Application of Ozone from Sterilamp in Control of Mold, Bacteria, and Odors RUDOLPH N A G Y
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch009
Westinghouse Electric Corp., Bloomfield, N. J.
In using a Sterilamp for the tenderization a n d preservation of meat a n d the preservation of other types of foods, a controlled amount of ozone is generated by the lamp to destroy or suppress growth of mold a n d bacteria in the unirradiated areas. Minute amounts of ozone are also used to destroy odors in both commercial a n d domestic refrigerators a n d in air-conditioning systems.
A low-pressure m e r c u r y l a m p sold b y Westinghouse under the t r a d e - m a r k , S t e r i l a m p , w a s p l a c e d o n t h e m a r k e t i n 1936. T h e l a m p w a s p r i m a r i l y designed t o e m i t a c o p i o u s a m o u n t of b a c t e r i c i d a l u l t r a v i o l e t r a d i a t i o n w i t h a m i n i m u m a m o u n t of r a d i a t i o n b e l o w 2000 A . T h e l a t t e r r a d i a t i o n is r e s p o n s i b l e f o r t h e p h o t o c h e m i c a l p r o d u c t i o n of ozone f r o m o x y g e n of t h e a i r . T h e effectiveness of t h e l a m p i n d e s t r o y i n g b a c t e r i a (25) a n d m o l d (21) o n P e t r i p l a t e s , i n o p e r a t i n g r o o m s (17,18), b a c t e r i o l o g i c a l l a b o r a t o r i e s (32), a n d a i r - c o n d i t i o n i n g s y s t e m s (22, 24) h a s b e e n a m p l y d e m o n s t r a t e d . I n some a p p l i c a t i o n s of t h e l a m p , i t w a s s o o n d i s c o v e r e d t h a t a c o n t r o l l e d a m o u n t of ozone, t o g e t h e r w i t h t h e b a c t e r i c i d a l r a d i a t i o n , r e s u l t e d i n a m o r e effective m e t h o d of d e s t r o y i n g m i c r o o r g a n i s m s . O z o n e also o x i d i z e d m a n y of t h e odors. T h e present s u r v e y describes o n l y those a p p l i c a t i o n s of t h e S t e r i l a m p t u b e w h i c h u t i l i z e l a m p s g e n e r a t i n g a c o n t r o l l e d a m o u n t of ozone t o d e s t r o y m o l d , b a c t e r i a , a n d o d o r s . Tenderay
Process
O n e of t h e first a p p l i c a t i o n s of t h e g e r m i c i d a l l a m p w a s i n t h e t e n d e r i z i n g of m e a t (1, 19). F r e s h beef sides w h i c h h a v e b e e n p a r t i a l l y c h i l l e d i n a c o o l e r a r e h e l d f o r 42 to 44 h o u r s a t 6 8 ° F . a t a r e l a t i v e h u m i d i t y of a b o u t 8 5 % . I n c r e a s e i n tenderness of m e a t d u r i n g storage r e s u l t s f r o m t h e d i g e s t i v e a c t i o n of n a t u r a l l y c o n t a i n e d e n z y m e s u p o n t h e m u s c u l a r a n d c o n n e c t i v e tissues i n t h e m e a t . T h e i n c r e a s e d t e m p e r a t u r e g r e a t l y accelerates t h i s e n z y m e a c t i o n , so t h a t t h e degree of tenderness is e q u i v a l e n t t o beef h u n g f o r 20 d a y s a t 4 0 ° F . H o w e v e r , t h e increase of t e m p e r a t u r e also p r o v i d e s a m o r e f a v o r a b l e e n v i r o n m e n t f o r t h e g r o w t h of m o l d a n d b a c t e r i a . T h e p u r p o s e of t h e S t e r i l a m p u l t r a v i o l e t t u b e s i s t o d e s t r o y these s u r f a c e o r g a n i s m s . F i g u r e 1 i s a t y p i c a l i n s t a l l a t i o n of t h i s process. A p p r o x i m a t e l y 170,000,000 p o u n d s of beef p e r y e a r a r e tenderized b y this method. R e s u l t s of tests d u r i n g t h e d e v e l o p m e n t of t h i s process s h o w e d t h a t a c o n t r o l l e d a m o u n t of ozone w a s n e c e s s a r y t o d e s t r o y m o l d o r b a c t e r i a o n p o r t i o n s of m e a t n o t 57
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch009
A D V A N C E S IN CHEMISTRY SERIES
Figure
1.
