Chapter 7
Measuring Particle Size Distribution of Latex Particles Using Dynamic Light Scattering 1
Ruth S. Stock and W. Harmon Ray
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
Chemical Engineering Department, University of Wisconsin, Madison, WI 53706
In a light-scattering experiment, particles that have diameters on the order of the wavelength of incident light and a large refractive index relative to that of the medium, e.g. polymer latex in water, scatter light according to Mie theory. The intensity of the scattered light varies by an order of magnitude in an oscillatory fashion with respect to particle size. It was possible to incorporate the mathematical description of Mie theory into Provencher's constrained regularization method to find the distribution by weight. Alternatively, a simple linear least squares algorithm is used to find the particle size distribution by intensity; this is then transformed to a distribution by weight using Mie theory. Measurements are made at multiple scattering angles and the particle size distributions are compared. A composite distribution formed by averaging the weight distributions found at various angles is considered. These methods are demonstrated on multimodal and broad distributions. Dynamiclightscatteringmaybeusedtodeterminethe particle size distribution or molecular weight distribution in a wide variety of applications. See réf. (1) for discussion of this literature. There are special problems that occur when the particle diameter is large relative to the wavelength of incident light. This is of interest since many latex systems have particles with diameters of 300 to 1000 nm and a large ratio of particle to fluid refractive index (1.2 for polystyrene latex). The most common wavelengths for lasers used in light scattering are on the order of 500 nm. Light entering a particle at two different points will experience different path lengths. The refractive index difference between the particle and the medium will also cause a phase shift in the scattered light leaving the particle (see Figure 1). Due to these effects, the intensity of light scattered by suspended spherical particles depends on the particle diameter relative to the wavelength of incident light, the scattering angle and the refractive index ratio. Plots of intensity as a function of angle for a polystyrene/water system with 514.5 nm incident laser wavelength are shown in Figure 2. 'Current address: General Motors Research Laboratories, Warren, MI 48090-9055 0097-6156/87/0332-0105$06.00/0 © 1987 American Chemical Society In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
106
PARTICLE SIZE DISTRIBUTION
Mie
Scattering
l-g
ΐβ~* -{^ ι — ι — ι — ι — ι — ι — ι 0 5Θ0 4
ι
ι—ι—ι—ι—ι—ι—ι—ι—ι—ι 1000 1500
Diameter
ι I 2000
(nm)
F i g u r e 2. P r e d i c t i o n s o f i n t e n s i t y p e r u n i t p a r t i c l e v o l u m e a s a f u n c t i o n of p a r t i c l e diameter f o r three scattering angles given i n c i d e n t w a v e l e n g t h 5 1 4 . 5 nm a n d r e f r a c t i v e i n d e x r a t i o p o l y s t y r e n e / w a t e r o f 1.2.
In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
7.
107
Dynamic Light Scattering
STOCK AND RAY
I n o r d e r t o a c c o u n t f o r t h e s e e f f e c t s , one may u s e M i e t h e o r y t o o b t a i n t h e v o l u m e o r mass ( i n t h e c a s e o f a h o m o g e n e o u s d e n s i t y system) d i s t r i b u t i o n of l a t e x p a r t i c l e s i n s t e a d of the i n t e n s i t y d i s t r i b u t i o n i n i t i a l l y o b t a i n e d from q u a s i e l a s t i c l i g h t s c a t t e r i n g data, B e d w e l l e t . a l . ( 2 ) h a v e o b t a i n e d t h e mass d i s t r i b u t i o n o f l a r g e p a r t i c l e s by i n c o r p o r a t i n g M i e t h e o r y i n t o t h e h i s t o g r a m method. H e r e we p r o p o s e two m e t h o d s o f d a t a a