:i7 0.15 0.33 0.11 0.15
o:io
..
86 64
...
~~
.. ..
..
5.80 5.79 6.58 6.43 6.28 6.93 7.17 7.36 6.96 7.38 6.80 7.70 6.86 8.23 7.95 10.52 6.62 7.83 7.34 10.90 10.51 10.66 12.32
~~
301
..
5.10 5.57
THV B:T:U:
1140 1119 1135 1146 1134 1133 1138 1120 1144 1138 1120 1158 1135 1115 1154 1137 1147 1140 1134 1123 1124 1152 1109 1108 1089 1111 1097 1086 1157 1099 1111 1123 1135 1091 1169 1106 1111 1119 1128 1164 1120 1174 1114 1175 1106 1102 1116 1077 1106 1120 1124 1142 1127 1112 1142 1139 1121 1146 1111 1167 1115 1134 1117 1197 1172 1184 1213
Sp. Gr.
0,6549 0.6734 0.6636
0.6522 0.6737 0.6684 0.6678 0.6653 0.6565
Water Vapor,
%
0.07 0.06 0.06 0.08 0.11 0.08 0.07 0.09 0.09 0.09 0.04 0.12 0.08 0.18 o:i3 0.12 0.12 0.10
olio
0.10 0.10 0.17 0.17 0.50 0.10 0:09 0.6391 0.6391 0.6589 0.671 0.6324 0.685’ 0.6487 0.6519 0.6434 0.6522 0.6786 0.6573 0.6879 0.6546 0.6871 0.6472 0.6413 0.652 0.6300 0.6436 0.661 0.661 0.671 0.662 0.651 0.670 0.670 0.660 0.674 0.654 0.683 0.6641 0.6541 0.6545 0.701 0.687 0.695 0,7084
.. o:iz
1080 1086 1082 1117 1087 1040 1075 1086 1076 1070 1093 1093 1103 1094 1100 1097 1087 1086 1092 1101 1102 1119 1067
0.687 0.693 0.688 0.672 0,693 0.674 0.6954 0.704 0.696 0.682 0.697 0.696 0.685 0.686 0.693
0.16 0.20 0.20 0.20 0.12 0.21 0.19
1059 io60
0.6830 0.0821
0.687
0.684 0.680 0.682 0.689 0.6875 0.6769 0..I380
0.19 0.09 0.19 0.17 0.14
o:io 1.20 0.12 0.06 0.12 0.08 0.74 0.17 0.16 0.18 0.12 0.20 0.16 0.15 0.12 0.15 0.16 1.20 0.15 0.23 0.16 0.20 0.14 0.14 0.14 0.20 0.15 0.20 0.21
..
o:io
0.16
..
0.13 0.16
o:is
0.12
o:io
0.14 0.21 0.10
..
0.14 0.10
302
INDUSTRIAL AND ENGINEERING CHEMISTRY
oxygen by absorption 111alkaline pyrogallol, and carbon monoxide and illuminants by palladium chloride. The tests for oxygen, carbon monoxide, and illuminants were negative. The hydrogen sulfide was determied in the field by the Tutwiler method. The condensate was analyzed with a Podbielniak Supercal fractional distillation apparatus. The fiactional distillation analyses are reported in per cent by gas volume on the dry basis. The water vapor content is reported in per cent by gas volume as received. These values, determined psychrometrically, are approximations only but are a good indication of the accumulation of water in the well bore. The total heating value is reported in British thermal units per cubic foot saturated with water vapor and measured at 60" F. and 30 inches of mercury. The specific gravity is reported as the ratio of gas to air a t the room temperature at the time of the test. The analyses are calculated on the inert-free or pure-hydrocarbon basis, just as coal analyses are calculated on the pure-coal or mineral-matter-free basis. The inert gases include nitrogen, carbon dioxide, helium, and hydrogen sulfide (when present). FREQUENCY OF OCCURRENCE OF COMPOUNDS
The analyses in Table I show that the gas along or near the eastern limits of the Oriskany sand in the strongly folded Appalachians consists of almost pure methane with small amounts of ethane and negligible amounts of propane and higher-boiling hydrocarbons. The gas in the central portion of the geosynclinal basin contains considerable quantities of ethane, propane, butanes, pentanes, hexanes, and higher-boiling hydrocarbons. The sand does not extend to the western edge of the basin. Sands that do, have gas that approach pure methane (7) toward the western edge of the basin, just as the Oriskany gas does toward the eastern edge. A decrease of higher-boiling hydrocarbon content from the central portion of the basin toward the west is indicated by their decrease in the gas from wells on the western edge of the Kanawha-Jackson field and the Ravenswood wells. 1240
I
I
I
I
1
I
I
Vol. 36, No. 4
The hydrocarbons for each of the, wells are plottrd against T.H.V. (calculated on inert-flee basis) in Figure 2. Only a few of the analyses listed in Table I are shown. The analysrs plottrd were selected at random to cover the range of heating values so that the chart would be more legible than if all were plotted. The spread of the points is similar to that shoan when all thc analyses are plotted. The methane content varies inversely as all the higher hydrocarbons. The curves for the higher hydrocarbons extend toward 100% methane as a common ccmter ~f origin. When plotted on log-log coordinates against thc numbcr of carbon atoms in the molecule, each analysis gives a smooth v~irve~ which usually approximates a straight line. The averagc of all the analyses