74 Reaction Mechanism of FAD-Containing
Downloaded by UNIV OF OTTAWA on March 11, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch074
Monooxygenases SHOZO YAMAMOTO, YOSHITAKA MAKI, TERUKO NAKAZAWA, YASUMICHI KAJITA, HIROSHI TAKEDA, MITSUHIRO NOZAKI, and OSAMU HAYAISHI Department of M e d i c a l Chemistry, Kyoto University Faculty of Medicine, Kyoto, Japan
Imidazoleacetate and L-lysine monooxygenases from pseudomonads were obtained in crystalline form. Both enzymes were established to contain FAD probably as a sole cofactor. Available evidence indicates that the reaction catalyzed by these enzymes involves the reduction of FAD, the monooxygenation of substrate, and the reoxidation of reduced FAD. The mechanism of activating molecular oxygen by these FAD-containing monooxygenases is discussed.
TiJ~onooxygenase
( m i x e d f u n c t i o n oxidase) catalyzes t h e i n c o r p o r a t i o n
of one a t o m of m o l e c u l a r o x y g e n i n t o substrate a n d t h e r e d u c t i o n of t h e other a t o m to w a t e r . F o r t h e r e d u c t i o n of t h e o x y g e n a t o m , some monooxygenases
r e q u i r e a n exogenous r e d u c t a n t s u c h as r e d u c e d p y r i
dine nucleotide
a n d ascorbate,
h y d r o g e n atoms of substrate.
whereas
others
consume
endogenous
T h u s , the m o n o o x y g e n a s e r e a c t i o n i n v o l v e s
both the oxidation (dehydrogenation)
of a h y d r o g e n d o n o r a n d t h e
o x y g e n a t i o n o f substrate. T o c l a r i f y t h e r e a c t i o n m e c h a n i s m of monooxygenase, w e h a v e re c e n t l y p u r i f i e d t w o monooxygenases acetate m o n o o x y g e n a s e
f r o m pseudomonads.
(5) a n d L-lysine monooxygenase
(10)
Imidazole were ob
t a i n e d i n c r y s t a l l i n e f o r m , a n d b o t h w e r e s h o w n to b e flavoproteins. T h e f o r m e r requires a n exogenous h y d r o g e n d o n o r , b u t t h e latter u t i l i z e s t h e h y d r o g e n atoms of L - l y s i n e . This, p a p e r describes some of t h e results of o u r investigations of t h e t w o F A D ( f l a v i n a d e n i n e d i n u c l e o t i d e ) - c o n t a i n i n g monooxygenases.
We
also discuss the m e c h a n i s m of a c t i v a t i o n of m o l e c u l a r o x y g e n b y these enzymes.
177 In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
178
OXIDATION O F ORGANIC COMPOUNDS
III
Imidazole acetate Monooxygenase Imidazoleacetate
monooxygenase
w a s p u r i f i e d a b o u t 250-fold f r o m
a cell-free extract of a p s e u d o m o n a d a n d w a s o b t a i n e d i n c r y s t a l l i n e f o r m (Figure 1).
T h e specific a c t i v i t y of t h e c r y s t a l l i n e e n z y m e w a s 25.0
/xmoles/min./mg. p r o t e i n , a n d o n t h e basis of a m o l e c u l a r w e i g h t of
Downloaded by UNIV OF OTTAWA on March 11, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch074
90,000 its m o l e c u l a r a c t i v i t y w a s estimated t o b e 2000 at 2 4 ° C .
Figure
1.
Crystalline imidazoleacetate monooxygenase
T h e e n z y m e catalyzes t h e i n c o r p o r a t i o n of one a t o m of o x y g e n i n t o imidazoleacetate,
a n d t h e a c c u m u l a t i o n of i m i d a z o l o n e a c e t a t e
served.
T h e r e a c t i o n p r o d u c t w a s unstable a n d d e c o m p o s e d
ously.
