Electrical Characteristics of the Ozonizer SACHIO FUJI and
NAOSHI
TAKEMURA
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
Electrotechnical Laboratory, Ministry of International Trade and Industry, Tokyo, Japan
Extensive studies (1, 4) have been made on the chemi cal reaction involved in silent electric discharge. Also, studies have been undertaken to explain the characteristics of silent electric discharge purely on the basis of electrotechniques (2, 3, 5, 6). The a u thors have studied the electrical characteristics of a n ozonizer to find relations between the gaseous reac tion occurring in the silent discharge a n d the electri cal conditions governing it.
T h e c h e m i c a l r e a c t i o n a n d t h e e l e c t r i c a l c h a r a c t e r i s t i c s of s i l e n t electric d i s c h a r g e h a v e b e e n c o r r e l a t e d b y s t u d i e s o n a n o z o n i z e r . U s u a l l y , t h e s p a c e i n s i l e n t d i s c h a r g e is t e r m i n a t e d b y d i e l e c t r i c s w h i c h a c t as t h e s t a b i l i z i n g resistance w i t h a l i t t l e loss a n d p r e v e n t c o n c e n t r a t i o n of t h e d i s c h a r g e . A n a l t e r n a t i n g c u r r e n t m u s t b e u s e d . Experimental
Equipment
and
Conditions
T h e s i l e n t d i s c h a r g e t u b e is a c y l i n d r i c a l t u b e of h a r d glass. T h e c o n s t r u c t i o n a n d d i m e n s i o n s a r e g i v e n i n F i g u r e 1. T h e a i r g a p a n d t h i c k n e s s of t h e glass t u b e a r e
I
42.21
,Cu ELECTRODE
Τ7Ά πττλ Vtrnf/n ÏÏ7T 260
ELECTROLYTICSOLUTION
Figure 1.
185mm.
Silent discharge 334
tube
335
FUJI A N D TAKEMURA—ELECTRICAL CHARACTERISTICS OF OZONIZER
1.6 a n d 1.4 m m . , r e s p e c t i v e l y . B o t h i n s i d e a n d o u t s i d e t h i s d o u b l e glass t u b e t h e r e is a n e l e c t r o l y t i c s o l u t i o n ( c o p p e r s u l f a t e s o l u t i o n ) w h i c h i s u s e d as t h e electrodes. T h e experiments were c a r r i e d out at atmospheric pressure. T h e a i r went t h r o u g h the d i s c h a r g e t u b e a t t h e r a t e of 0 t o 5.5 l i t e r s p e r m i n u t e , a n d a 10,000-volt a l t e r n a t i n g c u r r e n t w a s a p p l i e d across t h e electrodes. A s t h e discharge was sometimes u n s t a b l e a n d l o c a l l y c o n c e n t r a t e d i m m e d i a t e l y a f t e r a p p l i c a t i o n of t h e v o l t a g e , m e a s u r e m e n t s w e r e b e g u n a f t e r t h e d i s c h a r g e s p r e a d u n i f o r m l y t h r o u g h o u t t h e a i r g a p of t h e discharge tube. T h e m e a s u r i n g c i r c u i t is s h o w n i n F i g u r e 2. A condenser, C , i s i n s e r t e d t o r e m o v e influences r e s u l t i n g f r o m t h e i m p e d a n c e of t h e e l e c t r i c p o w e r source. R i s a s h u n t resistance u s e d t o m e a s u r e t h e c u r r e n t w a v e f o r m . T h e v o l t a g e w a v e f o r m w a s measured b y a cathode-ray potential divider.
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
P
rr-JOSO
T777T
Figure 2 .
