ozone chemistry and technology - ACS Publications

negligible relative to short-wave ultraviolet in the production of ozone in the upper ..... ozone layer in contrast to the partial penetration afforde...
1 downloads 0 Views 2MB Size
Measurement of Ozone in Terms of Its Optical Absorption RALPH STAIR

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by YORK UNIV on 12/14/18. For personal use only.

National Bureau of Standards, Washington 25, D. C.

The unique absorption spectrum of ozone provides an ideal physical basis for measuring its concentra­ tion in the atmosphere even in the presence of significant quantities of other atmospheric pollutants, whether of gaseous or particulate character. V a r i ­ ous types of optical equipment have been consid­ ered, both for measurement of the total amount of ozone and for determination of its vertical distribu­ tion a n d horizontal concentration. Natural sunlight furnishes a suitable a n d convenient light source for measuring the total amount a n d vertical distribution of ozone. Special sources having high radiant intensity within the spectral region of 2500 to 3600 Α., where ozone has a high optical absorption, are desired for use in measuring the horizontal concen­ tration of ozone. The light source, whether the sun or some special source such as a mercury arc lamp, may be employed with a simple filter radiometer or with a more or less elaborate prism or grating spectroradiometer as desired. In most of the recent work at the National Bureau of Standards a double, quartz prism spectroradiometer has been used at Washington, D. C., Climax, Colo., Los Angeles, Calif., and Sunspot, Ν. M., in ozone studies.

Since a b o u t 1845 (44) t h e r e h a s b e e n a n i n t e r e s t i n ozone a n d i n i t s m e a s u r e m e n t a n d i t s effect, e i t h e r d i r e c t l y o r i n d i r e c t l y , u p o n l i f e a n d o t h e r a c t i v i t i e s . O f t e n t h e r e h a s b e e n a difference of o p i n i o n r e g a r d i n g i t s q u a n t i t y a n d effects u p o n l i f e processes. I n f a c t , t h e r e h a s o n o c c a s i o n b e e n a d o u b t as t o i t s existence. A t t i m e s i t has been cloaked w i t h unique h e a l t h - g i v i n g properties w h i c h are inconsistent w i t h present i n f o r m a t i o n . A l t h o u g h a l a r g e n u m b e r of m e a s u r e m e n t s h a v e b e e n m a d e , u s u a l l y b y some c h e m i c a l m e t h o d , m a n y of t h e m a r e t o d a y c o n s i d e r e d w o r t h l e s s because, i n m a n y cases, t h e c h e m i c a l processes i n v o l v e d a r e n o w k n o w n t o h a v e b e e n affected b y o t h e r atmospheric components. I t is o n l y d u r i n g t h e p a s t t w o o r t h r e e decades t h a t a c c u r a t e d a t a o n ozone h a v e b e e n o b t a i n e d t h r o u g h t h e use of i m p r o v e d m e t h o d s of measurement. B e c a u s e ozone is h i g h l y u n s t a b l e a n d u s u a l l y exists i n b u t s m a l l q u a n t i t i e s n e a r 269

ADVANCES

270

IN CHEMISTRY SERIES

t h e e a r t h ' s s u r f a c e r e l a t i v e t o i t s g r e a t e r presence a t h i g h e r a l t i t u d e s , s o m e m e t h o d of p r o d u c t i o n a t these h i g h e r levels m u s t b e p o s t u l a t e d . T h e a c t i o n o f s h o r t w a v e solar r a d i a t i o n i s g e n e r a l l y h e l d as t h e p r i n c i p a l source of e n e r g y f o r t h e p r o d u c t i o n of o z o n e . T h e effects of c o s m i c r a y s , l i g h t n i n g , p a r t i c l e r a d i a t i o n f r o m t h e s u n , o r o p e r a t i o n of p u r e l y c h e m i c a l r e a c t i o n s w i t h i n t h e a t m o s p h e r e a r e t h o u g h t t o be n e g l i g i b l e r e l a t i v e t o s h o r t - w a v e u l t r a v i o l e t i n t h e p r o d u c t i o n of ozone i n t h e u p p e r atmosphere. T h e p h o t o c h e m i c a l r e a c t i o n w h i c h p r o d u c e s ozone f r o m t h e a t m o s p h e r e r e q u i r e s r a d i a t i o n of w a v e l e n g t h s s h o r t e r t h a n a b o u t 2400 A . T h e s e r a d i a t i o n s a r e s u f f i c i e n t l y energetic t o b r e a k t h e c h e m i c a l b o n d of t h e o x y g e n m o l e c u l e a n d p r o d u c e free o x y g e n atoms. T h e oxygen atoms c a n react w i t h the oxygen i n the atmosphere to produce ozone. T h e p r i n c i p a l m o l e c u l a r c o m p o n e n t s of t h e a t m o s p h e r e a r e o x y g e n , n i t r o g e n , c a r ­ bon dioxide, argon, a n d water vapor. These m a y v a r y somewhat w i t h altitude, b u t , e x c e p t f o r w a t e r v a p o r , t h e y e x t e n d t o h i g h levels i n r o u g h l y t h e same r e l a t i v e p r o p o r t i o n s as f o u n d n e a r t h e e a r t h ' s s u r f a c e . T h e y a n d t h e o t h e r m i n o r n o r m a l c o m p o n e n t s of a c l e a n a t m o s p h e r e a r e o p t i c a l l y h i g h l y t r a n s p a r e n t t h r o u g h o u t t h e v i s i b l e a n d u l t r a v i o l e t s p e c t r u m d o w n t o n e a r 2000 A . W h e n r a d i a n t e n e r g y of w a v e l e n g t h s b e l o w 2400 A . is a b s o r b e d , d i s s o c i a t i o n processes m a y be o p e r a t i v e . T h e p r o d u c t i o n of ozone is t h e m o s t n o t e w o r t h y of these processes, as t h e o x y g e n is b r o k e n u p a n d diffuses a m o n g t h e o t h e r c o m p o n e n t s of t h e e a r t h ' s u p p e r a t m o s p h e r e . A l t h o u g h c o m p l e t e l y d i s s o c i a t e d a t t h e h i g h e r levels, a t s o m e w h a t l o w e r levels n o t a l l t h e o x y g e n is d i s s o c i a t e d a n d b y some m o r e o r less u n k n o w n process r e c o m b i n a ­ t i o n o c c u r s , r e s u l t i n g i n a m i x t u r e of 0 , 0 , a n d O W h e t h e r t h r e e a t o m s of Οχ c o m b i n e t o f o r m 0 o r a n O c o m b i n e s w i t h a n 0 is n o t k n o w n . P e n n d o r f (35) a n d B l a c e t (2) h a v e suggested t h a t a t h r e e - b o d y c o l l i s i o n i n v o l v i n g a f o r e i g n b o d y m a y p l a y a p a r t i n t h i s r e c o m b i n a t i o n . J u s t w h a t is t h e process o r j u s t h o w i t o p e r a t e s is n o t c l e a r . T h e ozone's b e i n g h i g h l y o p a q u e t o t h e s h o r t w a v e l e n g t h u l t r a v i o l e t e f f e c t i v e l y shields t h e gas a t s t i l l l o w e r levels f r o m s u c h r a d i a t i o n , so t h a t d e c o m p o s i ­ t i o n o c c u r s (Jf). T h e e n d r e s u l t is t h e r e f o r e a n e q u i l i b r i u m c o n d i t i o n i n t h e u p p e r a t m o s p h e r e b e t w e e n t h e p r o d u c t i o n a n d d e c o m p o s i t i o n of ozone b y s u n l i g h t of t h e different w a v e l e n g t h s , w h i c h is e x e m p l i f i e d b y t h e b u i l d i n g u p of a m a x i m u m d e n s i t y of ozone a t a n i n t e r m e d i a t e l e v e l . T h i s d i s t r i b u t i o n of ozone h a s b e e n f o u n d b y different i n v e s t i g a t o r s a t v a r i o u s t i m e s a n d places t o l i e u s u a l l y b e t w e e n a b o u t 10 a n d 20 m i l e s h i g h (17, 24, 42, 50, 60). 3