NADH
(nicotinamide
adenine
c o n s u m e d as a h y d r o g e n d o n o r . either b y t h e s p e c t r o p h o t o m e t r i c HC=C—CH COOH
V
I NH
hydrate)
was
T h e e n z y m e assay w a s c a r r i e d o u t measurement
of N A D H o x i d a t i o n o r
HO*—C=C—CH COOH
2
I N
dinucletotide
was ob spontane
2
+ 0% + N A D H + H * 2
I I N NH
+ NAD* + H O * a
w
C H
C H
b y t h e p o l a r o g r a p h i c d e t e r m i n a t i o n of o x y g e n c o n s u m p t i o n .
K
m
values
f o r i m i d a z o l e a c e t a t e , N A D H , a n d o x y g e n w e r e estimated to b e 0.3, 0.01, a n d 0.02 m M , respectively. T h e c r y s t a l l i n e e n z y m e w a s y e l l o w , a n d its a b s o r p t i o n s p e c t r u m is presented i n F i g u r e 2. T h e prosthetic g r o u p w a s i d e n t i f i e d as F A D , one m o l e of w h i c h w a s e s t i m a t e d
p e r m o l e of the e n z y m e p r o t e i n .
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
The
74.
YAMAMOTO
ET AL.
FAD-Containing
179
Monooxygenases
1.0
Downloaded by UNIV OF OTTAWA on March 11, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch074
250
350
450
Wavelength, m/i Figure 2. Absorption spectrum of zoleacetate monooxygenase. Protein, for visible region and 0.045% for violet region enzyme
c a t a l y z e d the
anaerobic flavine
r e d u c t i o n of
several
dyes
imida0.45% ultra-
with
NADH
under
conditions; 2,6-dichlorophenolindophenol, F A D , F M N (ribo-
5 ' - p h o s p h a t e ) , a n d f e r r i c y a n i d e . I n the absence of i m i d a z o l e a c e
tate the e n z y m e c o u l d o x i d i z e N A D H presence.
K
m
at o n l y 0 . 5 %
of the rate i n its
values of the N A D H oxidase a c t i v i t y for N A D H a n d o x y g e n
w e r e e s t i m a t e d to b e 0.3 a n d 0.02 mM,
respectively.
A n a l y s e s of the e n z y m e f a i l e d to detect significant amounts of i r o n and
c o p p e r ( T a b l e I ) , a n d most m e t a l c h e l a t i n g agents tested d i d not
s h o w significant i n h i b i t i o n of the e n z y m e a c t i v i t y T a b l e I.
(11).
Estimations of Iron a n d Copper of Imidazoleacetate a n d L - L y s i n e Monooxygenases, /miole Enzyme
Iron"
Copper
Imidazoleacetate monooxygenase (0.120)
0.001
0.000
L - L y s i n e monooxygenase (0.103)
0.000
0.003
a
Dry ashing of enzyme protein was carried out. Iron was estimated by o-phenanthroline method and copper by sodium diethyldithiocarbamate or dithizone method. a
Reduction
of
the
enzyme-bound F A D was
s o d i u m d i t h i o n i t e at p H 10.5
(Figure 3).
observed
on adding
F A D r e d u c t i o n w a s also o b
s e r v e d o n a d d i n g N A D H b o t h i n the presence of i m i d a z o l e a c e t a t e a n d i n its a b s e n c e ( F i g u r e 3 ) .
A n a b s o r p t i o n s p e c t r u m characteristic
of
the
s e m i q u i n o i d f o r m of F A D a p p e a r e d w h e n the e n z y m e w a s h a l f r e d u c e d w i t h s o d i u m d i t h i o n i t e b u t not w i t h N A D H . W h e n a n e q u i m o l a r a m o u n t of N A D H w a s a n a e r o b i c a l l y a d d e d to the e n z y m e i n the presence of i m i d a z o l e a c e t a t e , the r e d u c t i o n of F A D
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
180
OXIDATION O F ORGANIC COMPOUNDS
III
w a s c o m p l e t e a n d i m m e d i a t e . A i r w a s t h e n i n t r o d u c e d to r e o x i d i z e F A D , a n d t h e a m o u n t of i m i d a z o l e a c e t a t e w a s m e a s u r e d .