Typical Tenderay process room, showing stalling Sterilamp tube
Figure
Top shelf
Bottom shelf
2.
Slime-forming meat
organisms box
method
exposed
of in-
in
Ozone, 24 hours
Ozone, 48 hours
Control
Ultraviolet, top, 24 hours
Control
Ultraviolet, bottorn, 24 hours
Ozone, 24 hours
Ozone, 48 hours
Ozone, 72 hours
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
N A G Y - C O N T R O L OF MOLD, BACTERIA,
ODORS
59
d i r e c t l y i r r a d i a t e d b y t h e l a m p s . Q u a n t i t a t i v e d e t e r m i n a t i o n s of t h e effectiveness of ozone were m a d e b y b a c t e r i a c o u n t s t a k e n f r o m t h e s u r f a c e of t h e m e a t a n d b y e x p o s i n g P e t r i p l a t e s seeded w i t h b a c t e r i a a n d m o l d t a k e n f r o m i n f e c t e d m e a t . F i g u r e 2 i s a n e x a m p l e of o r g a n i s m s o n P e t r i p l a t e s e x p o s e d t o d i r e c t r a d i a t i o n p l u s ozone a n d s o m e t o ozone alone. T h e l a t t e r P e t r i p l a t e s were i n v e r t e d a n d p l a c e d i n v a r i o u s p o s i t i o n s i n t h e r e f r i g e r a t o r . F i g u r e 2 shows t h a t a b o u t 72 h o u r s a r e necessary b e f o r e a l l of t h e organisms are destroyed.
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch009
T h e c o n c e n t r a t i o n of ozone i n s u c h t e n d e r i z i n g r o o m s , a c c o r d i n g t o E w e l l (11, 12), i s of t h e o r d e r of 0.1 p . p . m . b y v o l u m e . E l f o r d a n d V a n d e n E n d e (6) h a v e s h o w n t h a t ozone as l o w as 0.04 p . p . m . c a n d e s t r o y b a c t e r i a i f t h e r e l a t i v e h u m i d i t y is 60 t o 9 0 % . M a l l m a n n a n d C h u r c h i l l (20), e x p e r i m e n t i n g w i t h n a t u r a l l y c o n t a m i n a t e d beef, also s h o w e d t h a t 0.1 p . p . m . b y v o l u m e of ozone w o u l d r e t a r d t h e g r o w t h of t h e organisms. B o t h b a c t e r i c i d a l r a d i a t i o n a n d ozone c a n d e s t r o y o n l y t h e s u r f a c e o r g a n i s m s . H e a v y g r o w t h of m o l d a n d b a c t e r i a w i l l n o t b e d e s t r o y e d b y these s m a l l a m o u n t s of ozone. T h e l e n g t h of t i m e necessary t o d e s t r o y a l l of t h e o r g a n i s m s seeded o n a P e t r i p l a t e w o u l d b e a f u n c t i o n o f t h e c o n c e n t r a t i o n of o z o n e . E w e l l (7) h a s s h o w n t h a t t h e r e c i p r o c i t y l a w , w h i c h r e q u i r e s t h a t t h e p e r cent k i l l i n g b e p r o p o r t i o n a l t o t h e c o n c e n t r a t i o n t i m e s d u r a t i o n of ozone, h o l d s f o r a l i m i t e d c o n c e n t r a t i o n . A t l o w c o n c e n t r a t i o n s of ozone a n d v e r y l o n g t i m e s c o r r e s p o n d i n g t o t h e n u m b e r of l i f e cycles of t h e o r g a n i s m , t h e t o t a l a m o u n t of ozone (23) o r u l t r a v i o l e t e n e r g y (25) i s m u c h less f o r t h e same p e r cent of d e s t r u c t i o n of t h e o r g a n i s m s . T h e s e results w o u l d i n d i c a t e t h a t , a t one stage of t h e i r l i f e c y c l e , m o l d a n d b a c t e r i a a r e v e r y s e n s i t i v e t o m i n u t e a m o u n t s of these l e t h a l agents. T h e c o n c e n t r a t i o n of ozone i n t h e t e n d e r i z i n g r o o m i s c o n t r o l l e d b y t h e n u m b e r a n d t y p e