3

Methods

of O z o n e

x

v

2

2

Evaluation

F i v e p r i n c i p a l m e t h o d s of ozone e v a l u a t i o n h a v e been e m p l o y e d b y different i n ­ v e s t i g a t o r s a t different t i m e s a n d places. T h e s e m a y be r o u g h l y classified w i t h some v a r i a t i o n s as f o l l o w s : C h e m i c a l m e a s u r e m e n t of ozone i n t e r m s of t h e release of i o d i n e i n a b u f f e r e d potassium iodide solution. Recent improvements i n this m e t h o d p e r m i t the continuous r e c o r d i n g of ozone c o n c e n t r a t i o n i n t e r m s of c o l o r i m e t r y o r p o t e n t i o m e t e r r e a d i n g s (13, 27). C o l o r m e a s u r e m e n t of ozone i n t e r m s of o x i d a t i o n o f p h e n o l p h t h a l i n ( C H O ) t o p h e n o l p h t h a l e i n ( C H O ) . I n t h i s m e t h o d h y d r o g e n p e r o x i d e is u s e d t o d e v e l o p a s t a n d a r d c u r v e (29, 34). P h y s i c a l m e a s u r e m e n t of ozone i n t e r m s of t h e r a t e of c r a c k i n g of b e n t o r s t r e t c h e d r u b b e r (3). M e a s u r e m e n t of ozone i n t e r m s of t h e response of c e r t a i n p l a n t s , e s p e c i a l l y f o r d a m a g e t o u p p e r leaf surfaces (19, 54). O p t i c a l m e a s u r e m e n t of ozone i n t e r m s of i t s u l t r a v i o l e t , l u m i n o u s , o r i n f r a r e d absorption. 2 0

2 0

1 4

4

1 6

4

STAIR-OPTICAL ABSORPTION

271

T h e first f o u r m e t h o d s f o r t h e m e a s u r e m e n t of ozone a r e n o t discussed h e r e , e x c e p t f o r n o t i n g t h a t e a c h of t h e m is m o r e o r less q u a l i t a t i v e i n c o m p a r i s o n w i t h t h e o p t i c a l m e t h o d . T h i s is e s p e c i a l l y t h e case u n d e r c o n d i t i o n s w h e r e i n t h e a t m o s p h e r e c o n t a i n s a n u m b e r of o t h e r p o l l u t a n t s s u c h as exist i n t h e L o s A n g e l e s a r e a . U n d e r c o n d i t i o n s of p o l l u t e d a t m o s p h e r e , d i s a g r e e m e n t o f t e n r e s u l t s a m o n g scientific w o r k e r s (28) as t o w h a t c o n s t i t u t e s a c e r t a i n i d e n t i f i c a t i o n a n d t r u e m e a s u r e of o z o n e . H a a g e n - S m i t (18) e a r l y c o n c l u d e d f r o m results of c h e m i c a l a n d p h o t o ­ c h e m i c a l e x p e r i m e n t s t h a t t h e m a j o r p o r t i o n of t h e o x i d a n t c o m p o n e n t of t h e L o s A n g e l e s s m o g consisted of v a r i o u s o r g a n i c p e r o x i d e s r a t h e r t h a n ozone. O z o n e p l a n t d a m a g e i s o f t e n c o m p l i c a t e d b y t h e presence of o t h e r a t m o s p h e r i c o x i d a n t s (19). F u r t h e r m o r e , ozone p l a n t d a m a g e o c c u r s o n l y i n t h e presence of l a r g e a m o u n t s of ozone. C r a b t r e e a n d B i g g s (5) f o u n d t h a t c e r t a i n free r a d i c a l s m a y p r o d u c e r u b b e r c r a c k i n g of a t y p e w h i c h c a n n o t be d i s t i n g u i s h e d f r o m t h a t r e s u l t i n g f r o m e x p o s u r e t o h i g h c o n c e n t r a t i o n s of ozone. H e n c e , o n l y some o p t i c a l m e t h o d r e m a i n s as a possible reasonable m e a n s f o r t h e a c c u r a t e e v a l u a t i o n of ozone c o n c e n t r a t i o n s i n t h e a t m o s p h e r e , e s p e c i a l l y w h e n t h e ozone is associated w i t h o t h e r p o l l u t a n t s o r o x i d a n t s . O z o n e i n gaseous f o r m i n w h i c h i t is n o r m a l l y e n c o u n t e r e d e x h i b i t s selective a b s o r p t i o n i n s e v e r a l regions of t h e s p e c t r u m . W i t h i n t h e H a r t l e y b a n d , c e n t e r e d a t 2500 t o 2600 A . i n t h e s h o r t w a v e u l t r a v i o l e t , t h e a b s o r p t i o n is m o s t i n t e n s e . N e x t comes t h e H u g g i n s b a n d w h i c h is c e n t e r e d a t s l i g h t l y l o n g e r w a v e l e n g t h s a n d extends t o a b o u t 3400 A . D a t a o n t h e a b s o r b a n c e of ozone i n t h i s s p e c t r a l r e g i o n as g i v e n b y T s i - Z e a n d S h i n - P i a w (57, 58) a r e r e p r o d u c e d i n F i g u r e 1 (49). These or s i m i l a r d a t a h a v e been e m p l o y e d b y t h e v a r i o u s i n v e s t i g a t o r s w h o s e w o r k s a r e r e p o r t e d i n t h i s p a p e r i n t h e i r d e t e r m i n a t i o n of t h e a m o u n t of ozone i n t h e a t m o s p h e r e . [Recent d a t a , h o w e v e r , i n d i c a t e a p p r e c i a b l y l o w e r ozone a b s o r p t i o n coefficients t h r o u g h o u t m o s t of t h e u l t r a v i o l e t s p e c t r u m (21).1 T w o ozone b a n d s s i t u a t e d n e a r 9.5 m i c r o n s i n t h e i n f r a r e d (1) s h o w c o n s i d e r a b l e a b s o r p t i o n , n e a r 5 0 % f o r a single a t m o s p h e r e , b u t a r e m a r k e d l y t e m p e r a t u r e a n d p r e s s u r e s e n s i t i v e . T h i s p r o p e r t y is u s e f u l i n c e r t a i n w o r k as w i l l b e n o t e d b e l o w . F i n a l l y , ozone e x h i b i t s some a b s o r p t i o n i n t h e v i s i b l e s p e c t r u m , i n p a r t i c u l a r w i t h i n t h e y e l l o w - o r a n g e r e g i o n , r e s u l t i n g i n g i v i n g t h e gas a l i g h t b l u e c o l o r w h e n v i e w e d i n b u l k . T h i s a b s o r p t i o n is w e a k b u t m a y b e u s e d t o s u p p l e m e n t o r c h e c k e x p e r i m e n t a l work which employs the ultraviolet bands. T h e a b s o r p t i o n of ozone i n t h e v i s i b l e s p e c t r u m is e s p e c i a l l y u s e f u l a n d h a s been u s e d i n a n a l y z i n g some of t h e S m i t h s o n i a n d a t a , w h i c h a r e e x t e n s i v e b u t do n o t e x t e n d t o i n c l u d e a n a p p r e c i a b l e a m o u n t of t h e u l t r a v i o l e t r e g i o n . W u l f (61) a n d others (14, 25) h a v e m a d e c o n s i d e r a b l e use of these d a t a , d e d u c i n g ozone c o n c e n t r a t i o n s w h i c h a r e i n f a i r l y g o o d a g r e e m e n t w i t h those o b t a i n e d t h r o u g h t h e use of u l t r a ­ violet measurements. T h e h i g h o p t i c a l o p a c i t y of ozone w i t h i n t h e H a r t l e y a n d H u g g i n s b a n d s , w i t h t h e a b s o r p t i o n c e n t e r e d a t 2500 t o 2600 A . a n d e x t e n d i n g t o a b o u t 3400 Α . , h a s f u r n i s h e d a u n i q u e p o s s i b i l i t y f o r i t s m e a s u r e m e n t i n t e r m s of i t s r e l a t i v e o r a b s o l u t e s p e c t r a l a b s o r p t i o n . S e v e r a l o p t i c a l m e t h o d s , e a c h b a s e d u p o n t h i s c h a r a c t e r i s t i c of ozone, h a v e been set u p a t t h e N a t i o n a l B u r e a u of S t a n d a r d s (46, 48-51)These d e a l t w i t h t h e m e a s u r e m e n t of t h e t o t a l a m o u n t , v e r t i c a l d i s t r i b u t i o n , a n d l o c a l c o n ­ c e n t r a t i o n of ozone b y t h r e e g e n e r a l m e t h o d s . T h e first, e m p l o y e d i n t h e m e a s u r e ­ m e n t o f t o t a l ozone, w a s b a s e d u p o n t h e r e l a t i v e a b s o r p t i o n of t h e u l t r a v i o l e t s o l a r r a d i a n t e n e r g y b y t h e t e r r e s t r i a l a t m o s p h e r e as t h e a i r m a s s c h a n g e d d u r i n g t h e d a y . T h e second m e t h o d w a s e m p l o y e d i n t h e e v a l u a t i o n o f t h e v e r t i c a l d i s t r i b u t i o n of t h e ozone a n d w a s b a s e d u p o n s i m i l a r s o l a r r a d i a t i o n changes as t h e i n s t r u m e n t s were c a r r i e d a l o f t b y b a l l o o n s . T h e t h i r d m e t h o d h a d t o d o w i t h t h e m e a s u r e m e n t of ozone c o n c e n t r a t i o n i n t h e l o w e r a t m o s p h e r e ( a t t h e e a r t h ' s s u r f a c e ) a n d w a s b a s e d u p o n t h e r e l a t i v e s p e c t r a l o p t i c a l a b s o r p t i o n of a h o r i z o n t a l b e a m f r o m a n a r t i f i c i a l u l t r a v i o l e t source.