O n adding N A D H
( 4 5 m/*moles), F A D (44 m ^ m o l e s ) w a s r e d u c e d , a n d o n the r e o x i d a t i o n
Downloaded by UNIV OF OTTAWA on March 11, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch074
of F A D , i m i d a z o l e a c e t a t e (42 m/xmoles) w a s c o n s u m e d .
_ i
i
400
'^1
i
500
400
500
Wavelength, m/i Figure 3. Reduction of imidazoleacetate monooxygenase with sodium dithionite at pH 10.5 (left) and with NADH (right)
L-Lysine Monooxygenase L - L y s i n e monooxygenase f r o m a p s e u d o m o n a d w a s p u r i f i e d a p p r o x i m a t e l y 100-fold, a n d t h e e n z y m e w a s c r y s t a l l i z e d (10)
(Figure 4).
Its
specific a c t i v i t y w a s 10.5 /mioles/min./mg. p r o t e i n . T h e m o l e c u l a r w e i g h t w a s e s t i m a t e d to b e 191,000 a n d the m o l e c u l a r a c t i v i t y w a s c a l c u l a t e d to b e 2082 at 3 4 ° C . T h e e n z y m e catalyzes the i n c o r p o r a t i o n of one a t o m of o x y g e n i n t o L - l y s i n e , a n d 8 - a m i n o n o r v a l e r a m i d e is f o r m e d c o n c o m i t a n t l y w i t h the e v o l u t i o n of c a r b o n d i o x i d e .
E n z y m e a c t i v i t y w a s estimated
b y the
p o l a r o g r a p h i c d e t e r m i n a t i o n of o x y g e n c o n s u m p t i o n . T h e c o n c e n t r a t i o n c u r v e of L - l y s i n e w a s s i g m o i d a l , a n d 0.18 m M L - l y s i n e w a s r e q u i r e d f o r the h a l f m a x i m a l v e l o c i t y of the e n z y m e . CH NH 2
(CH ) 2
3
2
+ 0*
CH—NH COOH
CH NH
2
2
2
(CH ) 2
3
C—NH
2
+ CO, +
H 0* 2
2
O*
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
74.
FAD-Containing
YAMAMOTO ET AL.
The
enzyme
was
also
s h o w n to
181
Monooxygenases contain
FAD.
The
absorption
s p e c t r u m is s h o w n i n F i g u r e 5. T w o moles of F A D w e r e estimated p e r m o l e of e n z y m e p r o t e i n .
T h e e n z y m e c a t a l y z e d the r e d u c t i o n of
d i c h l o r o p h e n o l i n d o p h e n o l i n the presence of p h e n a z i n e
A n a l y s e s of the e n z y m e s h o w e d n o i r o n , c o p p e r , or other present i n significant quantities ( T a b l e I ) .
Downloaded by UNIV OF OTTAWA on March 11, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch074
tested w e r e not i n h i b i t o r y to the e n z y m e
Figure
4.
I 350
metal
M o s t m e t a l c h e l a t i n g agents (11).
Crystalline L-lysine genase
0 L-J 250
2,6-
methosulfate.
monooxy-
I 450
I
Wavelength, m/i Figure 5. Absorption spectrum of ^-lysine monooxygenase. Protein, 0.62% for visible region and 0.048% for ultraviolet region
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
182
OXIDATION OF ORGANIC
COMPOUNDS
III
The enzyme-bound F A D could be reduced b y adding sodium d i t h i o n i t e . F i g u r e 6 presents the s p e c t r a l c h a n g e of F A D at p H 7.0, a n d a n a b s o r p t i o n of s e m i q u i n o i d of F A D a p p e a r e d d u r i n g the r e d u c t i o n . W h e n the e n z y m e w a s i n c u b a t e d w i t h L - l y s i n e u n d e r the a n a e r o b i c
conditions,
F A D w a s r e d u c e d at a rate w h i c h d e p e n d e d o n the c o n c e n t r a t i o n L-lysine.
of
W i t h 0.1 m M L - l y s i n e the r e d u c t i o n o c c u r r e d v e r y s l o w l y as
p r e s e n t e d i n F i g u r e 6.