of u l t r a v i o l e t l a m p s . M o s t o f t h e l a m p s i n s u c h a r o o m e m i t p r e d o m i n a n t l y b a c t e r i c i d a l r a d i a t i o n . A c e r t a i n p e r c e n t a g e of t h e l a m p s a r e of a s p e c i a l t y p e t h a t e m i t a c o n t r o l l e d a m o u n t of r a d i a t i o n b e l o w 2000 A . T h i s r a d i a t i o n is a c t i v e i n t h e p h o t o c h e m i c a l p r o d u c t i o n of ozone f r o m o x y g e n of t h e a i r . S o m e of t h e ozone i s d e c o m p o s e d b y 2 5 3 7 - A . r a d i a t i o n (9, 10) b e f o r e i t c a n b e u t i l i z e d i n t h e d e s t r u c t i o n of m o l d a n d b a c t e r i a o r t h e o x i d a t i o n of o d o r s . T h e h a l f l i f e of t h e ozone m o l e c u l e u n d e r t h e p r e s e n t c o n d i t i o n s of h u m i d i t y a n d t e m p e r a t u r e s i s p r o b a b l y of t h e o r d e r o f 3 m i n u t e s (9). T h u s , a n a c c u m u l a t i o n of ozone i n s u c h a r o o m i s i m p o s s i b l e . M e a s u r e m e n t of t h e c o n c e n t r a t i o n of ozone s o o n a f t e r t h e i n t r o d u c t i o n of m e a t i n t o a t e n d e r i z i n g r o o m shows a m a r k e d r e d u c t i o n i n t h e a m o u n t of t h i s gas. T h i s c a n b e a t t r i b u t e d t o t h e o x i d a t i o n of o d o r s a s s o c i a t e d w i t h f r e s h m e a t .
M e a t Storage
Rooms
a n d Walk-In Coolers
M e a t t a k e n f r o m t h e r o o m w h e r e t h e T e n d e r a y process i s c a r r i e d o u t i s i m m e d i ately cooled below 40° F . to inhibit the enzyme action responsible f o r t h e tenderization. T h e r a t e of g r o w t h of b a c t e r i a a n d m o l d i s g r e a t l y r e d u c e d a t these l o w t e m p e r a t u r e s . T h e h a l f life of t h e ozone m o l e c u l e (9) h a s b e e n e x t e n d e d t o o v e r 6 m i n u t e s because of t h e l o w e r t e m p e r a t u r e a n d m a r k e d r e d u c t i o n i n t h e a b s o l u t e h u m i d i t y as w e l l as a r e d u c t i o n i n t h e o d o r l e v e l . U n d e r these c o n d i t i o n s t h e n u m b e r of u l t r a v i o l e t l a m p s necessary i s decreased t o a b o u t o n e h a l f o f t h a t u s e d i n t h e r o o m w h e r e t h e T e n d e r a y process is c a r r i e d o u t . H o w e v e r , t h e r a t i o o f t h e b a c t e r i c i d a l l a m p s t o t h e u l t r a v i o l e t l a m p s also p r o d u c i n g a c o n t r o l l e d a m o u n t o f ozone is k e p t c o n s t a n t . T h e c o n c e n t r a t i o n of ozone i n s u c h a r e f r i g e r a t o r h a s b e e n s t a t e d b y E w e l l (8, 10) t o b e a p p r o x i m a t e l y 0.1 p . p . m . b y v o l u m e . T e s t s u s i n g P e t r i p l a t e s seeded w i t h b a c t e r i a t a k e n f r o m i n f e c t e d m e a t s h o w r e s u l t s s i m i l a r t o those seen i n F i g u r e 2 . A t y p i c a l w a l k - i n cooler is s h o w n i n F i g u r e 3. I f t h e t e m p e r a t u r e i n w a l k - i n coolers is a p p r o x i m a t e l y 4 0 ° F . , t h e n u m b e r a n d t y p e of u l t r a v i o l e t l a m p s u s e d f o r a g i v e n a r e a w i l l be t h e same as f o r t h e m e a t storage r e f r i g e r a t o r s . A t t e m p e r a t u r e s
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch009
60
A D V A N C E S IN CHEMISTRY SERIES
Figure 3.