A D V A N C E S IN

272

Total

CHEMISTRY SERIES

Ozone

T h e m e a s u r e m e n t of t h e t o t a l a m o u n t of ozone has r e c e i v e d greatest a t t e n t i o n a n d m a y p r o b a b l y b e s t be m a d e b y m e a n s of a d o u b l e , q u a r t z p r i s m s p e c t r o r a d i o m e t e r or spectrophotometer. T h e d e t e c t o r m a y be a t h e r m o p i l e (36), p h o t o e l e c t r i c c e l l (48, 49, 52), o r t h e p h o t o g r a p h i c p l a t e (11, 17, 20, 22, 32, 42). T h e t h e r m o p i l e has the a d v a n t a g e of m e a s u r i n g r a d i a n t e n e r g y of t h e d i f f e r e n t w a v e l e n g t h s d i r e c t l y i n a b s o l u t e u n i t s w h e n once c a l i b r a t e d . H o w e v e r , i t s l o w s e n s i t i v i t y rules a g a i n s t i t s use i n r a p i d w o r k i n t h e u l t r a v i o l e t s p e c t r u m w h e r e e n e r g y v a l u e s are l o w . A d v a n t a g e s s u c h as h i g h s e n s i t i v i t y , d i r e c t r e c o r d i n g , a n d f r e e d o m f r o m t h e d e v e l o p m e n t of p l a t e s a n d t h e i r v a r i a t i o n i n s e n s i t i v i t y g e n e r a l l y r u l e i n f a v o r of p h o t o e l e c t r i c d e t e c t i o n . D a t a o n t o t a l ozone o b t a i n e d b y t h e N a t i o n a l B u r e a u of S t a n d a r d s a t C l i m a x , C o l o . , a n d a t S u n s p o t , Ν . M . (48, φ, 52) w i t h a d o u b l e , q u a r t z p r i s m s p e c t r o ­ r a d i o m e t e r e m p l o y i n g a p h o t o e l e c t r i c d e t e c t o r are i l l u s t r a t e d i n F i g u r e s 2, 3, a n d 4. S m a l l differences i n a t m o s p h e r i c s c a t t e r i n g b e t w e e n t h e t h r e e sets of d a t a r e s u l t f r o m differences i n a l t i t u d e of t h e t w o s t a t i o n s a n d f r o m clearness of t h e a t m o s p h e r e a t t h e t i m e s t h e m e a s u r e m e n t s were i n p r o g r e s s . C l o s e a g r e e m e n t b e t w e e n t h e ozone v a l u e s is s i g n i f i c a n t . T h e e q u i p m e n t e m p l o y e d i n these i n v e s t i g a t i o n s w a s designed p r i m a r i l y f o r t h e p u r p o s e of e v a l u a t i n g t h e s p e c t r a l d i s t r i b u t i o n of t h e r a d i a n t energy f r o m the sun. S p e c t r a l energy d a t a obtained at Sunspot, Ν . M . , d u r i n g J u n e

STAIR-OPTICAL ABSORPTION

8.2

I

1

300

273

1

310

1

320

I

330 WAVE

I

340 LENGTH.

I 360

I 380

I 400

I

I

I

440

I I II 500

MILLIMICRONS

Figure 2. Atmospheric transmittance at Climax, Colo, (altitude, 11,190 feet), a n d determination of total ozone a b o v e observing station Mean of data for 4 dear days in September 1951

-L

8.21 300

310

320 WAVE

330

340

LENGTH,

360

380

400

450

500

MILLIMICRONS

Figure 3. Atmospheric transmittance at Sacramento Peak (Sunspot), Ν . M . (altitude, 9200 feet), a n d determination of total ozone above observing station Mean of data for 4 dear days in July 1953

274

A D V A N C E S IN CHEMISTRY SERIES

300

310

320 WAVE

330

340

LENGTH,

360

380 400

450

500

MILLIMICRONS

Figure 4 . Atmospheric transmittance at Sacramento Peak (Sunspot), Ν . M., a n d determination of total ozone above observing station Mean of data for 4 clear days in June 1955

1955 a r e g i v e n i n F i g u r e 5. A p h o t o e l e c t r i c d e t e c t o r w a s e m p l o y e d a n d , b y use of a synchronous electric motor, wave length d r i v e , a n d a s t r i p recorder, the observed d a t a were a u t o m a t i c a l l y p l o t t e d o n a p a p e r c h a r t . T h e i n s t r u m e n t w a s e i t h e r p o i n t e d d i r e c t l y a t t h e s u n (52) o r else a d i r e c t b e a m of l i g h t f r o m t h e s u n w a s reflected o n t o t h e e n t r a n c e s l i t b y m e a n s of a h e l i o s t a t (48, 53). This arrangement p e r m i t t e d t h e i n t e g r a t i o n of t h e r a d i a t i o n f r o m t h e e n t i r e s o l a r d i s k w h i l e i t e l i m i n a t e d almost completely the scattered radiation f r o m the s k y . A b o u t 1930, D o b s o n (7) set u p a d o u b l e , q u a r t z p r i s m i n s t r u m e n t , t h e D o b s o n ozone m e t e r , f o r use i n m e a s u r i n g ozone o n l y b y i s o l a t i n g t w o w a v e l e n g t h s i n t h e ultraviolet solar s p e c t r u m ; f r o m their relative intensities the absorption caused b y ozone c o u l d b e d e t e r m i n e d a n d , hence, i t s a m o u n t . A n y t w o w a v e l e n g t h s m a y be e m p l o y e d s u c h t h a t one of t h e m lies w e l l w i t h i n t h e ozone a b s o r p t i o n b a n d w h i l e t h e o t h e r is j u s t o u t s i d e , o r a l m o s t o u t s i d e , t h e b a n d . T h i s i n s t r u m e n t is l i k e w i s e p h o t o ­ e l e c t r i c so t h a t ozone m e a s u r e m e n t s m a y be m a d e r a p i d l y . H o w e v e r , since t h e u l t r a v i o l e t s o l a r s p e c t r u m is m o d i f i e d g r e a t l y b y t h o u s a n d s of F r a u n h o f e r l i n e s o r b a n d s a n d since t h e i r a p p a r e n t s t r u c t u r e is g r e a t l y affected b y i n s t r u m e n t a l s l i t w i d t h , e r r o r s m a y b e i n t r o d u c e d t h r o u g h s l i t w i d t h changes o r w a v e l e n g t h shifts r e s u l t i n g f r o m t e m p e r a t u r e changes w i t h i n t h e i n s t r u m e n t . I n t h i s respect t h e s c a n n i n g of t h e c o m p l e t e s p e c t r u m a n d t h e use of m a n y w a v e l e n g t h s i n ozone e v a l u a ­ t i o n is t o be p r e f e r r e d . A n e a r l y m e t h o d d e v e l o p e d a t t h e N a t i o n a l B u r e a u of S t a n d a r d s (45, 46> 51) a n d r e c e n t l y e m p l o y e d b y M i y a k e a n d K a w a m u r a (30) f o r t h e m e a s u r e m e n t of t h e t o t a l

275

STAIR-OPTICAL ABSORPTION

2301

1

300

1

1

1

1

1

1

1

1

1

350

1

\

1

400 WAVE

Figure 5 .

