ozone chemistry and technology - American Chemical Society

I he Criegee mechanism {13-15, 17) for ozonolysis has been of tremendous ... 0. VIII. CR2. T h e initial ozone attack could occur i n t w o general wa...
0 downloads 0 Views 572KB Size
Initial Attack of Ozone on an Unsaturated System PHILIP S. BAILEY, SHEAFFERS S. BATH, and JOSEPH B. A S H T O N

Downloaded by TUFTS UNIV on June 3, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch022

University of Texas, Austin, Tex.

A general theory of attack, which is supported by work from the University of Texas, is deduced from the ideas of many people. A two-step attack is pro­ posed. The first step is electrophilic a n d is made by a terminal oxygen atom. The central atom, which is nucleophilic, completes the attack. The position of at­ tack on anthracene a n d the specificity of attack which occurs with unsymmetrical olefins support this theory.

I h e C r i e g e e m e c h a n i s m {13-15, 17) f o r o z o n o l y s i s h a s b e e n of t r e m e n d o u s i m p o r t a n c e i n g i v i n g a b e t t e r u n d e r s t a n d i n g of t h e course o f t h e o z o n o l y s i s r e a c t i o n — i n p a r t i c u l a r , t h e n a t u r e a n d fate o f t h e a c t i v e o x y g e n - c o n t a i n i n g o z o n o l y s i s p r o d u c t s . I t leaves i n d o u b t , h o w e v e r , t h e n a t u r e of t h e i n i t i a l a t t a c k o f ozone o n a n u n s a t u r a t e d s y s t e m a n d o f t h e i n t e r m e d i a t e s l e a d i n g t o t h e f o r m a t i o n of t h e p r i m a r y cleavage p r o d u c t s , the z w i t t e r i o n ( I V ) a n d t h e aldehyde or ketone ( V ) .

0—0 R C=CR 2

V

2

R C

CR

2

0 I I R C—CR

2

2

I

Π

Rearrangement products

2

III

R C—Ο—0

R C=0

2

2

IV reacting solvents such as R'OH

.OOH R C. ^OR' 2

inert solvent and V is a ketone .0—0. R < >R ^ 0 - 0 ^ 2

2

inert solvent and V is an aldehyde

RC

CR

2

2

0

4- polymeric peroxides VI

VII

VIII

T h e i n i t i a l ozone a t t a c k c o u l d o c c u r i n t w o g e n e r a l w a y s . T h e first is a o n e - s t e p s i m u l t a n e o u s a t t a c k o f b o t h r e a c t i v e centers of t h e ozone m o l e c u l e o n b o t h r e a c t i v e centers of t h e u n s a t u r a t e d m o l e c u l e . T h i s m e c h a n i s m is c h a m p i o n e d b y t h e A u s t r a l i a n s , 143

OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

A D V A N C E S IN CHEMISTRY SERIES

144

B r o w n (9, 11) a n d B a d g e r (1-4). T h e o t h e r p o s s i b i l i t y is a t w o - s t e p a t t a c k of t h e r e a c t i v e centers of t h e ozone m o l e c u l e o n t h e u n s a t u r a t e d s y s t e m . A f t e r a d e c i s i o n b e t w e e n these t w o b r o a d , g e n e r a l m e c h a n i s m s is r e a c h e d , a d d i t i o n a l questions m u s t b e a n s w e r e d . I f t h e first m e c h a n i s m is i n effect, does t h e a t t a c k i n ­ volve t h e t e r m i n a l oxygen atoms or adjacent oxygen atoms? I f t h e second m e c h a n i s m is i n effect, does t h e first s t e p i n v o l v e a n e l e c t r o p h i l i c , n u c l e o p h i l i c , o r r a d i c a l a t t a c k ? D o e s t h e first s t e p i n v o l v e a t e r m i n a l o r a c e n t r a l a t o m ? I f i t i n v o l v e s a t e r m i n a l a t o m , i s t h e a t t a c k c o m p l e t e d i n t h e s e c o n d step b y t h e m i d d l e o r t h e o t h e r t e r m i n a l a t o m ? F u r t h e r , one m u s t e x p l a i n w h y t h e d o u b l e b o n d is so e a s i l y c l e a v e d a n d w h y n o i n t e r m e d i a t e f r o m t h e i n i t i a l ozone a t t a c k h a s ever been i s o l a t e d . T h i s p a p e r a t t e m p t s t o m o l d t h e ideas of m a n y p e o p l e i n t o a general t h e o r y a n d r e p o r t s w o r k f r o m t h e U n i v e r s i t y of T e x a s w h i c h a d d s s u p p o r t t o t h e t h e o r y .