Typical walk-in cooler with Sterilamp tubes on ceiling
b e t w e e n 3 2 ° a n d 3 5 ° F . a m b i e n t , t h e u l t r a v i o l e t o u t p u t of m o s t m e r c u r y l a m p s i s t o o s m a l l t o b e p r a c t i c a l unless steps a r e t a k e n t o increase t h e t e m p e r a t u r e of t h e l a m p . T h e d e s i g n of t h e S t e r i l a m p t u b e p e r m i t s o p e r a t i o n a t these t e m p e r a t u r e s .
Domestic
Refrigerators
C o n s i d e r a b l e r e s e a r c h w a s d o n e o n t h e a p p l i c a t i o n of a n o z o n e - p r o d u c i n g l a m p f o r d o m e s t i c r e f r i g e r a t o r s . I t w a s necessary t o find a b a l a n c e b e t w e e n t h e a m o u n t of u l t r a v i o l e t r a d i a t i o n a n d ozone so t h a t m o l d a n d b a c t e r i a o n t h e f o o d a n d r e f r i g e r a t o r w a l l w o u l d be d e s t r o y e d , w h i l e t h e l e v e l of f o o d o d o r s a n d t h e t r a n s f e r of f o o d o d o r s t o o t h e r foods w o u l d b e g r e a t l y r e d u c e d w i t h o u t c a u s i n g r e a c t i o n s i n c e r t a i n s e n s i t i v e foods. T w o r e f r i g e r a t o r s were l o a d e d w i t h f o o d as s h o w n i n F i g u r e 4. O n e of t h e boxes contained a n u l t r a v i o l e t l a m p w h i c h operated only on the o n cycle, while t h e other b o x w a s t h e c o n t r o l . D a i l y o b s e r v a t i o n s of t h e foods s h o w e d t h a t t h e o d o r l e v e l i n t h e b o x w i t h t h e l a m p as w e l l as t h e t r a n s f e r of o d o r s f r o m one f o o d t o a n o t h e r c a n be r e d u c e d t o a l a r g e degree. B a c t e r i a a n d m o l d o n f o o d a n d o n t h e w a l l s o f a h i g h h u m i d i t y b o x a r e d e s t r o y e d b y t h e m i n u t e a m o u n t s of ozone g e n e r a t e d b y t h e l a m p . T h e a v e r a g e c o n c e n t r a t i o n of ozone is a p p r o x i m a t e l y 0.1 p . p . m . b y v o l u m e (10, 11). F i g u r e 5 shows t h a t m o r e t h a n 48 h o u r s of e x p o s u r e t o t h e ozone is n e c e s s a r y before a l l of t h e o r g a n i s m s a r e d e s t r o y e d o n seeded P e t r i p l a t e s . H i g h e r c o n c e n t r a t i o n s of ozone w i l l d e s t r o y t h e o r g a n i s m s i n a s h o r t e r t i m e ; h o w e v e r , r a n c i d i t y w o u l d b e p r o d u c e d i n some foods. C o n c e n t r a t i o n s of ozone w h i c h w o u l d necessitate l o n g e r exposures of t h e P e t r i p l a t e s before a l l of t h e o r g a n i s m s w e r e d e s t r o y e d w o u l d n o t be so effective i n o x i d i z i n g t h e odors. T h u s , t h e r a t e of d e s t r u c t i o n of o r g a n i s m s i s a m e a s u r e of t h e a m o u n t of ozone i n t h e b o x . T h i s m e t h o d c a n also b e u s e d t o d e t e r m i n e t h e c i r c u l a t i o n of a i r c o n t a i n i n g ozone i n a r e f r i g e r a t o r .