1

1

1

450

1

|

|

|

I

|

|

Γ

500

LENGTH, m μ.

Spectral distribution of radiant energy from the sun at Sunspot, Ν . M . Mean for 4 clear days in June 1955

a m o u n t of ozone, i n c o r p o r a t e d a single p h o t o t u b e h a v i n g a s e n s i t i v i t y c o n f i n e d t o t h e s p e c t r a l r e g i o n of w a v e l e n g t h s s h o r t e r t h a n a b o u t 3600 A . T h e p h o t o t u b e w a s u s e d i n c o n j u n c t i o n w i t h a s i m p l e a m p l i f i e r a n d g r o u p s of t w o t o f o u r glass filters h a v i n g effective t o t a l t r a n s m i t t a n c e s f o r s u n l i g h t of a b o u t 20 t o 7 5 % . T h i s p e r m i t s t h e b r e a k i n g u p of t h e s h o r t w a v e s o l a r s p e c t r u m i n s u c h a w a y t h a t ozone changes are r e a d i l y e v a l u a t e d i n t e r m s of changes i n t h e o b s e r v e d filter t r a n s m i t t a n c e s . T h i s m e t h o d requires a knowledge of the relative spectral i n t e n s i t y of the u l t r a ­ violet solar r a d i a n t energy outside the terrestrial atmosphere w i t h i n t h e spectral r a n g e of 3000 t o a b o u t 3400 Α . , i n a d d i t i o n t o t r a n s m i t t a n c e d a t a o n t h e filters a n d r e l a t i v e s p e c t r a l response d a t a f o r t h e p h o t o t u b e . F u r t h e r m o r e , i t is assumed t h a t t h e s o l a r r a d i a n t e n e r g y (outside t h e a t m o s p h e r e ) r e m a i n s c o n s t a n t d u r i n g t h e course of t h e ozone m e a s u r e m e n t s . A s a n a l t e r n a t i v e , t h e i n s t r u m e n t m a y b e c a l i b r a t e d b y c o m p a r i s o n w i t h a n o t h e r t y p e of ozone m e t e r — f o r e x a m p l e , a d o u b l e , q u a r t z p r i s m s p e c t r o r a d i o m e t e r o r a D o b s o n ozone m e t e r . T h i s p h o t o e l e c t r i c i n s t r u m e n t has t h e a d v a n t a g e of b e i n g s i m p l e , l i g h t i n w e i g h t , l o w i n cost, a n d r a p i d i n o p e r a t i o n . It t h u s l e n d s i t s e l f t o use i n field w o r k i n t h e a c c u m u l a t i o n of e x t e n s i v e d a t a o v e r w i d e areas o r t i m e i n t e r v a l s . D a t a o b t a i n e d a t S u n s p o t , Ν . M . , d u r i n g t h e s u m m e r of 1949 (45) w i t h t h e s i m p l e p h o t o e l e c t r i c - f i l t e r i n s t r u m e n t a r e g i v e n i n F i g u r e s 6 a n d 7. S m a l l changes i n

ADVANCES

276

-i

1

τ

Γ

JUNE JUNE JUNE JUNE JUNE JUNE

1.2

1.3

12-ο 13- · 14-x 15-A 16-ο Ι7-»

1.4

JUNE JUNE JUNE JUNE JUNE JUNE

IN CHEMISTRY SERIES

1

1

-



18 19 - ο 20 - A 2223-

Ψ

1.6

1.7

AIR MASS Figure 6.

Amount of ozone in stratosphere over Peak, Ν .

Sacramento

M.

Data for several days in June 1949, based on observations with phototube (titanium No. 2) and filter ozone meter

277

STAIR-OPTICAL ABSORPTION

Sacramento

.23 .22

Peak,

New Mexico

• Phototube ο Phototube

ΛΗ

No. 2 No.4

.20.19-

* · oo

.18-

°o

June 13, 1949

.17.16

June 14,1949 .20

JH .18.17-

June 16,1949

.16·

.15· 20 -.19 -.18 -.17 -.16

June 18,1949 .20 -.15

.19-



· ο

1

.18.17-

June 23, 1949 J6H

AM _J

.

4

i _ 10

II

MOUNTAIN

Figure 7.

· *

·

,

L

Ρ M 12

I

STANDARD

TIME

I

,

I

Amount of total ozone above Sacramento Peak, Ν . M., as function of time of d a y Values obtained with two phototubes for selected clear days in June 1949

the t o t a l a m o u n t of ozone a r e a p p a r e n t f r o m a n e x a m i n a t i o n of these c h a r t s . S o m e result f r o m u n c o r r e c t e d e r r o r s because of s c a t t e r i n g b y d u s t o r c l o u d s ; o t h e r changes a r e r e a l . T h e l a r g e r changes f r o m d a y t o d a y a r e i m p o r t a n t a n d i l l u s t r a t e t h e u s e ­ fulness of a n i n s t r u m e n t of t h i s t y p e i n c o n t i n u a l l y m o n i t o r i n g t h e a m o u n t of a t m o s ­ p h e r i c ozone. T h e m e a n values for day-to-day measurements made at W a s h i n g t o n , D . C , over a p e r i o d of 9 y e a r s (47) a r e g i v e n i n F i g u r e 8. E a c h p l o t t e d p o i n t r e p r e s e n t s t h e m e a n v a l u e f o r a single d a y . G r e a t e s t w e i g h t w a s g i v e n t o m e a s u r e m e n t s m a d e n e a r t h e n o o n h o u r , w h e n t h e s u n l i g h t w a s o b s e r v e d t h r o u g h t h e least a t m o s p h e r e . Similar

A D V A N C E S IN CHEMISTRY SERIES

278

APR.

Figure 8.

MAY

JUNE

' JULY

Seasonal variation of ozone at Washington, D. C. (altitude, 300 feet), using phototube a n d filter ozone meters

d a t a t a k e n b y F r i t z (15) a t W a s h i n g t o n , D . C , u s i n g a D o b s o n ozone m e t e r , o v e r a p e r i o d of 2 5 m o n t h s a r e i n close a g r e e m e n t . H i s w o r k s u b s t a n t i a t e d h i g h ozone values i n the s p r i n g w i t h m u c h lower values d u r i n g the late summer a n d fall. O z o n e d a t a o b t a i n e d a t h i g h l a t i t u d e s b y T 0 n s b e r g a n d O l s e n (56) a t T r o m s o , N o r w a y , f o l l o w a s l i g h t l y different seasonal v a r i a t i o n b u t a r e l i k e w i s e h i g h i n t h e e a r l y s p r i n g m o n t h s a n d l o w i n l a t e s u m m e r a n d f a l l . M e a s u r e m e n t s m a d e a t 12 E u r o p e a n s t a t i o n s a n d r e c e n t l y s u m m a r i z e d b y N o r m a n d (31) a r e i n g e n e r a l a g r e e ­ m e n t w i t h those i l l u s t r a t e d i n F i g u r e 8. T h e d a t a t a k e n b y M i y a k e a n d K a w a m u r a (30) i n J a p a n w i t h a p h o t o t u b e a n d n i t e r s a r e also s i m i l a r t o those o b t a i n e d b y S t a i r (47) a n d b y F r i t z (15) a t W a s h i n g t o n a n d b y L e j a y (26) i n F r a n c e . T h i s i s t o be e x p e c t e d , as t h e l a t i t u d e s of t h e t h r e e s t a t i o n s differ b u t l i t t l e . Vertical