o- dP-o

0-0

Downloaded by TUFTS UNIV on June 3, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch022

+

0 c — c ;

IX

XI

^C—0—0

+

o=c; XIII

XII

A g r e e m e n t seems finally t o h a v e been r e a c h e d t h a t t h e ozone m o l e c u l e h a s a n o b t u s e a p e x angle a n d , t h e r e f o r e , s h o u l d be c o n s i d e r e d a h y b r i d of t h e f o l l o w i n g s t r u c ­ t u r e s (20, 26). T h e w o r k of W i b a u t a n d c o w o r k e r s (6, 19, 21, 24, 25, 27, 28) h a s :0=0—0:

+

-




XIV

:0—0=0:

-

+

:0—0—0:

-



+

-XV

:0—0—0:

+

··

-

f u r n i s h e d s t r o n g evidence f o r t h e t w o - s t e p a t t a c k , t h e first step b e i n g e l e c t r o p h i l i c . I t h a s been g e n e r a l l y a s s u m e d t h a t t h e c e n t r a l , p o s i t i v e l y c h a r g e d a t o m m a k e s t h e e l e c t r o p h i l i c a t t a c k . M e i n w a l d (22), h o w e v e r , h a s p o i n t e d o u t t h a t i n s t r u c t u r e s X I V a n d X V , w h i c h a r e t h e o n l y ones c o n s i d e r e d t o m a k e a n y a p p r e c i a b l e c o n t r i b u t i o n t o t h e ozone h y b r i d , t h e c e n t r a l o x y g e n a t o m h a s i t s f u l l q u o t a of eight electrons a n d c a n n o t b e e l e c t r o p h i l i c . O n l y i n s t r u c t u r e s X V is t h e r e a n e l e c t r o p h i l i c center a n d i t is t h e t e r m i n a l o x y g e n a t o m . I n the proposed theory a t e r m i n a l oxygen atom makes the initial, electrophilic attack. A f t e r this, either the central or other t e r m i n a l atom could complete the attack, because b o t h a r e n u c l e o p h i l i c . C o m p l e t i o n b y t h e o t h e r t e r m i n a l a t o m w o u l d l e a d t o the f o r m a t i o n of i n t e r m e d i a t e X V I , whereas X V I I w o u l d be p r o d u c e d i f t h e c e n t r a l atom completed the attack.

0

0

0 — 0 — 0

XVII S t r u c t u r e X V I is f a v o r e d b y some p e o p l e because of t h e g r e a t e r s t a b i l i t y i t s h o u l d h a v e . O n t h e o t h e r h a n d t h i s seems t o t h e p r e s e n t a u t h o r t o b e t h e best a r g u m e n t a g a i n s t i t , as i t has n e v e r been i s o l a t e d . S t r u c t u r e X V I I s h o u l d be v e r y u n s t a b l e . T h e p a r t i a l p o s i t i v e charges s h o u l d

OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

Downloaded by TUFTS UNIV on June 3, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch022