Measuring circuit
T o o b s e r v e t h e w h o l e w a v e f o r m , a n o r d i n a r y c a t h o d e - r a y oscilloscope, o p e r a t e d w i t h t h e s a w - t o o t h t i m e base, w a s u s e d . A single sweep c a t h o d e - r a y oscilloscope, w h i c h c o u l d s t a r t s w e e p i n g a t a n y d e s i r e d p h a s e of t h e a p p l i e d v o l t a g e , w a s u s e d t o m e a s u r e t h e d e t a i l s of a d e s i r e d p a r t of t h e c u r r e n t w a v e f o r m . C h a r a c t e r o f the
Discharge
T h e d i s c h a r g e a p p e a r s t o o c c u r as t h o u g h i n n u m e r a b l e fine t h r e a d s were s t r e t c h e d i n t h e d i s c h a r g e s p a c e of t h e t u b e . T h e c u r r e n t w a v e f o r m w a s o b s e r v e d w i t h t h e o r d i n a r y c a t h o d e - r a y oscilloscope. T h e f u n d a m e n t a l w a v e leads t h e v o l t a g e w a v e b y a b o u t 9 0 ° as s h o w n i n F i g u r e 3, a n d h i g h f r e q u e n c y p u l s a t i n g c u r r e n t s s u p e r p o s e
Current wave form
Applied voltage wave form
Figure 3.
Fundamental a n d voltage wave of discharge A. R = 172 Κ Ω
B. R = 50 Κ Ω
o n t h e f u n d a m e n t a l one n e a r t h e k n o b ( a t m a x i m u m of c u r r e n t w a v e f o r m as s h o w n i n F i g u r e 3, A). T h u s , t h e d i s c h a r g e consists of i n n u m e r a b l e l o c a l ones. T o o b s e r v e these h i g h f r e q u e n c y l o c a l discharges i n d e t a i l , t h e single sweep c a t h o d e - r a y oscilloscope i s u s e d . F i g u r e 4 shows a n e x a m p l e of t h e o s c i l l o g r a m s o b t a i n e d : A n i n d i v i d u a l p u l s a t i n g c u r r e n t is a n i m p u l s i v e w a v e t h a t recedes e x p o n e n t i a l l y , a n d t h e t a i l l e n g t h of t h e w a v e depends o n t h e resistance, R, i n s e r t e d i n t h e c i r c u i t t o m e a s u r e t h e c u r r e n t . I n c r e a s e i n the v a l u e of R r e s u l t s i n a n increase i n t a i l l e n g t h . I n s e r t i n g a n i n d u c t a n c e c o i l i n s t e a d of t h e resistance, t h e a u t h o r s m e a s u r e d t h e t e r m i n a l v o l t a g e of t h e c o i l a n d o b t a i n e d r e p e a t i n g h i g h f r e q u e n c y d a m p e d o s c i l l a t i o n s as s h o w n i n F i g u r e 5.
336
A D V A N C E S IN CHEMISTRY SERIES
CURRENT WAVE FORM OF THE SILENT DISCHARGE
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
Figure 4.
Oscillogram by single sweep oscilloscope
Figure 5. Terminal volt a g e of the inductance coil instead of the resistance M e a s u r e m e n t s of t h e f r e q u e n c y of t h e o s c i l l a t i o n i n d i c a t e d t h a t t h e decrease i n i n d u c t a n c e r e s u l t e d i n t h e increase i n f r e q u e n c y . A s these p h e n o m e n a a r e s i m i l a r t o t h e d i s c h a r g e of a condenser c h a r g e t h r o u g h t h e resistance o r t h e i n d u c t a n c e , t h e c a p a c i t y of t h e condenser w a s e v a l u a t e d f r o m t h e v a l u e s of t h e resistance, t h e t a i l l e n g t h , a n d t h e i n d u c t a n c e t o b e a b o u t 200 μμΐ., i r r e s p e c t i v e of t h e v a l u e s of t h e resistance a n d t h e i n d u c t a n c e . F i g u r e 6 shows t h e o s c i l l o g r a m w h i c h w a s p h o t o g r a p h e d b y t h e r a p i d t i m e sweep to s t u d y t h e d e t a i l s of t h e w a v e f r o n t of t h e w a v e f o r m s h o w n i n F i g u r e 4. S e v e r a l