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch009
Ν A G Y — C O N T R O L OF MOLD, BACTERIA, ODORS
61
Figure 4. Domestic refrigerator used to study effect of ultraviolet radiation on various foods a n d bacteria
Cheese Ripening
and
Storage
T h e S t e r i l a m p u l t r a v i o l e t t u b e p r o d u c i n g a m i n u t e a m o u n t of ozone has b e e n u s e d t o d e s t r o y m o l d o n C h e d d a r cheese d u r i n g r i p e n i n g (13, llf). E w e l l (11) h a s r e p o r t e d t h a t less t h a n 0.2 p . p . m . b y v o l u m e w i l l e x t e n d t h e h o l d i n g t i m e b y 11 weeks a t 5 9 ° F . a n d 8 0 t o 8 5 % r e l a t i v e h u m i d i t y before t h e a p p e a r a n c e of v i s i b l e m o l d o n t h e cheese. T h e ozone also o x i d i z e d t h e o d o r i n t h e r o o m .
Apple
Storage
T h e use of ozone i n c o n t r o l of s u r f a c e m o l d o n p a c k a g e s a n d w a l l s i n a p p l e storage a n d m a i n t e n a n c e of a p l e a s a n t o d o r h a s been r e p o r t e d b y a n u m b e r of i n v e s t i g a t o r s (12, 16, 28, 81). O z o n e h a s also b e e n u s e d t o r e t a r d r i p e n i n g of f r u i t s . E t h y l e n e gas l i b e r a t e d b y f r u i t s t i m u l a t e s t h e r i p e n i n g . T h e gas is r e a d i l y o x i d i z e d b y ozone (2, H). T h e S t e r i l a m p t u b e h a s b e e n u s e d t o p r o v i d e a c o n t r o l l e d a m o u n t of ozone t o o x i d i z e t h i s gas a n d o t h e r o d o r s as w e l l as t o d e s t r o y m i c r o o r g a n i s m s i n a p p l e storage r o o m s .
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
A D V A N C E S IN
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch009
62
Figure 5.
Slime-forming organisms exposed to ozone in domestic refrigerator 1. 2. 3. 4. 5.
Air
CHEMISTRY SERIES
Control Top left, indirect, 24 hours Top left, indirect, 48 hours Top right, indirect, 24 hours Top right, indirect, 48 hours
Conditioning
T h e p r i m a r y p u r p o s e of t h e S t e r i l a m p t u b e i n a i r - c o n d i t i o n i n g s y s t e m s has b e e n t o d e s t r o y m i c r o o r g a n i s m s (22). T e s t s o n t h e effect of 1 t o 2 p . p . m . b y v o l u m e of ozone o n E. coli s p r a y e d i n t o a n a i r d u c t r e v e a l e d t h a t t h e o r g a n i s m s w e r e n o t d e s t r o y e d . T h i s w o u l d c o n f i r m t h e d a t a of E l f o r d a n d V a n d e n E n d e (6) t h a t ozone is a p o o r d i s i n f e c t a n t of a i r a t l o w r e l a t i v e h u m i d i t y . A t h i g h r e l a t i v e h u m i d i t y these a u t h o r s f o u n d t h a t as l o w as 0.04 p . p . m . b y v o l u m e d e s t r o y e d b a c t e r i a d i s p e r s e d i n a n a e r o s o l . T h i s w o u l d also agree w i t h t h e results r e p o r t e d here, t h a t o r g a n i s m s o n s u r faces a n d seeded o n P e t r i p l a t e s c a n be d e s t r o y e d b y m i n u t e a m o u n t s of o z o n e . W i t h t h e i n t r o d u c t i o n o f a S t e r i l a m p t u b e p r o d u c i n g a c o m t r o l l e d a m o u n t of ozone, t h e r e has been a n i n c r e a s i n g n u m b e r of i n s t a l l a t i o n s f o r t h e p u r p o s e of o x i d i z i n g b o d y , smoke, or cooking odors. T h e l a m p s h a v e been i n s t a l l e d i n t h e a i r d u c t s of l a r g e office
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch009
N A G Y — C O N T R O L OF MOLD, BACTERIA, ODORS
Figure 6.