BAILEY, BATH

#

A N D A S H T O N - A T T A C K O N UNSATURATED SYSTEM

145

cause t h e o x y g e n - o x y g e n b o n d t o b r e a k c o m p l e t e l y — e . g . , X — t o p r o d u c e X I w h i c h l i k e w i s e w o u l d b e h i g h l y u n s t a b l e . T h e p o s i t i v e charge o n t h e o x y g e n a t o m of X I w o u l d w e a k e n t h e c a r b o n - c a r b o n b o n d of X I , c a u s i n g b r e a k d o w n t o t h e p r o v e d i n t e r ­ m e d i a t e s o f t h e C r i e g e e {13-15, 17) m e c h a n i s m ( X I I a n d X I I I ) . W o r k c a r r i e d o u t a t t h e U n i v e r s i t y of T e x a s s u p p o r t s t h i s p i c t u r e . T w o a p ­ proaches t o t h e solution of t h e p r o b l e m are being made. T h e first deals w i t h t h e position of a t t a c k o n various aromatic systems. A c c o r d i n g t o t h e molecular o r b i t a l t h e o r y , t h e one-step s i m u l t a n e o u s a t t a c k of a " d o u b l e - b o n d " reagent u p o n a n a r o m a t i c s y s t e m w i l l o c c u r first a t t h e b o n d w i t h t h e lowest " b o n d l o c a l i z a t i o n e n e r g y " ( t h e one w i t h t h e greatest d o u b l e b o n d c h a r a c t e r ) , whereas t h e t w o - s t e p a t t a c k w i l l o c c u r i n i t i a l l y a t t h e position w i t h t h e lowest " a t o m localization energy" (most reactive c a r b o n a t o m i n t h e m o l e c u l e ) {7-11, 18). W i t h s o m e a r o m a t i c substances, s u c h as a n t h r a c e n e , these p o s i t i o n s a r e d i f f e r e n t . W i t h a n t h r a c e n e t h e b o n d w i t h t h e lowest b o n d l o c a l i z a t i o n e n e r g y i s t h e 1,2 b o n d {7-11,18). O s m i u m tetroxide, a k n o w n double b o n d reagent, a t t a c k s here {12). T h e p o s i t i o n s w i t h t h e l o w e s t a t o m l o c a l i z a t i o n energies a r e t h e 9,10 p o s i t i o n s . H e r e e l e c t r o p h i l i c s u b s t i t u t i o n a n d o x i d a t i o n o c c u r . W h a t w i l l ozone d o ? W a t e r s {23) h a s o z o n i z e d a n t h r a c e n e i n acetic a n h y d r i d e a n d o b t a i n e d a n t h r a q u i n o n e . H e d i d n o t state h i s y i e l d , h o w e v e r , n o r s h o w h o w m u c h ozone w a s a b s o r b e d . I t i s n o t c e r t a i n w h e t h e r ozone, o r o x y g e n c a t a l y z e d b y ozone, produced the anthraquinone. T h e o z o n o l y s i s o f a n t h r a c e n e i s b e i n g s t u d i e d i n d e t a i l a t t h e U n i v e r s i t y of T e x a s . I n acetic a c i d t h e ozone i s a b s o r b e d n i c e l y a n d t h e a n t h r a c e n e s l o w l y goes i n t o s o l u t i o n as i t r e a c t s . I t r e q u i r e s t h e r e a c t i o n of a p p r o x i m a t e l y 3 m o l e s o f ozone p e r m o l e o f a n t h r a c e n e t o c o m p l e t e t h e r e a c t i o n . A t t h e e n d some a n t h r a q u i n o n e h a s p r e c i p i t a t e d i n t h e r e a c t i o n vessel. T h i s a m o u n t s t o a 2 8 % y i e l d . T h e filtrate i s p e r o x i d i c . U p o n r e d u c t i o n w i t h s o d i u m i o d i d e , a 4 1 % y i e l d of a n t h r a q u i n o n e r e s u l t s , m a k i n g a t o t a l y i e l d of 6 9 % . I t i s c e r t a i n t h a t t h e a n t h r a q u i n o n e f o r m a t i o n