Downloaded by UNIV OF OTTAWA on March 11, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch074
•
A A
\
o
o 0.5 o
1
1
400
500
i * ^ ^
500
400
Wavelength, m/i Figure 6. Reduction of L-lysine monooxygenase with sodium dithionite at pH 7.0 (left) and with L-lysine at 0.1 mM. Numbers indicate the incubation time in hours (right) A s t o i c h i o m e t r i c a m o u n t (0.1 m M ) e a c h of e n z y m e - b o u n d F A D a n d 4 1
C-u-L-lysine
(u =
uniformly labelled)
was incubated
anaerobically
u n t i l F A D w a s f u l l y r e d u c e d . A f t e r d e p r o t e i n i z a t i o n the r e a c t i o n m i x t u r e w a s s u b j e c t e d to h i g h voltage p a p e r electrophoresis tography.
a n d paper chroma
M o s t of the r a d i o a c t i v i t y a p p e a r e d at t h e area c o r r e s p o n d i n g
to p i p e r i d i n e 2 - c a r b o x y l i c a c i d (a-keto-c-aminocaproic
acid)
(Figure 7),
a n d a significant a m o u n t of c a r b o n d i o x i d e w a s n o t detected.
W h e n the
r e a c t i o n m i x t u r e w a s aerated to r e o x i d i z e F A D a n d t h e n d e p r o t e i n i z e d , the r a d i o a c t i v i t y w a s also f o u n d at the p o s i t i o n of p i p e r i d i n e 2 - c a r b o x y l i c a c i d .
Discussion By
i n c o r p o r a t i n g one a t o m
monooxygenases
of m o l e c u l a r
oxygen
into
substrate,
c a t a l y z e a v a r i e t y of r e a c t i o n s — n a m e l y , h y d r o x y l a t i o n ,
dealkylation, epoxide a n d N - o x i d e formation, desaturation, aromatization of steroid, a n d a c i d a m i d e f o r m a t i o n .
T h e p a r t i c i p a t i o n of a
cofactor has b e e n r e p o r t e d f o r each t y p e of monooxygenase
reaction.
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
flavin
74.
FAD-Containing
YAMAMOTO ETA L .
183
Monooxygenases
A n e l e c t r o n transport system is associated w i t h several m o n o o x y genase reactions.
T h e steroid l l / ? - h y d r o x y l a t i n g system of a d r e n a l m i t o
c h o n d r i a consists of a
flavoprotein,
non-heme iron protein a n d homopro-
t e i n ( 3 ) . F a t t y a c y l A C P desaturase f r o m E u g l e n a r e q u i r e s a a n d n o n - h e m e i r o n p r o t e i n (6). as a
flavoprotein
ever,
flavoprotein
I n these m o n o o x y g e n a t i o n systems F A D
is a c o m p o n e n t of a n e l e c t r o n transport system.
imidazoleacetate
and L-lysine
monooxygenases,
How
together
with
s a l i c y l a t e a n d p - h y d r o x y b e n z o a t e h y d r o x y l a s e s , a p p e a r to c o n t a i n F A D as a sole cofactor since i r o n a n d c o p p e r w e r e n o t d e t e c t e d i n significant q u a n t i t i e s i n these e n z y m e s (11,
12).
Downloaded by UNIV OF OTTAWA on March 11, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch074
W h e n F A D of i m i d a z o l e a c e t a t e m o n o o x y g e n a s e w a s f u l l y r e d u c e d w i t h N A D H i n the presence of i m i d a z o l e a c e t a t e a n d r e o x i d i z e d b y aera t i o n , a n e q u i m o l a r a m o u n t of i m i d a z o l e a c e t a t e w a s c o n s u m e d p r o b a b l y to f o r m i m i d a z o l o n e a c e t a t e . A n analogous result has b e e n o b t a i n e d w i t h s a l i c y l a t e h y d r o x y l a s e (9, 13).