Distribution

of

Ozone

I t was pointed out earlier that the n a t u r a l e q u i l i b r i u m condition for the p r o d u c ­ t i o n a n d d i s s o c i a t i o n of ozone r e s u l t e d i n a n ozone m a x i m u m a t some i n t e r m e d i a t e l e v e l i n t h e u p p e r a t m o s p h e r e . F r o m m e a s u r e m e n t s at different t i m e s a n d b y different o b s e r v e r s (6, 12, 16, 32, 33, 37, 39, 41, 42, 50) t h i s m a x i m u m has been f o u n d to v a r y i n h e i g h t , t h i c k n e s s , a n d i n g e n e r a l s t r u c t u r e , w i t h s h o r t a n d l o n g p e r i o d fluctuations p o s s i b l y a s s o c i a t e d w i t h w e a t h e r c o n d i t i o n s a n d seasonal v a r i a t i o n s . O n o c c a s i o n d o u b l e m a x i m a m a y a p p e a r (41)· L i t t l e is y e t k n o w n , h o w e v e r , a b o u t specific r e l a t i o n s h i p s b e t w e e n t h e ozone changes a n d m e t e o r o l o g i c a l c o n d i t i o n s e x c e p t i n t h e i n s t a n c e of seasonal v a r i a t i o n s (6, 8, 10, 15, 26, 30, 4?) a n d c e r t a i n l a r g e a i r m a s s m o v e m e n t s (9, 56, 59). T h e r e is a great need f o r c o n t i n u o u s o b s e r v a t i o n s of b o t h t h e t o t a l a n d t h e v e r t i c a l d i s t r i b u t i o n of ozone i n o r d e r t o e s t a b l i s h possible r e l a t i o n ­ s h i p s b e t w e e n ozone d i s t r i b u t i o n a n d c o n c e n t r a t i o n a n d solar v a r i a t i o n , a t m o s p h e r i c circulation, a n d weather. T h e v e r t i c a l d i s t r i b u t i o n of ozone m a y be m e a s u r e d b y o p t i c a l m e a n s w i t h i n s t r u ­ ments situated p e r m a n e n t l y at the earth's surface, although better b y their transport t h r o u g h t h e ozone l a y e r . S o m e of t h e e a r l y m e a s u r e m e n t s b y G o e t z et al. (16, 17) were b y t h e f o r m e r m e t h o d — k n o w n as t h e U m k e h r effect. T h i s m e t h o d p e r m i t s t h e d e t e r m i n a t i o n of t h e ozone d i s t r i b u t i o n i n t e r m s of t h e change i n t h e r e l a t i v e s c a t t e r i n g of t h e u l t r a v i o l e t s o l a r r a d i a t i o n ( a t t w o selected w a v e l e n g t h s ) of t h e z e n i t h s k y as a f u n c t i o n of t h e z e n i t h angle of t h e s u n . T h i s m e t h o d c o n t i n u e s t o b e e m p l o y e d , a l t h o u g h i t does n o t p e r m i t as h i g h a c c u r a c y as t h e t r a n s p o r t m e t h o d s . E a r l y w o r k a t t h e N a t i o n a l B u r e a u of S t a n d a r d s (50) a n d a t a n u m b e r of o t h e r

279

STAIR-OPTICAL ABSORPTION

l a b o r a t o r i e s (16, 37, J$) i n t h e s t u d y of t h e v e r t i c a l d i s t r i b u t i o n of ozone m a d e use of balloons, u s u a l l y u n m a n n e d , for c a r r y i n g radiometric or photographic equipment t h r o u g h a p a r t o r m o s t of t h e ozone l a y e r . T h e N B S i n s t r u m e n t c o n s i s t e d of a p h o t o t u b e a n d f i l t e r - t y p e u l t r a v i o l e t m e t e r (Ifi, 50, 51) w h i c h w a s c o m b i n e d w i t h a n audiofrequency generator a n d radio t r a n s m i t t e r . T h e radiofrequency wave was m o d u l a t e d b y t h e p h o t o t u b e response t o s u n l i g h t as t h e i n s t r u m e n t w a s c a r r i e d u p ­ w a r d through the atmosphere. T h e m a g n i t u d e of t h e response w a s p r o p o r t i o n a l t o t h e s o l a r i n t e n s i t y t h r o u g h t h e s e v e r a l f i l t e r s . T h e a m o u n t of ozone a b o v e t h e i n s t r u m e n t a n d hence, i t s v e r t i c a l d i s t r i b u t i o n , w a s o b t a i n e d b y c a l c u l a t i o n f r o m t h e

OZONE PER Figure 9.

KM.

Vertical distribution of ozone in stratosphere

NBS curve is mean of June and July measurements obtained in 18 unmanned balloon flights using phototube and filter ozone meters. NGS measurements obtained with spectrograph in manned balloon. Regener measurements obtained with spectrograph in unmanned balloons

o b s e r v e d changes i n t h e a p p a r e n t f i l t e r t r a n s m i t t a n c e s . T h e m e a n of d a t a o b t a i n e d i n 18 b a l l o o n f l i g h t s a t t h e N a t i o n a l B u r e a u of S t a n d a r d s e m p l o y i n g t h i s m e t h o d (47, 50) i s g i v e n i n F i g u r e 9 a l o n g w i t h o t h e r d a t a b y o t h e r e a r l y o b s e r v e r s (32). T h e R e g e n e r s (37, 39, 1$) e m p l o y e d s p e c t r o g r a p h s i n s i m i l a r u n m a n n e d b a l l o o n flights a n d e v a l u a t e d t h e ozone v e r t i c a l d i s t r i b u t i o n i n t e r m s of s p e c t r a l c h a n g e of t h e u l t r a v i o l e t s o l a r r a d i a t i o n a t specific w a v e l e n g t h s . R e c e n t d a t a o b t a i n e d b y V . H . R e g e n e r (38) i n u n m a n n e d b a l l o o n flights o v e r N e w M e x i c o i n 1950 a r e i l l u s ­ t r a t e d i n F i g u r e 10. I n t h e R e g e n e r f l i g h t s (38, 41) t h e e n t r a n t s p e c t r o g r a p h t u b e w a s d i r e c t e d d o w n ­ w a r d onto a white m a g n e s i u m oxide surface w h i c h was directly i l l u m i n a t e d b y t h e

280

A D V A N C E S IN

\

>

/ / /

^

"

1 1 1 \

1 1

I 1 Ο

s r

' I OOI

CHEMISTRY SERIES

\^ /

\

"FEB25 — MARCH 4 MARCH 16APRIL 18 — 002 OZONE (CM./KM.)

003

Figure 10. Vertical distribution of ozone (in­ dicating double maxima) over New Mexico in 1950 using spectrographs in unmanned balloons

s u n . T h e e x p o s u r e t i m e was 8 m i n u t e s , d u r i n g w h i c h t h r e e exposures w e r e o b t a i n e d t h r o u g h a three-step filter c o n s i s t i n g of d i f f e r e n t a b s o r b a n c e s of evaporated p l a t i n u m on a quartz plate. T h u s , definite t r a n s m i t t a n c e r a t i o s b e t w e e n t h e t h r e e sets of s p e c t r a w e r e e m p l o y e d i n t h e e v a l u a t i o n of the v e r t i c a l d i s t r i b u t i o n of t h e ozone. T h e i l l u s t r a t e d d a t a ( F i g u r e 10) s h o w t h e p o s s i b i l i t y of d o u b l e ozone m a x i m a o n t h r e e of t h e f o u r flights. H o w e v e r , a l t h o u g h i r r e g u l a r i t i e s exist i n s o m e of t h e N B S a n d N R L c u r v e s , i n no case has a n y definite evidence of a d o u b l e m a x i m u m a p p e a r e d i n t h e i r d a t a . I t m a y be i n t h i s case t h a t e r r a t i c o b s e r v a t i o n s h a v e n o t been p r o p e r l y t a k e n i n t o a c c o u n t (23) ; h o w e v e r , P a e t z o l d (33) has r e p o r t e d definite d o u b l e o r t r i p l e ozone m a x i m a o n n u m e r o u s occasions. T h e w o r k of t h e N a t i o n a l G e o g r a p h i c S o c i e t y g r o u p (32) differed p r i m a r i l y i n t h a t a m a n n e d b a l l o o n was e m p l o y e d so t h a t m o r e e l a b o r a t e e q u i p m e n t c o u l d be u s e d a n d m o r e c a r e f u l c o n t r o l of t h e p h o t o g r a p h i c processes a n d c a l i b r a t i o n s c o u l d be e s t a b l i s h e d . T h e results of t h i s flight differ f r o m t h a t of a l l t h e u n m a n n e d f l i g h t s i n i n d i c a t i n g a v e r y s h a r p ozone m a x i m u m a t a s o m e w h a t l o w e r a l t i t u d e . R e s u l t s f r o m f l i g h t t o f l i g h t m a y differ because of differences i n i n s t r u m e n t a t i o n a n d t e c h n i q u e o r because of a c t u a l change i n a t m o s p h e r i c c o n d i t i o n s . H e n c e , t h e r e exists a g r e a t need for routine experiments w i t h stable equipment. T h e d e v e l o p m e n t of a u n i q u e m e t h o d (12), o r i g i n a l l y d e s c r i b e d b y S t r o n g (55) i n 1941, w h e r e b y i t is possible t o d e t e r m i n e t h e m e a n h e i g h t of t h e ozone l a y e r t h r o u g h m e a s u r e m e n t s of t h e p r e s s u r e - s e n s i t i v e i n f r a r e d a b s o r p t i o n of t h e ozone m o l e c u l e a n d c o m p a r i s o n w i t h d e t e r m i n a t i o n s of t h e t o t a l a m o u n t of ozone b a s e d u p o n u l t r a v i o l e t s p e c t r o s c o p i c m e a s u r e m e n t s has g i v e n a d d e d i m p e t u s t o r o u t i n e ozone v e r t i c a l d i s t r i b u t i o n d e t e r m i n a t i o n s . T h i s m e t h o d p e r m i t s t h e e v a l u a t i o n of t h e a p p r o x i m a t e v e r t i c a l d i s t r i b u t i o n of t h e ozone solely f r o m t h e use of s u r f a c e observations. P r e l i m i n a r y results (12) i n d i c a t e t h a t t h e r e is n o s i m p l e r e l a t i o n b e t w e e n t h e v e r t i c a l d i s t r i b u t i o n of ozone a n d t h e t o t a l a m o u n t p r e s e n t i n t h e a t m o s p h e r e a t any given time. W h e n r o u t i n e m e a s u r e m e n t s are e s t a b l i s h e d o v e r a n e t w o r k of