Figure 6. Current wave form of discharge; tim ing, 500 kc. steps a r e o b s e r v e d a t t h e w a v e f r o n t ; these i n d i c a t e t h a t t h e discharges of v e r y steep f r o n t w a v e s o c c u r successively a t s u c h s h o r t t i m e i n t e r v a l s as a b o u t 0.2 t o 0.3 /^second. T h i s w a v e h a s a n a p p e a r a n c e of a single p u l s a t i o n w h e n o b s e r v e d u s i n g t h e s l o w t i m e sweep. F r o m F i g u r e 6, i t seems t h a t one d i s c h a r g e i n i t i a t e s successive d i s c h a r g e s i n t h e n e i g h b o r i n g space. H e n c e , one p u l s a t i o n does n o t c o r r e s p o n d t o a single d i s c h a r g e , b u t t o a series of d i s c h a r g e s . F r o m these c o n s i d e r a t i o n s o n t h e l o c a l discharges, t h e e q u i v a l e n t c i r c u i t f o r a single d i s c h a r g e is p r o p o s e d i n F i g u r e 7, w h e r e C a n d C c o r r e s p o n d t o t h e c a p a c i t i e s of t h e a i r g a p a n d glass of t h e d i s c h a r g e t u b e p e r u n i t a r e a , C i s t h e s t r a y c a p a c i t y of t h e vessel t o t h e e a r t h , a n d C is t h e c a p a c i t y of p o r t i o n s w h e r e t h e a i r g a p b e c o m e s so w i d e t h a t t h e d i s c h a r g e does n o t o c c u r . A s s u m i n g t h a t t h e t o t a l d i s c h a r g e a r e a of t h e t u b e is S, t h e c a p a c i t y , C , b e t w e e n t h e electrodes of t h e d i s c h a r g e t u b e is a
g
s
0
C = CaCgS/(Ca + C ) + ( 0
(1)
T a b l e I s h o w s v a l u e s of these c a p a c i t i e s m e a s u r e d w i t h t h e c a p a c i t y m e t e r . A s s u m i n g i n this equivalent circuit t h a t the discharge occurs w h e n the a p p l i e d voltage
FUJI A N D
337
TAKEMURA—ELECTRICAL CHARACTERISTICS OF OZONIZER
DISCHARGE PART
C (S-*S ) 3
0
C (S-AS )
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
A
0
NON DISCHARGE PART
Figure 7.
Proposed
equivalent circuit for a charge T.
Table I.
single
dis
Transformer
Capacities Measured between Electrodes of Discharge Tube Measured Capacity, μμΐ. 0.77 3.1 15.0 115.0 90.0 1000.0 30000.0
Ca C Co C C. C d a
P
across t h e a i r g a p i n t h e d i s c h a r g e space reaches t h e b r e a k d o w n v o l t a g e , V , t h a t t h e d i s c h a r g e ceases w h e n t h e v o l t a g e recedes t o V , a n d t h a t t h e change i n a p p l i e d v o l t a g e d u r i n g t h e t i m e of a single d i s c h a r g e is n e g l i g i b l y s m a l l because t h e t i m e i n t e r v a l of t h e single d i s c h a r g e is v e r y s m a l l i n c o m p a r i s o n w i t h t h e i m p r e s s e d a l t e r n a t i n g c u r r e n t p e r i o d , t h e n t h e e q u i v a l e n t c i r c u i t f o r a single d i s c h a r g e i s as s h o w n i n F i g u r e 8. T h e resistance of t h e d i s c h a r g e p a t h a n d t h a t of t h e e l e c t r o l y t i c s o l u t i o n a r e o m i t t e d ; t h e y a r e n e g l i g i b l y s m a l l because t h e f r o n t of t h e i m p u l s i v e w a v e is v e r y steep. 8
d
(Vs-V )1 a
(^(S-AS,,)
osc'
C AS A
0
-r-C (S-aSo) a
"C AS 5
Figure 8.
Revised
e
equivalent circuit for a discharge
single
T h e authors evaluated the current at the instant the discharge occurred i n the c i r c u i t . I f Δ $ is t h e a r e a of a d i s c h a r g e space, t h e n 0
AS CaC /(C + C ) 0
g
a
is n e g l i g i b l y s m a l l i n c o m p a r i s o n w i t h C, as Δ S expressed b y t h e f o l l o w i n g e q u a t i o n :
g
0
(Ca.+
QR
w h e r e t is t h e t i m e d u r a t i o n of t h e i m p u l s e .
is v e r y s m a l l .