T h e s e findings i n d i c a t e that t h e r e d u c e d
f o r m of e n z y m e - b o u n d F A D serves as a h y d r o g e n d o n o r i n the h y d r o x y l a t i o n of substrate a n d reduces o n e a t o m of o x y g e n to w a t e r . W h e n a s i m i l a r experiment was carried out w i t h L-lysine monooxygenase a n d C - L - l y s i n e , 1 4
the r a d i o a c t i v i t y w a s R CH
R FAD
2
I CH—NH
R
R
I
CH | C=NH 2
or
CH 2
C—NH
1
2
COOH
COOH
COOH
2
CH
2
+ C—NH
ca
2
2
II O 8-Aminonorvaleramide
I H 0 2
Lysine
0
R CH NHo
2
+ c=o
"
COOH R:
H N—(CH ) — 2
2
3
a-Keto-eaminocaproate
Piperidine 2-carboxylate
f o u n d at t h e area c o r r e s p o n d i n g to p i p e r i d i n e 2 - c a r b o x y l i c a c i d b u t l i t t l e at the p o s i t i o n of 8 - a m i n o n o r v a l e r a m i d e . U n d e r t h e e x p e r i m e n t a l conditions, F A D was reduced very slowly, a n d a rather long incubation t i m e w a s r e q u i r e d f o r its f u l l r e d u c t i o n . If a n i n t e r m e d i a t e f o r m e d b y the d e h y d r o g e n a t i o n of L - l y s i n e is u n s t a b l e a n d r e a d i l y h y d r o l y z e d , after the l o n g i n c u b a t i o n t i m e t h e i n t e r m e d i a t e m a y b e h y d r o l y z e d t o p i p e r i d i n e 2 - c a r b o x y l i c a c i d , w h i c h is n o t susceptible to m o n o o x y g e n a t i o n .
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
184
OXIDATION O F ORGANIC
COMPOUNDS—HI
c.p.m. -6000
-4000
+
-2000
r
, , - T H
Downloaded by UNIV OF OTTAWA on March 11, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch074
O
8-Aminonorvaleramide
CD
O
L-Lysine
8-Aminovalerate
O
Piperidine 2 carboxylate
Figure 7. Formation of piperidine 2-carboxylic acid. The enzymebound FAD (0.1 mM) and C-u-L-lysine (0.1 mM, 1,000,000 c.p.m.) were incubated anaerobically for 7 hours. After deproteinization by adding perchloric acid, an aliquot of the reaction mixture was subjected to high voltage paper electrophoresis (2000 volts) at pH 3.4 for 1 hour n
Although
t h e i d e n t i f i c a t i o n of the
1 4
C-labeled product
as p i p e r i d i n e
2 - c a r b o x y l i c a c i d has n o t b e e n e s t a b l i s h e d a n d the m e c h a n i s m of its f o r m a t i o n has n o t b e e n c l e a r l y e l u c i d a t e d , t h e f o r m a t i o n of t h e a-keto a c i d may
suggest
the i n t e r m e d i a t e
formation
of d e h y d r o g e n a t e d
L-lysine
c o n c o m i t a n t w i t h t h e r e d u c t i o n of F A D . T h e f u n c t i o n of m e t a l i o n i n a c t i v a t i n g m o l e c u l a r o x y g e n has l o n g b e e n i n v e s t i g a t e d a n d discussed.
S e v e r a l dioxygenases h a v e b e e n estab
l i s h e d to c o n t a i n i r o n w h i c h has b e e n p o s t u l a t e d to m e d i a t e the a c t i v a t i o n of m o l e c u l a r o x y g e n (7, 8). t a i n e d i n phenolase
(2)
T h i s is also the case w i t h t h e c o p p e r c o n
a n d d o p a m i n e /3-hydroxylase (1).
A s described
a b o v e , h o w e v e r , i r o n a n d c o p p e r a p p e a r to b e absent i n some m o n o oxygenases, a n d F A D seems to b e a sole c o f a c t o r of these
enzymes.
T h e r e f o r e , i n t h e absence of m e t a l i o n , c o n s i d e r a t i o n of t h e m e c h a n i s m of a c t i v a t i n g m o l e c u l a r o x y g e n suggests a n a d d i t i o n a l f u n c t i o n of r e d u c e d flavin
i n a d d i t i o n to its a c t i o n as a n e l e c t r o n carrier.