281

STAIR-OPTICAL ABSORPTION

s t a t i o n s b y t h i s ( o r a n y o t h e r s a t i s f a c t o r y ) m e t h o d , i t m a y b e possible t o e s t a b l i s h some definite r e l a t i o n s h i p b e t w e e n ozone d i s t r i b u t i o n a n d m o v e m e n t a n d o t h e r f a c t o r s s u c h as w e a t h e r c o n d i t i o n s , a t m o s p h e r i c c i r c u l a t i o n , a n d s o l a r v a r i a t i o n s . T h e use of r o c k e t s offers a u n i q u e o p p o r t u n i t y f o r t h e p e n e t r a t i o n of t h e e n t i r e ozone l a y e r i n c o n t r a s t t o t h e p a r t i a l p e n e t r a t i o n a f f o r d e d b y b a l l o o n s . E x c e p t f o r t h e m e a g e r d a t a o b t a i n e d b y t h e U m k e h r effect (17, 56) a n d f r o m c a l c u l a t i o n s b a s e d o n t h e p r e s s u r e - s e n s i t i v e i n f r a r e d a b s o r p t i o n of ozone (12, 55), n o a b s o l u t e d a t a o n t h e v e r t i c a l d i s t r i b u t i o n of ozone h a v e b e e n o b t a i n a b l e (before t h e use of r o c k e t s ) t o a l t i t u d e s a b o v e a b o u t 32 k m . L i t t l e credence c o u l d b e g i v e n t o d a t a o b t a i n e d b y e i t h e r t h e U m k e h r effect o r t o t h e i n f r a r e d m e t h o d f o r a l t i t u d e s a b o v e a b o u t 4 0 t o 50 k m . , as b o t h m e t h o d s a r e i n d i r e c t a n d r e q u i r e a p p r e c i a b l e o p t i c a l a b s o r p t i o n t o permit practical application. R o c k e t e x p e r i m e n t s b y p e r s o n n e l of t h e N a v a l R e s e a r c h L a b o r a t o r y (22-24) have e x t e n d e d ozone o b s e r v a t i o n s t o a l t i t u d e s u p t o 70 k m . I n t h i s w o r k V - 2 o r A e r o b e e

r o c k e t s w e r e e m p l o y e d a n d a g r a t i n g s p e c t r o g r a p h was c a r r i e d i n t h e h e a d of t h e v e h i c l e . S i d e w i n d o w s p r o v i d e d w i t h a b e a d of l i t h i u m f l u o r i d e s e r v e d t o i l l u m i n a t e t h e s p e c t r o g r a p h s as t h e r o c k e t s r o t a t e d i n f l i g h t . O n t h e f i r s t f l i g h t e x p o s u r e t i m e s of 3.6, 0.66, a n d 0.12 seconds were e m p l o y e d . O n l a t e r flights a single e x p o s u r e t i m e of a b o u t 1 second w a s e m p l o y e d . C a l i b r a t i o n of t h e r e s u l t i n g s p e c t r a p e r m i t t e d t h e e v a l u a t i o n of t h e r e l a t i v e s p e c t r a l e n e r g y d i s t r i b u t i o n of t h e s u n l i g h t a n d hence, of t h e a m o u n t of ozone i n t h e l i g h t p a t h a b o v e t h e i n s t r u m e n t i n a m a n n e r s i m i l a r t o t h a t e m p l o y e d i n some of t h e b a l l o o n f l i g h t s . #

D a t a o n t h r e e successful flights b y N a v a l R e s e a r c h L a b o r a t o r y p e r s o n n e l a r e r e p r o d u c e d i n F i g u r e 11 (24). W h i l e data obtained b y a rocket spectrograph i n this m a n n e r cannot be considered h i g h l y accurate, t h e large variations i n t h e v e r t i c a l d i s t r i b u t i o n of ozone a t h i g h a l t i t u d e s a r e i n d i c a t i v e of a c e r t a i n a m o u n t o f a i r m o v e ­ m e n t a t these l e v e l s . I t a p p e a r s t h a t a i r m o t i o n u p s e t s t h e ozone e q u i l i b r i u m c o n ­ d i t i o n s b y t h e e q u i v a l e n t of a l t i t u d e changes a t t i m e s of as m u c h as 5 o r 6 k m . F u r t h e r m o r e , i t has been e s t a b l i s h e d b y these e x p e r i m e n t s t h a t ozone extends u p t o a n d s o m e t i m e s a b o v e 70 k m . T h e m a x i m u m r e l a t i v e c o n c e n t r a t i o n of ozone h a s been

A D V A N C E S IN

282

CHEMISTRY SERIES

f o u n d t o v a r y b e t w e e n a b o u t 25 a n d 30 k m . T h i s m a y be c o n s i d e r e d as t h e ozone equilibrium level. T h i s m a x i m u m r e l a t i v e c o n c e n t r a t i o n m u s t n o t be c o n f u s e d , h o w e v e r , w i t h t h e m a x i m u m of t o t a l ozone w h i c h u s u a l l y exists a t a m u c h l o w e r l e v e l — t h a t i s , b e t w e e n a b o u t 20 a n d 25 k m .