is d u e t o t h e ozone r e a c t i o n , because (1) a n a c t i v e o x y g e n - c o n t a i n i n g c o m p o u n d i s p r o d u c e d w h i c h i s r e d u c e d t o a n t h r a q u i n o n e , (2) o x y g e n alone u n d e r t h e same c o n d i t i o n s gives n o r e a c t i o n , a n d ( 3 ) o x y g e n p l u s a t r a c e of ozone p r o d u c e s a n t h r a q u i n o n e i n a m o u n t s r o u g h l y p r o p o r t i o n a l t o t h e a m o u n t of ozone passed t h r o u g h t h e s y s t e m , b u t n o t a t a l l p r o p o r t i o n a l t o t h e a m o u n t of o x y g e n passed t h r o u g h t h e s y s t e m . T h i s i s excellent e v i d e n c e f o r t h e t w o - s t e p a t t a c k . I n r e g a r d t o t h e exact m e c h a n i s m of t h e a n t h r a q u i n o n e f o r m a t i o n , w h i c h i s 6 9 % of t h e r e a c t i o n , i t does n o t seem l i k e l y t h a t t h e e n t i r e 3 m o l e s of ozone i s r e q u i r e d . P e r h a p s t h e o t h e r 3 1 % of t h e r e a c t i o n occurs b y t h e o n e - s t e p m e c h a n i s m a t t h e 1,2 b o n d of a n t h r a c e n e . I f t h i s o c c u r r e d , t h e r e a c t i o n s h o u l d c o n t i n u e u n t i l b o t h o u t e r r i n g s a r e d e s t r o y e d . T h i s w o u l d r e q u i r e a c o n s i d e r a b l e p r o p o r t i o n o f t h e 3 m o l e s of ozone a b s o r b e d d u r i n g t h e r e a c t i o n . T w o facts m u s t b e t a k e n i n t o a c c o u n t i n a n y m e c h a n i s m suggestion. S o m e a n t h r a q u i n o n e is p r o d u c e d b y s p o n t a n e o u s d e c o m p o s i t i o n of a n a c t i v e o x y g e n - c o n t a i n i n g p r o d u c t a n d t h e r e m a i n d e r is p r o d u c e d b y r e d u c t i o n of an active oxygen-containing product. T h e f o l l o w i n g m e c h a n i s m m e e t s these r e q u i r e m e n t s . O z o n e a t t a c k s a t t h e 9,10 p o s i t i o n s t o g i v e a n i n t e r m e d i a t e s u c h as X I X , w h i c h r e a r r a n g e s t o X X I , o r t h e corresponding perhydroquinone. S p o n t a n e o u s loss of w a t e r , f a c i l i t a t e d b y t h e g l a c i a l acetic a c i d s o l v e n t , w o u l d p r o d u c e a n t h r a q u i n o n e ( X X ) d i r e c t l y . O x i d a t i o n of X X I (or t h e c o r r e s p o n d i n g p e r h y d r o q u i n o n e ) w o u l d l e a d t o z w i t t e r i o n ( X X I I I ) w h i c h w o u l d s t a b i l i z e i t s e l f b y r e a c t i o n w i t h t h e s o l v e n t t o give X X I I . R e d u c t i o n of X X I I would produce anthraquinone ( X X ) . T h e o t h e r a p p r o a c h b e i n g m a d e a t t h e U n i v e r s i t y of T e x a s h a s t o d o w i t h t h e s p e c i f i c i t y o f ozone a t t a c k w h i c h o c c u r s w i t h u n s y m m e t r i c a l olefins. T h i s i s a n a l o g o u s t o t h e s p e c i f i c i t y o b s e r v e d i n t h e a d d i t i o n s of u n s y m m e t r i c a l reagents s u c h as h y d r o g e n c h l o r i d e t o u n s y m m e t r i c a l olefins. T h i s m a y first b e i l l u s t r a t e d w i t h a n e x a m p l e a l r e a d y r e p o r t e d {5, 13), t h e o z o n o l y s i s of i s o b u t e n e ( X X I V ) i n i n e r t s o l v e n t s . T h e m a j o r p r o d u c t i s a n o z o n i d e

OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

A D V A N C E S IN CHEMISTRY SERIES

146

Downloaded by TUFTS UNIV on June 3, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch022

0

XXII

XXIII

( X X X I ) . T h i s w o u l d h a v e t o b e p r o d u c e d b y i n t e r a c t i o n of i n t e r m e d i a t e s X X X , a n d n o t X X X I I , as C r i e g e e (13-15, 17) f o u n d t h a t z w i t t e r i o n s d o n o t a d d t o t h e c a r b o n y l g r o u p of o r d i n a r y k e t o n e s . T h i s preferential p r o d u c t i o n of intermediates c a n be e x p l a i n e d o n t h e basis o f t h e t e r m i n a l o x y g e n a t o m , e l e c t r o p h i l i c a t t a c k , p l u s i n d u c t i v e effects i n i s o b u t e n e , l e a d i n g t o t h e f o r m a t i o n o f X X V I I . O n the other h a n d , a central o x y g e n e l e c t r o p h i l i c a t t a c k , besides b e i n g u n l i k e l y , w o u l d r e s u l t i n t h e p r e f e r e n t i a l f o r ­ m a t i o n of X X V I I I , w h i c h w o u l d b r e a k d o w n t o g i v e t h e w r o n g i n t e r m e d i a t e s ( X X X I I ) f o r ozonide ( X X X I ) f o r m a t i o n . T h e a t t a c k s h o w n i n X X V I i s u n l i k e l y , a l t h o u g h i t could be argued that, i f i t broke down, i t w o u l d give intermediates X X X preferentially, o n t h e basis t h a t t h e z w i t t e r i o n of X X X , b e i n g a t e r t i a r y c a r b o n i u m i o n , w o u l d be m o r e stable t h a n t h e one i n X X X I I . T o t h e p r e s e n t a u t h o r t h e a d d i t i o n of ozone a c c o r d i n g t o M a r k o w n i k o f T s r u l e t o give a n u n s t a b l e a d d u c t ( X X V I I ) , w h i c h c a n b r e a k d o w n i n o n l y one w a y , is a s o u n d e r e x p l a n a t i o n o f t h e s p e c i f i c i t y of ozone a t t a c k . T h i s places t h e ozone a t t a c k o n a d o u b l e b o n d i n t h e same c a t e g o r y as t h a t of o t h e r reagents w h i c h s h o w a s p e c i f i c i t y i n t h e i r r e a c t i o n s w i t h u n s y m m e t r i c a l olefins. T h e c o n c l u s i o n s r e a c h e d i n t h e p r e c e d i n g e x a m p l e a r e b a s e d o n i n d i r e c t evidence, w h i c h is t h a t c e r t a i n i n t e r m e d i a t e s ( X X X ) a r e necessary t o p r o d u c e t h e ozonide (XXXI). I t w o u l d b e b e t t e r t o get a b s o l u t e evidence b y a c t u a l l y " t r a p p i n g " a n d i d e n t i f y i n g t h e z w i t t e r i o n p r e f e r e n t i a l l y f o r m e d . T h i s has been d o n e a t t h e U n i v e r s i t y of T e x a s b y t h e o z o n o l y s i s of 1 , 2 - d i b e n z o y l p r o p e n e ( X X X I I I ) i n m e t h a n o l . T h e p r o d u c t s were p h e n y l g l y o x a l ( X X X V I I ) i n 6 1 % y i e l d a n d t h e m e t h o x y h y d r o ­ peroxide ( X X X V ) (melting point 6 0 - 1 ° ) i n 7 4 % y i e l d . I t was felt t h a t t h e actual y i e l d s were m u c h b e t t e r . T h e m a t e r i a l s were difficult t o i s o l a t e . T h e m e t h o x y h y d r o peroxide ( X X X V ) h a d t o originate f r o m zwitterion X X X V I w h i c h w a s " t r a p p e d " t h r o u g h i t s r e a c t i o n w i t h m e t h a n o l . T h i s s p e c i f i c i t y o f r e a c t i o n c a n b e e x p l a i n e d , as i n t h e o t h e r case, b y t h e t e r m i n a l o x y g e n a t t a c k of ozone a n d i n d u c t i v e effects i n 1,2-

OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

BAILEY, BATH, AND

:

0

ASHTON-ATTACK ON

— o — 0 :

CH, CH

CH; 3^

I

CH ^ 3

^

3

I I ;c—CH

ο — o — o CH

CH -CH

2

CH

civ

I

3

CH

2

XXIX

(CH ) C=0 3

0-0

+

(CH ) C^ 3

H C=0 2

XXX

2

2

3

XXVIII

(CH ) C—0—0

I

: c — C H

2

3

XXVII

3

2

XXVI

XXV

0 — 6 — 0 CH

=CH

CH

XXIV

Downloaded by TUFTS UNIV on June 3, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch022

147

UNSATURATED SYSTEM

^CH

2

2

^ 0 "