T h e spontaneous
o x i d a t i o n of r e d u c e d flavin l e a d i n g to a v e r y reactive h y d r o p e r o x i d e has been reported b y M a g e r a n d Berends
(4).
T h i s h y d r o p e r o x i d e is s u p
p o s e d to arise b y a r e a c t i o n b e t w e e n a s e m i q u i n o i d f o r m of flavin a n d molecular oxygen.
W h e t h e r or not such a hydroperoxide participates i n
the e n z y m a t i c a c t i v a t i o n of m o l e c u l a r o x y g e n w i l l r e q u i r e e v i d e n c e o b t a i n e d f r o m experiments w i t h F A D - c o n t a i n i n g monooxygenases. T h e s e m i q u i n o i d f o r m of F A D w a s o b s e r v e d
spectrophotometrically
w h e n t h e enzymes w e r e r e d u c e d w i t h s o d i u m d i t h i o n i t e . H o w e v e r , s u c h a species c o u l d n o t b e d e t e c t e d o n r e d u c t i o n w i t h substrate, a n d i t has
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
74.
YAMAMOTO ET AL.
FAD-Containing
Monooxygenases
185
not b e e n established w h e t h e r a s e m i q u i n o n e of F A D is i n v o l v e d i n the catalyses of these e n z y m e s .
Acknowledgment T h i s i n v e s t i g a t i o n has b e e n s u p p o r t e d i n p a r t b y P u b l i c
Health
Service R e s e a r c h G r a n t s C A - 0 4 2 2 2 f r o m the N a t i o n a l C a n c e r Institute a n d A M - 1 0 3 3 3 f r o m the N a t i o n a l Institute of A r t h r i t i s a n d M e t a b o l i c Diseases, a n d b y grants f r o m the Jane C o f f i n C h i l d s M e m o r i a l F u n d f o r M e d i c a l R e s e a r c h , the S q u i b b Institute of M e d i c a l R e s e a r c h a n d the
Downloaded by UNIV OF OTTAWA on March 11, 2013 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch074
Scientific R e s e a r c h F u n d of the M i n i s t r y of E d u c a t i o n of J a p a n .
Literature Cited
(1) Friedman, S., Kaufman, S., J. Biol. Chem. 240, 4763 (1965). (2) Kertesz, D., Zito, R., "Oxygenases," O. Hayaishi, Ed., p. 307, Academic Press, New York, 1962. (3) Kimura, T., Suzuki, K., J. Biol. Chem. 242, 485 (1967). (4) Mager, H. I. X., Berends, W., Biochim. Biophys. Acta 118, 440 (1966). (5) Maki, Y., Yamamoto, S., Nozaki, M., Hayaishi, O., Biochem. Biophys. Res. Commun. 25, 609 (1966). (6) Nagai, J., Bloch, K., J. Biol. Chem. 241, 1925 (1966). (7) Nozaki, M., Kojima, Y., Nakazawa, T., Fujisawa, H., Ono, K., Kotani, S., Hayaishi, O., Yamano, T., "Biological and Chemical Aspects of Oxy genases," K. Bloch, O. Hayaishi, Eds., p. 347, Maruzen Co., Tokyo, 1966. (8) Senoh, S., Kita, H., Kamimoto, M., "Biological and Chemical Aspects of Oxygenases," p. 378, Maruzen Co., Tokyo, 1966. (9) Suzuki, K., Yasuda, H., Sei, K., Takemori, S., Katagiri, M., Seikagaku 38, 521 (1966). (10) Takeda, H., Hayaishi, O., J. Biol. Chem. 241, 2733 (1966). (11) Yamamoto, S., Takeda, H., Maki, Y., Hayaishi, O., "Biological and Chem ical Aspects of Oxygenases," p. 303, Maruzen Co., Tokyo, 1966. (12) Yano, K., Morimoto, M., Higashi, N., Arima, K., "Biological and Chemical Aspects of Oxygenases," p. 329, Maruzen Co., Tokyo, 1966. (13) Yasuda, H., Suzuki, K., Takemori, S., Katagiri, M., Biochem. Biophys. Res. Commun. 28, 135 (1967). RECEIVED
January 8,
1968.
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.