63
Installation of Sterilamp tubes in large air duct
buildings, hospitals, a n d cooking establishments ( F i g u r e 6 ) . Smaller units have been u s e d i n t h e h o t a i r h e a t i n g s y s t e m s of h o m e s a n d s t i l l s m a l l e r u n i t s f o r offices o r i n d i v i d u a l rooms. T e s t s o n a n u m b e r of these s m a l l u n i t s r e v e a l e d t h a t t h e ozone c o n c e n t r a t i o n i n t h e r o o m w a s less t h a n 0.01 p . p . m . b y w e i g h t . T h e r e is a m p l e evidence t h a t v a r i o u s f o o d odors, s u c h as f r o m fish, onions, a c r o l i n f r o m b u r n t f a t , a n d t o b a c c o as w e l l as b o d y odors c a n b e o x i d i z e d b y ozone. T h i s i s s u b s t a n t i a t e d b y m a n y r e p o r t s i n t h e l i t e r a t u r e [4,13-15, 30,31). Tests made i n the laboratory w i t h various unsaturated organic c o m p o u n d s s u c h as i n d o l e a n d s k a t o l e (fecal o d o r ) , a l l y l sulfide ( g a r l i c o d o r ) , a n d m e t h y l t h i o c y a n a t e ( u n p l e a s a n t o d o r of a l m o n d s ) s h o w e d t h e m t o b e r e a d i l y o x i d i z e d , as e v i d e n c e d b y l a c k of o d o r . S a t u r a t e d c o m p o u n d s s u c h as b u t y r i c a n d v a l e r i c acids were n o t o x i d i z e d u n d e r t h e same c o n d i t i o n s . S p e c i a l fixures w i t h u l t r a v i o l e t l a m p s p r o d u c i n g a c o n t r o l l e d a m o u n t of ozone a r e u s e d i n a n i m a l h o s p i t a l s a n d k e n n e l s f o r p r e v e n t i o n of cross i n f e c t i o n a n d f o r t h e o x i d a t i o n of a n i m a l a n d f e c a l o d o r s . Determination of
Ozone
I n f o r m a t i o n o n t h e a m o u n t of ozone g e n e r a t e d b y t h e l a m p u n d e r v a r i o u s c o n d i t i o n s is of i n t e r e s t t o t h e r e s e a r c h s c i e n t i s t , a p p l i c a t i o n engineer, a n d h e a l t h officer. M a n y of t h e d i v e r g e n t v i e w s o n t h e b a c t e r i c i d a l effect a n d t o x i c i t y of ozone c a n be a t t r i b u t e d t o t h e m e t h o d s of d e t e r m i n a t i o n u s e d b y t h e a u t h o r s as w e l l as t h e p u r i t y of t h e i r g a s . A s a n e x a m p l e , oxides of n i t r o g e n were p r o d u c e d as a b y - p r o d u c t b y some o f t h e e a r l y ozone g e n e r a t o r s . T h e s e oxides r e a c t w i t h s o m e of t h e reagents u s e d f o r t h e m e a s u r e m e n t of o z o n e ; t h e y h a v e also been s h o w n t o be t o x i c (5, 26). U l t r a v i o l e t l a m p s d o n o t p r o d u c e oxides of n i t r o g e n . T h e c o n c e n t r a t i o n of ozone i n T e n d e r a y process r o o m s a n d r e f r i g e r a t o r s h a s b e e n d e t e r m i n e d b y E w e l l (9) u s i n g c a l i b r a t e d p o t a s s i u m i o d i d e - s t a r c h p a p e r . T h i s m e t h o d is n o t a p p l i c a b l e f o r c o n c e n t r a t i o n s l o w e r t h a n 0.4 p . p . m . b y v o l u m e . M e a s u r e m e n t of c o n c e n t r a t i o n s b e l o w 0.1 p . p . m . b y v o l u m e i n v o l v e d i n s t a l l i n g a l a r g e n u m b e r of k n o w n lamps i n a refrigerator a n d then dividing the reading to obtain a value for a box w i t h a n o r m a l n u m b e r of l a m p s . T h e p o t a s s i u m i o d i d e - s t a r c h p a p e r w a s l a t e r c o m p a r e d w i t h t h e C r a b t r e e a n d K e m p (3) a t o m i z e d n e u t r a l p o t a s s i u m i o d i d e m e t h o d a n d