for the Kanawha-Jackson field is so plotted in Figure 3. Per cent by gas volume is almost numerically the same as mole per cent in this instance and is so used. This curve represents the frequency of occurrence of the hydrocarbons in the gas phase in the Kanawha-Jackson reservoir. If this curve holds when extrapolated to include the liquid hydrocarbons, then we can calculate the quantity of oil that should be associated with the gas. This curve may present an indication of the reactions which originated the natural gas. The normal paraffins predominate over the isoparaffins. There appears to be more of any normal compound present than the sum of all of its isomers, even in the higher-boiling fractions of t h r condensate. Where two or more isomers are present, thc one boiling next to the normal paraffin usually predominates over the lower-boiling isomers. The Oriskany gas contains little carbon dioxide, except in the Campbell Creek. W. Va., field where more than 5% carbon dioxide was present in gas from a few of the wells. Hydrogen sulfide occurs in small amounts in several of the Oriskany gas fields in New York, Pennsylvania, and West Virginia. The Kanawha-Jackgon field has a small high-hydrogensulfide area (less than 100 grains per 100 cubic feet) from which the hydrogen sulfide content decreases rapidly in all directions to I
I
I
I
I
1
I
I
/'e
M E T H A N E OR T O T A L HIGHER HYDROCARBONS 8 ETHANE I PROPANE A BUTANES 0 PENTANES x HEXANES HEPTAMESt
L
100
I
95
I
I
6
7
I
1
I
I
I
8 9 IO II 1 2 E T H A N E , E T C , IN P E R C E N T I
90 METHANE, I N PERCENT
I
I
I
I
I
I
I
I3
14
15
16
17
18
19
I
85
INDUSTRIAL AND ENGINEERING CHEMISTRY
April, 1944
303
Table II. Operating Status of Well at Time of Sampling Well No. 400 ...
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421B 4210* 422 4238 423B* 424 425 426 427 4284 428B* 429 430
Age New New 6 mo. 2 mo. 9 mo. 3 mo. New 7 mo. 5 mo. 4 yr. 2 mo. 4 vr. 4 $r. 18 mo 2 yr. 7 mo. 10 mo. New 7 mo. 8 mo. 10 da. New I yr. New 8 mo. 12 mo. New 2 mo. 8 mo. 9 mo. 9 mo. 18 mo. 1 yr. 5 mo.
0 en
or 8losed
Shut in Shut in Flowing Flowing Shut in Shut in Shut in FloGngn Shut i n Flowing Shut in Shutjn Flowing6
No gasoline.
...
...
.
I
I
.
.
.
1500 1675
la75
...
... ... ... ... ...
..
86
.86 .
...
...
500
500 80
... ..*
...
... ... ...
FloGng Shut i n Flowing
1350
80 1350 25
FlowingQ Shut i n Shut in
1260 1120
300 1120
...
... ... ... ... 1020 ...
...
1100
...
Shu‘t.Cn Flowing Shut in FlowingC
* Repeat samples. a
Pressure, Lb./Sq. In Resy- Samvoir pling 1860 1860 1700 1700 ... 185
...
1020
... ...
1000
... ... ...
... ...
. .
Well No. 431 432 433 4344 434B* 435 436d 437 438 439 440 441 442 443 444
Age New 2 mo.
1 mo. 2 mo. 17 mo. New New 3 mo. 4 mo. 6 mo. 3 mo. New 1 1 mo. New 1 mo.
445 New 446 4 mo. 447 10mo. 448 New 449 New 450 New 451 1 mo. 452 New 453 New 454 New 455 ~~.New 456 2 mo. 457 New 458 New 459 4 mo. 460 New 461 New
0 en or 8loaed Shut i n Flowing
... ...
Flo&g Shut in Flowing Flowing Shut i n Shut in Flowing Cleaning Shut in Shut in Part-time flowing Shut i n Shut i n Flowinga Flowing Shut i n Shut i n Flowing Shut i n Shut i n Shut i n Shut i n
barrels oil. Through l/r-inch orifioe.
less than 1 grain per 100 cubic feet. Large acreages of the field are .free of hydrogen sulfide. Certain producing companies use the Girbotol process to remove or reduce the hydrogen sulfide. Combination desulfurization-dehydration plants are used to remove hydrogen sulfide and suEcient of the water vapor to prevent hydrate formation at pipe line maximum pressures and minimum temperatures. The reagent is a solution of monoand/or diethanol amine and d i e t h y l e n e glycol. T h e amines are used to remove the hydrogen sulfide and some of the water, and the diethylene glycol serves to remove water and to give the l i q u i d t h e n e c e s s a r y physical characteristics over all operating c o n d i t i o n s . Carbon dioxide is removed along with hydrogen sulfide. Contact is made between the reagent and gas in a counterc u r r e n t bubble-cap tower. The “fouled” reagent is regenerated by heating in a reboiler at 250-320” F. The process is continuous and automatic. m . 1 , 1 ~ 1The ~ nitrogen content of a the Oriskany gas is low; however, the sand does not extend into the highnitrogen areas (6) in the Appalachian Province. The nitrogen content does not appear to have any relation .I l to the content of other gases NUMBER OF CARBON ATOMS PER MOLECULE in natural gas.