T h e current, I , d
is
(2)
A D V A N C E S IN CHEMISTRY SERIES
338
A s s h o w n i n T a b l e I , C a n d C a r e 115 a n d 90 μμΐ., r e s p e c t i v e l y ; hence, C + C — 205 μμΐ. T h i s v a l u e agrees w i t h t h e m e a s u r e d v a l u e , 2 0 0 μμί., w i t h i n e x p e r i m e n t a l error. T h e w a v e f o r m s p r o d u c e d w h e n t h e i n d u c t a n c e c o i l is i n s e r t e d are e x p l a i n e d b y t h i s e q u i v a l e n t c i r c u i t . T h e c u r r e n t f o r m of t h e d i s c h a r g e t u b e is e x p l a i n e d b y c o n s i d e r a t i o n s o n t h e l o c a l d i s c h a r g e s . A s s h o w n i n F i g u r e 3, A, n o p u l s a t i o n of c u r r e n t is o b s e r v e d i n a c e r t a i n r e g i o n of t h e h a l f c y c l e a f t e r t h e m a x i m u m v a l u e . I t i s c o n s i d e r e d t h a t t h e d i s c h a r g e does n o t o c c u r i n t h i s r e g i o n . I n a d e t a i l e d e x a m i n a t i o n i n t o a p a r t of t h e discharges, i t is a s s u m e d t h a t t h e d i s c h a r g e i n t h e a i r g a p o c c u r s w h e n t h e v o l t a g e across t h e a i r g a p reaches t h e s p a r k i n g p o t e n t i a l V a t t h e t i m e d e n o t e d b y p o i n t 1 i n F i g u r e 9 a n d t h a t t h e d i s c h a r g e ceases i n a v e r y s h o r t t i m e .
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
s
8
s
DISCHARGE PART
PART Figure 9. Details of discharge to deter mine rate of occurrence
T h e n t h e a p p l i e d v o l t a g e increases b y E — (1 + C /C ) (V — V ) a n d reaches p o i n t 2 i n F i g u r e 9. T h e v o l t a g e across t h e a i r g a p becomes V a g a i n , a n d t h e d i s c h a r g e o c c u r s . T h u s , w h e n t h e a p p l i e d v o l t a g e is h i g h e n o u g h , t h e discharges o c c u r one a f t e r a n o t h e r e v e r y t i m e t h e v o l t a g e increases b y E . I f t h e v o l t a g e across t h e a i r g a p does n o t rise h i g h e n o u g h f o r d i s c h a r g e e v e n a t t h e p e a k v a l u e of t h e a p p l i e d v o l t a g e , t h e n e x t d i s c h a r g e o c c u r s w h e n t h e v o l t a g e decreases a f t e r p a s s i n g i t s m a x i m u m v a l u e . D u r i n g t h e f o l l o w i n g h a l f c y c l e , t h e v o l t a g e becomes l o w e r t h a n t h e l a s t d i s c h a r g e v o l t a g e , g i v e n b y p o i n t 2, b y E = (1 + C /C ) (V 4- V ). A s i m i l a r d i s c h a r g e t a k e s p l a c e i n t h e f o l l o w i n g h a l f c y c l e . H e n c e , t h e first d i s c h a r g e a f t e r t h e m a x i m u m of t h e v o l t a g e w a v e occurs w h e n t h e v o l t a g e decreases b y E f r o m t h e m a x i m u m v a l u e , a n d n o d i s c h a r g e occurs i n regions d e n o t e d b y f a t lines i n F i g u r e 9. T h i s e x p l a i n s w h y t h e o b s e r v e d w a v e f o r m h a s n o p u l s a t i o n i n these regions. T h e r e f o r e , E does n o t d e p e n d u p o n t h e a p p l i e d v o l t a g e u n d e r c e r t a i n o p e r a t i n g c o n d i t i o n s of t h e d i s c h a r g e t u b e . E x p e r i m e n t a l r e s u l t s also s h o w t h a t E does n o t c h a n g e w i t h t h e a p p l i e d v o l t a g e . I n t h e t u b e test, E = 12 k v . C o n s e q u e n t l y , Vs + V = 9.6 k v . i s o b t a i n e d . a