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
64
A D V A N C E S IN CHEMISTRY SERIES
also w i t h t h e m o d i f i e d u l t r a v i o l e t a b s o r p t i o n m e t h o d of S t a i r (29). T h e r e s u l t s of a l l t h r e e m e t h o d s w e r e i n g o o d a g r e e m e n t a t a c o n c e n t r a t i o n of a b o u t 1 p . p . m . b y w e i g h t . T h e a l k a l i n e p o t a s s i u m i o d i d e m e t h o d of S m i t h a n d D i a m o n d (27) c o n s i s t e n t l y gave low results. T h e m e t h o d u s e d t o d e t e r m i n e t h e r e l a t i v e a m o u n t s of ozone f r o m v a r i o u s t y p e s of S t e r i l a m p t u b e s s h o w n i n T a b l e I w a s t h a t of C r a b t r e e a n d K e m p (3). T h e l a m p s T a b l e I.
Concentration of O z o n e from A v e r a g e Sterilamp O p e r a t e d at Optimum Conditions
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch009
Sterilamp 794-H (Odorout) 794 782-H-30 782-H-10 G36 T6-H»
Application Examples Room, office Domestic refrigerator Large refrigerators Hot air furnaces Air-conditioning ducts
Wattage 3.5 3.5 17.0 12.0 39.0
Ozone per 1000 C u . F t . , P . P . M . by Wt. 0.05 0.02 0.42 0.15 2.10
» L type of Sterilamp transmits about one tenth to one fiftieth of the 1849-A. radia tion as the H type.
were h u n g i n a b o u t t h e g e o m e t r i c a l c e n t e r of a s m a l l v a c a n t r o o m of 1780 c u b i c feet. T h e relative h u m i d i t y was between 20 a n d 3 0 % a t 70° to 75° F . F i g u r e 7 shows t h a t ,
"5
Π)
Distance
Έθ
in Inches f r o m
25
30
Sterilamp
Figure 7. Transmittance of radiation below 2000 through air at various relative humidities
A.
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
N A G Y — C O N T R O L OF MOLD, BACTERIA, ODORS
65
w i t h t h e a v a i l a b l e r a y l e n g t h a n d h u m i d i t y , n e a r l y a l l of t h e 1 8 4 9 - A . r a d i a t i o n g e n e r a t e d b y t h e l a m p w a s a b s o r b e d b y t h e o x y g e n of t h e a i r , a n d t h e m a x i m u m a m o u n t of ozone w o u l d be e x p e c t e d . O p e r a t i n g these l a m p s i n enclosed f i x t u r e s , a i r d u c t s , a t l o w e r t e m p e r a t u r e s , o r a t h i g h e r h u m i d i t y w i l l decrease t h e a m o u n t of ozone g e n e r a t e d . I n a c t u a l i n s t a l l a t i o n s o n l y a b o u t one t e n t h of t h e c o n c e n t r a t i o n g i v e n i n T a b l e I w i l l b e f o u n d . T a b l e I is a m e a s u r e of t h e r e l a t i v e p r o p o r t i o n of ozone g e n e r a t e d b y t h e various lamps. T h e r e l a t i v e a m o u n t of ozone g e n e r a t e d b y v a r i o u s u l t r a v i o l e t l a m p s c a n b e a s c e r t a i n e d b y t h e m e a s u r e m e n t of t h e r a d i a t i o n e m i t t e d b e l o w 2000 A . A 789 p h o t o t u b e , w h i c h w i l l r e s p o n d o n l y t o these s h o r t r a d i a t i o n s , h a s b e e n u s e d f o r s u c h c o m p a r i s o n s a n d f o r c o n t r o l of t h e q u a l i t y of glass i n t h e p r o d u c t i o n of t h e l a m p s .