H C—0—0

XXXI

XXXII

9

d i b e n z o y l p r o p e n e ( X X X I I I ) . E v i d e n c e f o r t h e s t r u c t u r e assigned t o X X X V w a s i t s r e d u c t i o n t o l - p h e n y l - l , 2 - p r o p a n e d i o n e w h i c h w a s i s o l a t e d as t h e p u r e s e m i c a r b a z o n e (melting p o i n t 2 1 1 - 1 2 ° ) i n 7 6 % y i e l d . I n a d d i t i o n , the elemental analyses a n d molec­ u l a r w e i g h t d e t e r m i n a t i o n s c h e c k e d f o r t h e s t r u c t u r e a s s i g n e d . T h e m a t e r i a l gave a p o s i t i v e l e a d t e t r a a c e t a t e test (16) f o r a h y d r o p e r o x i d e . T h e i n f r a r e d s p e c t r u m showed a s t r o n g c a r b o n y l b a n d a t 5.9 m i c r o n s a n d a h y d r o x y l b a n d a t 2.9 m i c r o n s . :p-0—0:

0

CH

0 - 0 — 0 I I Φ - C - C — C H - C - M 0

3

0

XXXIII 0CH I Φ-C—C—0-OH II I 0 CH

CH

0

3

XXXIV

3

3

XXXV Literature (1) (2) (3) (4) (5) (6) (7)

Φ - C — C - 0 - 0 II I 0 CH 3

Φ - C — c=o II I Ο Η

XXXVI

XXXVII

Cited

Badger, G. M., J. Chem. Soc. 1949, 456. Badger, G. M., Quart. Revs. 5, 155 (1951). Badger, G. M., Cook, J. W., Gibb, A. R., J. Chem. Soc. 1951, 3456. Badger, G. M., Lynn, K. R., Ibid., 1950, 1726. Bailey, P. S., Chem. Ber. 88, 795 (1955). Boer, H., Sixma, F. L. J., Rec. trav. chim. 70, 997 (1951). Brown, R. D., Australian J. Sci. Research 2A, 564 (1949).

Society OZONEAmerican CHEMISTRY Chemical AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959. Library

A D V A N C E S IN

148

CHEMISTRY SERIES

Brown, R. D., J. Am. Chem. Soc. 75, 4077 (1953). Brown, R. D., J. Chem. Soc. 1 9 5 0 , 3249. Ibid., 1 9 5 1 , 1950. Brown, R. D., Quart. Revs. 6, 63 (1952). Cook, J. W., Schoental, R., Nature 1 6 1 , 237 (1948). Criegee, R., Blust, G., Zinke, H., Chem. Ber. 8 7 , 766 (1954). Criegee, R., Kerckow, Α., Zinke, H., Ibid., 8 8 , 1878 (1955). Criegee, R., Lohaus, G., Ann. 5 8 3 , 6 (1953). Criegee, R., Pilz, H., Flygare, H., Ber. 7 2 , 1799 (1939). Criegee, R., Wenner, G., Ann. 5 6 4 , 9 (1949). Dewar, M. J. S., J. Am. Chem. Soc. 7 4 , 3357 (1952). Dijk, J. van, Rec. trav. chim. 6 7 , 945 (1948). Hughes, R. Η., J. Chem. Phys. 2 4 , 131 (1956). Kampschmidt, L. W. F., Wibaut, J. P., Rec. trav. chim. 7 3 , 431 (1954). Meinwald, J., Chem. Ber. 8 8 , 1889 (1955). Roitt, I. M., Waters, W. Α., J. Chem. Soc. 1 9 4 9 , 3060. Sixma, F. L. J., Rec. trav. chim. 7 1 , 1124 (1952). Sixma, F. L. J., Boer, H., Wibaut, J. P., Ibid., 7 0 , 1005 (1951). Trambarulo, R. F., Ghosh, S. N., Burrus, C. Α., Jr., Gordy, W., J. Chem. Phys. 2 1 , 851 (1953). (27) Wibaut, J. P., Sixma, F. L. J., Rec. trav. chim. 7 1 , 761 (1952).

Downloaded by TUFTS UNIV on June 3, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch022

(8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)

(28) Wibaut, J. P., Sixma, F. L. J., Kampschmidt, L. W. F., Boer, H., Ibid., 6 9 , 1355 (1950). RECEIVED for review M a y 17, 1957.

Accepted June 19, 1957.

OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.