a
g
s
d
8
a
h
a
g
s
d
b
b
b
b
d
T h e r a t e of o c c u r r e n c e of t h e d i s c h a r g e w a s c o n s i d e r e d , t o o b t a i n t h e c u r r e n t i n t h e d i s c h a r g e p e r i o d . F r o m c o n s i d e r a t i o n s s i m i l a r t o those a b o v e , t h e d i s c h a r g e t a k e s p l a c e i n t h e a r e a Δ θ d u r i n g a change ΔΕ i n t h e a p p l i e d v o l t a g e w h e n t h e a p p l i e d v o l t a g e i s h i g h e r t h a n t h e p r e c e d i n g d i s c h a r g e b y E o r l o w e r b y E ; hence AS/ΔΕ is c o n s t a n t a t p o r t i o n s s h o w n as 1, 2, a n d 3 i n F i g u r e 10. A l t h o u g h Δβ/ΔΕ c a n n o t b e c o n s i d e r e d c o n s t a n t a t e v e r y p a r t of t h e a p p l i e d v o l t a g e , i t i s a c c e p t e d t h a t Δ&/ΔΕ is almost constant t h r o u g h o u t the whole discharge region. A c t u a l l y t h e d i s c h a r g e o c c u r s i n t e r m i t t e n t l y , a n d t h e a r e a of t h e d i s c h a r g e space increases b
a
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
FUJI A N D TAKEMURA—ELECTRICAL
CHARACTERISTICS OF OZONIZER
339
Figure 10. Details of discharge to determine current stepwise as s h o w n b y t h e s o l i d l i n e i n F i g u r e 11. B u t t h e a b o v e a s s u m p t i o n m e a n s t h a t t h e a r e a of d i s c h a r g e , S, increases l i n e a r l y w i t h Ε as s h o w n b y t h e b r o k e n l i n e , a n d t h a t dS/dE is c o n s t a n t . T h i s w a s v e r i f i e d b y e l e c t r i c a l p o w e r d i a g r a m s o b t a i n e d with the cathode-ray wattmeter. A s s u m i n g t h a t AS/ΔΕ is almost constant i n t h e whole discharge region, t h e a v e r a g e t e r m i n a l v o l t a g e o f t h e c o n d e n s e r is p r o p o r t i o n a l t o t h e a p p l i e d v o l t a g e ; i n f a c t , t h e t e r m i n a l v o l t a g e of t h e c o n d e n s e r increases s t e p w i s e . T h e p o w e r d i a g r a m s h o u l d h a v e a p a r a l l e l o g r a m i c f e a t u r e , because t h e slope of t h e d i a g r a m differs, depending o n whether discharge is t a k i n g place or n o t . T h e power d i a g r a m obtained e x p e r i m e n t a l l y is o n t h e w h o l e a p a r a l l e l o g r a m w i t h fine fluctuations i n t h e d i s c h a r g e region (Figure 12). T h e v a l u e of dS/dE w a s c o n s i d e r e d . I f t h e a p p l i e d v o l t a g e changes b y E , t h e w h o l e d i s c h a r g e space m u s t r e a c h t h e s p a r k i n g p o t e n t i a l once. A c c o r d i n g l y , t h e d i s c h a r g e also occurs once. H e n c e , dS/dE = S/E is o b t a i n e d , w h e r e S is t h e t o t a l discharge area. B y these r e l a t i o n s , t h e a u t h o r s e v a l u a t e d t h e a v e r a g e d i s c h a r g e c u r r e n t , I w h e n t h e v o l t a g e E sm t is a p p l i e d . W h e n (C + C)R«1, t h e effect of t h e a
a
dMt
m
w
8
TOTAL AREA OF ELECTRIC DISCHARGE
Figure 11.
A r e a of discharge space Actual Assumed
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
340
A D V A N C E S IN CHEMISTRY SERIES
Figure 12.