Downloaded by AUBURN UNIV on September 12, 2017 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch009
Literature (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32)
Cited
Christensen, P. B., Refrig. Engr. 39, 296-9 (1940). Colbert, J. W., Ibid., 60, 265-7 (1952). Crabtree, J., Kemp, A. R., Ind. Eng. Chem., Anal. Ed. 18, 769-74 (1946). Davidson, G., Travis, J. H., Psychiat. Quart., Suppl. 27, 90-1 (1953). Dingle, W. M., Gage, J. C., Brit. J. Ind. Med. 11, 140-4 (1954). Elford, W. J., Van den Ende, J., J. Hyg. 42, 240-65 (1942). Ewell, A. W., Am. Soc. Refrig. Engr. 41, 331-4 (1941). Ibid., 55, 466-8 (1948). Ewell, A. W., J. Appl. Phys. 13, 759-67 (1942). Ibid., 17, 908-11 (1946). Ewell, A. W., Refrig. Data Book 2 (1940). Ibid., Chap. 18, 143-99 (1946). Ewell, A. W., Refrig. Engr. 50, 523-4, 560-1 (1945). Ibid., 58, 1-4, Sect. 2 (1950). Gee, A. H., Ellner, P. D., Stevens, M. R., U. S. Air Force Tech. Rept. 6565, P t . 3 (1953). Gross, C. R., Smock, R. M., Refrig. Engr. 50, 535-40 (1945). Hart, D., A.M.A. Arch. Surg. 37, 956-72 (1938). Hart, D., "Airborne Infections in Clean Operative Wounds," Proc. of Interstate Post Graduate Medical Assembly North America, Oct. 17-20, 1944, Chicago, Ill. James, R. F. (to Westinghouse Electric Corp.), U. S. Patent 2,192,348 (March 5, 1940). Mallmann, W. L., Churchill, E. S., Refrig. Engr. 51, 523-8 (1946). Nagy, R., Baker's Dig. 22, 25-6 (1948). Nagy, R., Mouromseff, G., Rixton, F. H., Heating, Piping, Air Conditioning 26, 82-7 (1954). Nagy, R., Rentschler, H. C. (to Westinghouse Electric Corp), U. S. Patent 2,337,507 (Jan. 18, 1944). Rentschler, H. C., Nagy, R., J. Bacteriol. 44, 85-94 (1942). Rentschler, H. C., Nagy, R., Mouromseff, G., Ibid., 41, 745-74 (1941). Schrenk, H. H., Ind. Eng. Chem. 47, N o . 93A (February 1955). Smith, R. G., Diamond, P., Ind. Hyg. Quart. 13, 235-8 (1952). Smock, R. M., Watson, R. D., J. Am. Soc. Refrig. Engr. 42, 97-101 (1941). Stair, R., Bagg, T. C., Johnson, R. G., J. Research Natl. Bur. Standards 54, 133-9 (1954). Summer, W., Mfg. Chemist 24, 105-10 (1953). Watson, R. D., J. Am. Soc. Refrig. Engr. 46, 103-6 (1943). Wedum, A. G., Hanel, E., Phillips, G. B., Public Health Rept. 71, 331-6 (1956). R E C E I V E D for review March 27, 1957.
Accepted June 19. 1957.
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.