Surface

Ozone

T h e c o n c e n t r a t i o n of ozone i n t h e s u r f a c e a t m o s p h e r e has b e e n f o u n d t o v a r y w i d e l y b o t h i n t i m e a n d l o c a t i o n . I t s presence o r d i n a r i l y h a s l i t t l e o r n o significance e x c e p t i n c e r t a i n l o c a l i t i e s , as, f o r e x a m p l e , w h e r e r u b b e r goods m a y be s t o r e d o r e m p l o y e d or w h e n associated w i t h intense s m o g c o n d i t i o n s as exist i n t h e L o s A n g e l e s b a s i n . I t s presence r e s u l t s f r o m a n u m b e r of causes, m o s t l y n o t y e t w e l l u n d e r s t o o d . S o m e is p r o d u c e d b y discharges f r o m h i g h t e n s i o n w i r e s a n d o t h e r e l e c t r i c a l m a c h i n e r y , some b y l i g h t n i n g , a n d some diffuses o r is c a r r i e d d o w n w a r d b y a i r c u r r e n t s . M o s t of t h e h i g h c o n c e n t r a t i o n s a r e f o u n d i n c o n n e c t i o n w i t h c o m b u s t i o n of h y d r o c a r b o n s a n d a r e a p p a r e n t l y p r o d u c e d t h r o u g h c h e m i c a l a n d p h o t o c h e m i c a l processes n o t y e t f u l l y e s t a b l i s h e d (28). A s n o t e d p r e v i o u s l y , ozone is u n i q u e i n h a v i n g a h i g h o p t i c a l o p a c i t y w i t h i n t h e H a r t l e y b a n d c e n t e r e d a r o u n d 2500 t o 2600 A . T h i s f u r n i s h e s a n i d e a l basis f o r t h e p h y s i c a l m e a s u r e m e n t of t h e s u r f a c e c o n c e n t r a t i o n of t h e ozone i n t e r m s of i t s r e l a t i v e s p e c t r a l a b s o r p t i o n a t these w a v e l e n g t h s i n r e l a t i o n t o t h a t a t l o n g e r w a v e l e n g t h s . S t a i r et al. (49) d e v i s e d a f i l t e r r a d i o m e t e r f o r t h i s p u r p o s e , w h e r e i n t h e a m o u n t of ozone i n p a r t s p e r h u n d r e d m i l l i o n w a s d e t e r m i n e d as a f u n c t i o n of t h e r a t i o s of f i l t e r t r a n s m i t t a n c e s of t h e r a d i a n t e n e r g y f r o m a m e r c u r y a r c l a m p s i t u a t e d a t a d i s t a n c e of 1450 feet f r o m t h e d e t e c t i n g d e v i c e . T h e d e t e c t i n g s y s t e m c o n s i s t e d of a p h o t o m u l t i p l i e r tube a n d associated equipment. I n this arrangement the light b e a m is m o d u l a t e d so t h a t a l t e r n a t i n g c u r r e n t e q u i p m e n t m a y be e m p l o y e d t h r o u g h ­ out. Some results obtained w i t h this equipment on a n evening at W a s h i n g t o n , D . C , w h e n a s m a l l a m o u n t of ozone w a s i n t e r m i t t e n t l y p r e s e n t , are i l l u s t r a t e d i n F i g u r e 12 (49). A l t h o u g h t h e p a r t i c u l a r e q u i p m e n t s e t u p was a d a p t e d o n l y t o n i g h t o p e r a ­ t i o n , b y t h e use of u l t r a v i o l e t filters a n d of m e r c u r y arcs r i c h i n t h e e m i s s i o n lines of 2804 a n d 3655 Α . , d a y o p e r a t i o n s h o u l d be feasible. R e g e n e r (40) e m p l o y e d a s p e c i a l s p e c t r o g r a p h i n t h e m e a s u r e m e n t of ozone i n t h e presence of s m o g a t L o s A n g e l e s , u s i n g a n i n t e n s e h y d r o g e n a r c as t h e l i g h t source. T h e l i g h t p a t h w a s 1000 feet. T h r e e w a v e l e n g t h s w i t h i n t h e s p e c t r a l range of 2665 t o 2807 A . w e r e e m p l o y e d i n t h e ozone e v a l u a t i o n . B y u s i n g a n e c c e n t r i c r o t a t i n g d i s k as a s h u t t e r , a g r a d u a l l y v a r y i n g e x p o s u r e a l o n g t h e slit l e n g t h was o b t a i n e d . F r o m t h e r e s u l t i n g s p e c t r a a n u m b e r of ozone d e t e r m i n a t i o n s were m a d e f r o m e a c h p h o t o g r a p h . R e s u l t s i n a g r e e m e n t t o w i t h i n 1 0 % of those o b t a i n e d w i t h t h e p o t a s s i u m i o d i d e m e t h o d w e r e r e p o r t e d . I n R e g e n e r ' s w o r k i t was a s s u m e d t h a t t h e p r i n c i p a l selective a b s o r p t i o n w i t h i n t h i s p a r t of t h e u l t r a v i o l e t s p e c t r u m w a s due t o o z o n e . S u c h a n a s s u m p t i o n a p p e a r s r e a s o n a b l e i n t h e l i g h t of p r e s e n t i n f o r m a ­ t i o n o n t h e r e l a t i v e s p e c t r a l t r a n s m i t t a n c e s of k n o w n substances i n t h e a t m o s p h e r e . R e c e n t l y t h e A i r P o l l u t i o n F o u n d a t i o n (43) set u p a s p e c t r o r a d i o m e t r i c ozone m e t e r (designed b y R . S. E s t e y ) w h i c h i n c o r p o r a t e s m a n y of t h e features a n d p r i n c i ­ ples e m p l o y e d i n t h e i n s t r u m e n t s d e v e l o p e d b y t h e N a t i o n a l B u r e a u of S t a n d a r d s (49) a n d b y R e g e n e r (40). T h i s meter employs a high intensity m e r c u r y arc (type C H 3 ) t o g e t h e r w i t h a C o r n i n g 9863 f i l t e r w h i c h confines t h e r a d i a n t e n e r g y p r i n c i p a l l y t o t h e u l t r a v i o l e t s p e c t r u m . A s i m p l e s p e c t r o r a d i o m e t e r e m p l o y s f o u r 30° q u a r t z p r i s m s w i t h a 1 P - 2 8 p h o t o m u l t i p l i e r as a d e t e c t o r . T h e d e s i g n of t h e e l e c t r o n i c s a n d s t r i p r e c o r d e r f o l l o w c l o s e l y t o t h a t of t h e N B S i n s t r u m e n t e x c e p t t h a t a f r e q u e n c y of 120 i n s t e a d of 510 cycles p e r s e c o n d is e m p l o y e d (the n a t u r a l m o d u l a t i o n of t h e l a m p as o p e r a t e d o n 60 cycles p e r s e c o n d a l t e r n a t i n g c u r r e n t ) . I n t h i s i n s t r u m e n t

283

STAIR-OPTICAL ABSORPTION

8:00

8:30

9:00 EST.

Figure 12.

9:30

PM, W A S H I N G T O N ,

10:00

10:30

D.C.

Variation in surface ozone on two evenings at Washington, D. C.

Measurements made with mercury arc source and photomultiplier and filter ozone meter through 1450-foot distance (49)

t h e a i r p a t h l e n g t h i s 3 0 0 feet a n d t h e ozone c o n t e n t i s c a l c u l a t e d i n t e r m s o f r e l a t i v e a b s o r p t i o n a t 2650, 2804, a n d 3 1 3 2 A . T h e s p e c t r u m m a y b e s w e p t as d e s i r e d , b u t i n t h e o r i g i n a l i n s t r u m e n t t w o sweeps, 1 m i n u t e a p a r t , w e r e m a d e e a c h 15 m i n u t e s . T h e N B S i n s t r u m e n t s i m i l a r l y s w e p t t h r o u g h t h e different filter c o m b i n a t i o n s once each m i n u t e . A c o m p a c t p h o t o e l e c t r i c i n s t r u m e n t (28) r e c e n t l y d e v e l o p e d b y H . K r u g e r A s ­ sociates of S a n G a b r i e l , C a l i f . , t a k e s a d v a n t a g e of t h e h i g h o p a c i t y of ozone a t 2537 A . t h r o u g h t h e use of a b e a m of r a d i a n t e n e r g y of t h a t w a v e l e n g t h . A l i g h t p a t h of o n l y 10 i n c h e s i s e m p l o y e d . T h i s i n s t r u m e n t is essentially a double-beam u l t r a v i o l e t filter p h o t o m e t e r a n d h a s a n e x t r e m e l y h i g h s e n s i t i v i t y , f u l l - s c a l e s e n s i t i v i t y b e i n g s o m e t h i n g less t h a n 100 p . p . h . m . of ozone. T h e e l e c t r o n i c s e n s i t i v i t y of t h i s i n s t r u m e n t is p r o b a b l y t o o h i g h f o r p r a c t i c a l p u r p o s e s . I m p r o v e d operation could possibly be h a d t h r o u g h i n c r e a s i n g t h e p a t h l e n g t h , t h e r e b y p e r m i t t i n g t h e use o f less s e n s i t i v e e l e c t r o n i c c i r c u i t s as w e l l as d e c r e a s i n g t h e effect of t h e s m a l l a m o u n t o f ozone p r o d u c e d n e a r t h e l a m p source. O p t i c a l m e t h o d s of ozone d e t e r m i n a t i o n m a y b e c o m b i n e d w i t h t h e c h e m i c a l t y p e s i n one w a y o r a n o t h e r . F o r e x a m p l e , L i t t m a n a n d M a r y n o w s k i (28) i m p r o v e d a n d m o d i f i e d a m e t h o d e a r l i e r e m p l o y e d b y P a n e t h a n d E d g a r (34) u s i n g a s i l i c a gel t o a b s o r b t h e ozone gas f r o m t h e a t m o s p h e r e . A f t e r w a r d t h e ozone w a s flushed i n t o a n o p t i c a l c e l l , w h e r e i t s c o n c e n t r a t i o n w a s m e a s u r e d i n t e r m s of i t s u l t r a v i o l e t a b s o r p t i o n as c o m p a r e d w i t h t h a t r e s u l t i n g f r o m k n o w n c o n c e n t r a t i o n s o f s y n t h e t i c ozone-oxygen mixtures. I n conclusion, i t n o w appears t h a t t h e spectroradiometric methods of ozone e v a l u a t i o n h a v e , c o n t r a r y t o a n e a r l i e r a p p r a i s a l (34), b e c o m e b o t h p r a c t i c a l a n d p r e f e r r e d f o r use i n r o u t i n e ozone m e a s u r e m e n t s . A s t h i s i s a s u m m a r y p a p e r c o v e r i n g s o m e of t h e w o r k of m a n y i n v e s t i g a t o r s , i t has n o t b e e n possible t o g i v e a l l t h e d e t a i l s i n a n y case. I n s o m e cases i m p o r t a n t