Experimental
power diagram p r e c e d i n g h a l f w a v e is n e g l i g i b l e , a n d f r o m E q u a t i o n s 2 t o 4, E q u a t i o n 5 is o b t a i n e d .
dE/dt = o>E cos ωί
(3)
m
dS/dE = S/E = 5/(1 + Ca/C )(V - V ) a
g
L(Cs+ where
ωί = s i n 0
- 1
s
(E —
Χ e
cos ,r
X ^ # 7 7 7
C)R~
(4)
d
1 + Ca/Ct
"
^
^
(5)
e*r
E )/E
b
m
m
T h i s e q u a t i o n m e a n s t h a t t h e w a v e t a i l of e a c h d i s c h a r g e c u r r e n t i s s u p e r p o s e d on each other a n d the average current, I ,
goes t h r o u g h t h e d i s c h a r g e t u b e .
dm
E v a l u a t i n g E q u a t i o n 5, t h e a u t h o r s o b t a i n e d hm =
° f X ° = cos [a>t Ca + C V l + C0 (C., + C) R
n
œ C
n
-
e
E m
2
2
a
~(C«+Ofl '"' (
W h e n ( C + C)7^ < < a n d E q u a t i o n 6 becomes
cos [ω/ -
o )
tan-* u>(C + C)R] s
2
t a n " ω X (C + C)/2]
(6)
1
0
s
1, t h e e t e r m is n e g l i g i b l e e x c e p t w h e r e t is close t o
s
Idm Φ
r
f*
C
0
(7)
0}CgE COS œt
r
t,
m
T h e c u r r e n t t h r o u g h t h e d i s c h a r g e t u b e is t h e s u m of t h e a v e r a g e d i s c h a r g e c u r r e n t a n d t h e c h a r g i n g c u r r e n t , I , of t h e c a p a c i t y b e t w e e n t h e d i s c h a r g e t u b e a n d the lead wire, where c
œCE
=
m
c
o
g
[ ω ί
_
t a n
_
l w
(
c
( 8 )
V l + 2(Ο + cyR* ω
β
(9)
φ œCE COS m
T h e r e f o r e , t h e t o t a l c u r r e n t , / , is r e p r e s e n t e d b y I
c
φ wCE cos m
/ = I + Idm Φ o>(CVS + C )J& cos ωί c
0
to
in nondischarge region
(10)
in discharge region
(11)
I f t h e a v e r a g e v a l u e of t h e d i s c h a r g e c u r r e n t consists of t h e w a v e t a i l l e n g t h of each discharge current superposed o n each other, t h e f o r m of t h e k n o b a p p e a r i n g at t h e d i s c h a r g e p a r t of t h e c u r r e n t w a v e f o r m i n F i g u r e 3 is c a u s e d b y s u p e r p o s i t i o n of t h e w a v e t a i l s of i m p u l s e w a v e s . changes,
depending
B e c a u s e t h e w a v e t a i l l e n g t h of e a c h i m p u l s e w a v e
o n t h e v a l u e of i n s e r t e d r e s i s t a n c e , t h e f o r m
c h a n g e s a c c o r d i n g t o t h e v a l u e of t h e i n s e r t e d r e s i s t a n c e .
of t h e k n o b
also
I n fact, when the current
w a v e f o r m is o b s e r v e d w h i l e t h e v a l u e of t h e i n s e r t e d r e s i s t a n c e i s v a r i e d , t h e r e is a c h a n g e i n t h e f o r m of t h e p e a k as seen b y c o m p a r i n g F i g u r e 3, A, w i t h F i g u r e 3, B. T h e m e a n v a l u e , 7 , of t h e c u r r e n t t h r o u g h t h e d i s c h a r g e t u b e is o b t a i n e d as f o l l o w s : m
FUJI A N D TAKEMURA—ELECTRICAL
Ε = E /V2
= effective value of voltage
I
=
m
m
=~oCE
m
341
CHARACTERISTICS OF OZONIZER
(12)
\V2fCE
(13)
where/ = frequency of electric source, and 2E
< Eb.
m
7Γ
OûCEm cos ù)t dt + ^
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
L 2 /ι
2E
m
>
0
0
(14)
2ω
o(C£ + C )£ + - (C f
0
w
CS -
(Ifi)
C )E
0
0
b
X
= 4V2/(C„-S + C„)B where
œ(C S + C )#m cos id d i j
2 ω
2fC S{V, + g
V)
(16)
d
E. h
lOOOr
5 APPLIED Figure 13.
10
V O L T A G E , Κ v.