2070
... ... ,,, ...
...
...
150 Atm.
1505
1505
1230
...
.
.
I
150
BO
1230
... ...
1825 1825 1850 1850
1825 1825 1850 1850
1800 18006
1800 250
...
li00 1540
e
215
... ... ...
... ... 916
d
...
...
...
Flo&g Flowing Flowing Shut i n
... ...
2070 1750
.,, ...
...
b 20 C
Pressure Lb./Sq. .;1 ReamSamvoir Dlina - 1200 1200 ... 1200 1000 360
... ... ...
1540
Well No. 462 463 464 465 466 467 468 469 470 47 1 472 473 474 475 476 477 541 600 613 614 625 626 627 628 629 630 631 651 67 1 672 673/ 6748 692 694
Age New New New 9 da. New 2 yr. 15 mo. New New New New New New 15 mo. 2 vr. 14“da. 3 mo. New New New 5 rno. 20 ds. 5 mo. New New New 8 mo. 16 mo. New @/z yr. 1 yr. 41/a yr. 6 mo. New
0 en or &osed Flowing Shut i n Flowing Flowing Flowing Shut i n Flowing Shut i n Shut i n Flowing Shut in Shut i n Shut i n Flowing Flowing Flowing Driiling Drillipg Shut‘ i n
Pressure, Lb./Sq. In. ReserSamvoir d- i n g... 200 1775 1775 Atm. 775 ..,
... ...
1000 1350 1620 1800 1800 1800 1800
.(. ...
2400
1350 1620 6 1800 1800 1800 260 260 575
... 1150
Atm. Atm. 1150
...
... ... . .
...
Flowing Flowing Flowing Flowing Flowing Flowinga Flowing Flowing Flowing Flowing Shut in
J u s t turned i n line first time. 1700 pounds back presdure.
...
... . . ,
... .. 80 . . .,.
1400
...
505 .
I
.
40
...
80 85 85 5 1400
1 Same well as 460. Same well as 452. Q
Liquid condensate separates from the gas at the wellhead in the Kanawha-Jackson field. The wells make from 0 to 1500 gallons of condensate per million cubio feet of gas produced; 300 gallons is an approximate average figure. This condensate is usually water-white with that of a few wells showing a slight yellow color. The density ranges from 0.68 to 0.74, the more common value being 0.69. An average fractional distillation analysis of samples from twenty-five wells gave: pentanes and lighter, 8.9 liquid volume per cent; hexanes, 15.3%; heptanes, 25.0%; octanes, 18.9%; nonanes, 14.5%; and decanes and heavier, 17.4%. Although the analysis is reported as if the condensate consisted of paraffin hydrocarbons, ring compounds (possibly both naphthenes and aromatics) are present in appreciable quantities. The normal paraffin hydrocarbons predominate. To January 1, 1944, the Kanawha-Jackson field had produced about 600 billion cubic feet of gas, consisting of approximately 22 billion pounds of methane, 3.8 billion of ethane, 2 billion of propane, 1.2 billion of butanes, 0.6 billion of pentanes, 0.4 billion of hexanes, and 0.8 billion of heptanes and higher-boiling hydrocarbons. The field has about reached its peak of production so that its proved reserves are of the order of magnitude of that already produced. Some of these hydrocarbons are used as a source of raw chemicals by the industries in the Kanawha Valley. LITERATURE CITED
Cathcart, S. H., and Myers, T. H., Pa. Topographical & Geol. Survey, Bull. 107, 2 4 (1934). (2) Garner, J. B. and Miller, R. W-., Oil Gas J.,26, No. 4 , 137 (1927). (3) Hartnagel, C. A,, private communication. (4) Mineral Resources of U. S., Part 11, pp. 1460-77, Washington, Govt. Printing Office, 1913. (5) Price, P. H. and Headlee, A. J. W., “Physical and Chemical Properties of Natural Gas of W. Va.”, Vol. IX, p. 43, Moreantown. W. Va. Geol. Survev. 1937. ( 6 ) Prioe, p. H. and Headlee, A. J. W.; bull. Am. Assoc. Petroleum
(1)
Geol., 22, 1181 (1938). (7) Ibid., 26, 19-35 (1942). (8) Robinson, J. F., private communication.
PRES~NTED before the Division of Gas and Fuel Chemistry a t the 106th Meeting of the AMERICAN CHEDIICAL SOCIETY, Pittsburgh, Pa. Published by permission of Paul H. Price, State Geologist.