ADVANCES

284

IN CHEMISTRY SERIES

work m a y have escaped notice. However, the list of references at the end of the paper should provide the reader with an opportunity to pursue further along any particular line of investigation.

Literature C i t e d (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45)

Adel, Α., Lampland, C. O., Astrophys. J. 91, 481 (1940). Blacet, F. E., Ind. Eng. Chem. 44, 1339 (1952). Bradley, C. E., Haagen-Smit, A. J., Rubber Chem. and Technol. 24, 750 (1951). Colange, G., J. phys. radium [6] 8, 254 (1927). Crabtree, J., Biggs, S. B., J. Polymer Sci. 11, 280 (1953). Craig, R. Α., Meteorol. Monographs 1, N o . 2, 1 (1950). Dobson, G. M. B., Proc. Phys. Soc. (London) 43, 324 (1931). Dobson, G. M. B., Proc. Roy. Soc. (London) 129A, 411 (1930). Dobson, G. M. B., Brewer, A. W., Cwilong, Β. M., Ibid., 185, 144 (1946). Dobson, G. M. B., Meetham, A. R., Quart. J. Roy. Meteorol. Soc. 60, 265 (1934). Durand, Ε., Johnson, F. S., Oberly, J. J., Purcell, J. J., Tousey, R., U. S. Naval Research Lab. Rept. R-3171 (October 1947). Epstein, E. S., Osterberg, C., Adel, Α., Arizona State College Sci. Rept. HA-7, C o n ­ tract No. AF 19 (122)-198 (1955). Faith, W. L., Hitchcock, L. B., Neiburger, M., Renzetti, Ν. Α., Rogers, L. H., Air Pollution Foundation (Los Angeles) First Tech. Progr. Rept., 4 (March 1955). Fowle, F. E., Smithsonian Inst. Publs., Misc. Collections 81, No. 11 (1929); Publ. No. 3014. Fritz, S., Stevens, G. C., Monthly Weather Rev. 78, 135 (1950). Goetz, F. W. P., Ergeb. kosm. physik. 3, 253 (1938). Goetz, F. W. P., Meetham, A. R., Dobson, G. M. B., Proc. Roy. Soc. (London) 145A, 416 (1934); 148, 598 (1935). Haagen-Smit, A. J., "U. S. Technical Conference on A i r Pollution, A i r Pollutant Proceedings," p. 193, M c G r a w - H i l l , New York, 1950. Haagen-Smit, A. J., Darley, E. F., Zaitlin, M., Hull, H., Noble, W., Plant Physiol. 27, 18 (January 1952). Hopfield, J. J., Jenkins, J. F., Jr., Van Allen, J. Α., American Meteorological Society, St. Louis, Mo., January 1950. Inn, C. Y., Tanaka, Y., J. Opt. Soc. Am. 43, 870 (1953). Johnson, F. S., Purcell, J. D., Tousey, R., J. Geophys. Research 56, 583 (1951). Johnson, F. S., Purcell, J. D., Tousey, R., in "Rocket Exploration of the Upper A t ­ mosphere," pp. 189-99, R. L. F. Boyd and M. J. Seaton, eds., Bergeman, London, 1954. Johnson, F. S., Purcell, J. D., Tousey, R., Watanabe, K., J. Geophys. Research 57, 157 (1952). K i u ,J.phys. radium 9, 297 (1938). Lejay, P., Notes Meteorol. Phys., Obs. de Zi-Ka-Wei, Fasc. 7, 1937. Littman, F. E., Benoliel, R. W., Anal. Chem. 25, 1480 (1953). Littman, F. E., Marynowski, C. W., Ibid., 28, 819 (1956). McCabe, L. C., Ind. Eng. Chem. 45, 111A (September 1953). Miyake, Y., Kawamura, K., Papers Meteorol. and Geophys. (Tokyo) 5, 178 (1954). Normand, C. W. B., Intern. Assoc. of Meteorol. Sci. Proc., Rome, 1954 pp. 165-71; Butterworths Scientific Publications, London, 1956. O'Brien, B., Mohler, F. L., Stewart, H. S., Natl. Geographic Soc. Stratosphere Ser. No. 2, Washington, D. C. (1935). Paetzold, H. K., Intern. Assoc. of Meteorol. Sci. Proc., Rome, 1954 pp. 201-12; But­ terworths Scientific Publications, London, 1956. Paneth, F. Α., Edgar, J. L., Nature 142, 112 (1938). Penndorf, R., J. Geophys. Research 54, 7 (1949). Pettit, E., Astrophys. J. 75, 185 (1932); 91, 159 (1940). Regener, E., Regener, V. H., Physik. Z. 35, 788 (1934). Regener, V. H., Nature 167, 276 (1951). Regener, V. H., Intern. Assoc. of Meteorol. Sci. Proc., Rome, 1954 pp. 181-8; Butterworths Scientific Publications, London, 1956. Regener, V. H., Sci. Rept. No. 1, Contract No. AF 19 (122)-381, Geophysics Research Directorate, Air Force Cambridge Research Center, 1954. Ibid., No. 2. Regener, V. Η., Z. Physik 109, 642 (1938). Renzetti, Ν. Α., J. Chem. Phys. 24, 909 (1956). Schönbein, C. F., Ann. Phys. u. Chem. 65, 69, 161 (1845). Stair, R., J. Opt. Soc. Am. 43, 971 (1953).

STAIR-OPTICAL ABSORPTION

(46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61)

285

Stair, R., J. Research Natl. Bur. Standards 40, 9 (1948). Ibid., 43, 209 (1949). Ibid., 49, 227 (1952). Stair, R., Bagg, T. C., Johnston, R. G., Ibid., 52, 133 (1954). Stair, R., Coblentz, W. W., Ibid., 20, 185 (1938); 22, 295, 573 (1939). Stair, R., Hand, I. F., Monthly Weather Rev. 67, 331 (1939). Stair, R., Johnston, R. G., J. Research Natl. Bur. Standards 55, 205 (1956). Stair, R., Johnston, R. G., Bagg, T. C., Ibid., 53, 113 (1954). Stanford Research Institute, "Smog Problem in Los Angeles County," Western Oil and Gas Assoc., Los Angeles 14, Calif., 1954. Strong, J., J. Franklin Inst. 231, 121 (1941). Tønsberg, E., Olsen, K. L., Geophys. Publikasjoner 13, N o . 12, 3 (1943). Tsi-Ze, N., Shin-Piaw, C., Compt. rend. 195, 309 (1932). Ibid., 196, 916 (1933). Vassy, Α., Vassy, E., Ibid., 207, 1232 (1938). Wulf, O. R., Deming, L. S., Terrestrial Magnetism and Atmospheric Elec. 41, 299 (1936). Wulf, O. R., Zimmerman, J . E., Smithsonian Inst. Publs., Misc. Collections 123, N o . 3 (1954); Publ. N o . 4177. RECEIVED for review M a y 27, 1957. Accepted June 19, 1957.