Effect of applied mean current
voltage
on
Experimental Calculated
F i g u r e 13 s h o w s t h e r e l a t i o n of t h e m e a n c u r r e n t vs. t h e a p p l i e d v o l t a g e , b o t h t h e one o b t a i n e d e x p e r i m e n t a l l y a n d t h e one c a l c u l a t e d b y t h e a b o v e e q u a t i o n . T h e r e is good agreement between the t w o . F o r t h e p o w e r , P , d i s s i p a t e d i n t h e d i s c h a r g e t u b e , e v a l u a t i o n of t h e p o w e r f o r t h e d i s c h a r g e c u r r e n t o n l y is sufficient. H e n c e , Ρ = 0 where
2E
m
(17)
< E
b
ω /*2ω o>Cg SEm sin Jto C H~ Cg 2
2
œt X
cos
ω ί dt
a
= fC S(V, + V )[2V2 Ε B
where
2E
m
> Eb
a
(1 + Ca/Cg)(V + V )] a
d
(18)
342
A D V A N C E S IN
CHEMISTRY SERIES
T h e p o w e r is m e a s u r e d b y t h e c a t h o d e - r a y w a t t m e t e r m e t h o d . L e t t h e deflecting s e n s i b i l i t y of e a c h p a i r of d e f l e c t i o n p l a t e s be D and D , respectively; is the c a p a c i t y of t h e c u r r e n t c a l c u l a t i n g condenser, w h i c h is i n s e r t e d i n p l a c e of t h e resistance, R, t o m e a s u r e t h e c u r r e n t . T h e n t h e a r e a of t h e d i a g r a m , A, is g i v e n b y ±
A=f
'DtEdfâ (Ί-dt) Jt=o \Ci Jo )
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
= ^ -
2
2
= ^ Ci
2
[ EIdt Jt=o
(19)
f
P
(20)
a n d t h e e l e c t r i c p o w e r is g i v e n b y Ρ = CifA/DiD*
(21)
F i g u r e 14 shows t h e e l e c t r i c p o w e r , b o t h t h e e x p e r i m e n t a l a n d c a l c u l a t e d v a l u e s . T h e e l e c t r i c p o w e r increases i n p r o p o r t i o n t o t h e increase i n a p p l i e d v o l t a g e a f t e r
APPLIE0 Figure 14.
VOLTAOE,
KV.
Effect of applied voltage on elec tric power Experimental Calculated
t h e d i s c h a r g e begins, a n d t h e r e is g o o d a g r e e m e n t calculated values.
between
the
experimental and
Conclusion T h e c u r r e n t w a v e f o r m i n t h e s i l e n t d i s c h a r g e is e x p l a i n e d , a n d t h e v o l t a g e - c u r r e n t characteristics obtained show good agreement w i t h experimental results. F r o m these f a c t s , t h e v e r y h i g h f r e q u e n c y p u l s a t i o n is t h e basic p r o b l e m of t h e s i l e n t d i s c h a r g e . T h e a u t h o r s s u p p o s e t h a t t h e c h e m i c a l r e a c t i o n is affected b y t h e a v e r a g e v a l u e of t h e c u r r e n t . T o c l a r i f y f u r t h e r the relations between the silent discharge a n d chemical reac tions, the discharge starting voltage, V , i n the silent discharge a n d the extinguishing v o l t a g e , V , s h o u l d be m e a s u r e d . T h e w a v e f o r m a n d d e n s i t y of t h e c u r r e n t a l o n g t h e d i s c h a r g e p a t h also s h o u l d be e x a m i n e d . s
d
Literature
Cited
(1) Glockler, G., Lind, S. C., "Electrochemistry of Gases and Other Dielectrics," pp. 2955, Wiley, New York, 1939. (2) Klemenc, Α., Hintenberger, H., Höfer, Η., Z. Elektrochem. 4 3 , 708 (1937).
FUJI A N D TAKEMURA—ELECTRICAL
CHARACTERISTICS OF OZONIZER
343
(3) Suzuki, M., Department of Chemistry, Tokyo Metropolitan University, unpublished data. (4) Thompson, M. de Κ., "Theoretical and Applied Electrochemistry," pp. 481-6, Maximil ian, London, 1939. (5) Warburg, Ε., Z. tech. Physik 4, 450 (1923). (6) Warburg, E., Leithäuser, G., Ann. phys. 2 8 , 1 (1909).
OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.
RECEIVED
for review M a y 27, 1958.
Accepted June 19, 1957.