n a l y s i s . First, P r o v e n c h e r ' s method o f c o n s t r a i n e d r e g u l a r i z a t i o n has been m o d i f i e d to i n c l u d e the Mie s c a t t e r i n g f a c t o r i n the k e r n e l of the i n t e g r a l t o be i n v e r t e d . T h i s method i s s i m i l a r t o t h a t d e v e l o p e d i n d e p e n d e n t l y by S. B o t t ( 3 ) . S e c o n d we c o n s i d e r u s i n g a s i m p l e n o n n e g a t i v e l y c o n s t r a i n e d l i n e a r l e a s t s q u a r e s f i t and c o m b i n i n g i n f o r m a t i o n o b t a i n e d from data taken a t s e v e r a l s c a t t e r i n g a n g l e s . Data
Analysis
B o t h P r o v e n c h e r ' s method and t h e n o n - n e g a t i v e l e a s t s q u a r e s (NNLS) method f i r s t o b t a i n the b e s t f i t i n the l e a s t squares sense. In f a c t P r o v e n c h e r ' s p r o g r a m u s e s t h e NNLS p r o g r a m a s p a r t o f t h e a n a l y s i s procedure. P r o v e n c h e r ' s m e t h o d d e p a r t s f r o m t h e NNLS s o l u t i o n by r e g u l a r i z i n g so t h a t t h e s m o o t h e s t p a r t i c l e s i z e d i s t r i b u t i o n c o n s i s t e n t w i t h the data i s obtained. T h i s r e g u l a r i z a t i o n i s a c c o m p l i s h e d by i n c l u d i n g a t e r m i n t h e o b j e c t i v e f u n c t i o n w h i c h i s r e l a t e d to the second d e r i v a t i v e of the p a r t i c l e s i z e d i s t r i b u t i o n . As t h e p a r t i c l e s i z e d i s t r i b u t i o n becomes s m o o t h e r t h i s t e r m becomes s m a l l e r r e s u l t i n g i n t h e minimum v a l u e o f t h e o b j e c t i v e f u n c t i o n . I n b o t h m e t h o d s t h e l e a s t s q u a r e s p a r a m e t e r s c o n s i s t e d o f 40 h i s t o g r a m s t e p h e i g h t s s p r e a d o v e r a two d e c a d e p a r t i c l e s i z e r a n g e . T h e maximum n u m b e r o f p a r a m e t e r s a l l o w e d i n P r o v e n c h e r ' s p r o g r a m i s 50. The i n t e n s i t y d i s t r i b u t i o n o f p a r t i c l e the e x p e r i m e n t a l l y observed e l e c t r i c f i e l d g ^ ^ ( T ) as f o l l o w s a
g
(
1
)
s i z e , G(a), i s r e l a t e d to autocorrelation function,
max 2
(t) - }
G(a)exp(-k Tk T/3irna)da
(1)
B
a
min
H e r e G ( a ) i s t h e i n t e n s i t y s c a t t e r e d by t h e p a r t i c l e s w i t h d i a m e t e r s between a and a+da, k i s Boltzmann's c o n s t a n t , Τ the temperature, k t h e s c a t t e r i n g v e c t o r ( d e p e n d e n t on s c a t t e r i n g a n g l e and w a v e l e n g t h ) , τ the c o r r e l a t i o n time and η the v i s c o s i t y . To f i n d t h e m a s s f r a c t i o n d i s t r i b u t i o n , F ( a ) , we u s e R
a
g
(D( ) T
max
« j
F( ) a
a
3
2
(i ( )/a )exp(-k Tk T^na)da 1
a
B
(2)
min
w h e r e i^(a) i s the s c a t t e r e d dimensionless p a r t i c l e size
intensity
per p a r t i c l e
(6)
and
α - πβη/λ
In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
α i s the
(3)
PARTICLE SIZE DISTRIBUTION
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
108
H e r e η i s t h e r e f r a c t i v e i n d e x o f t h e medium a n d λ i s t h e w a v e l e n g t h o f i n c i d e n t l i g h t i n a vacuum. We m o d i f i e d P r o v e n c h e r ' ^ p r o g r a m t o c a l l a subroutine which would supply values of ( i ^ ( a ) / a ) f o r the k e r n e l of the i n t e g r a l . The i n i t i a l s o l u t i o n i s t h a t w i t h l i t t l e o r no r e g u l a r i z a t i o n . A chosen s o l u t i o n where the i n c r e a s e i n the o b j e c t i v e f u n c t i o n o v e r the I n i t i a l s o l u t i o n c o u l d about 50% of the t i m e be due t o e x p e r i m e n t a l n o i s e a n d a b o u t 5 0 % o f t h e t i m e be due t o o v e r s m o o t h i n g , i s s e l e c t e d by a s t a t i s t i c a l c r i t e r i o n ( 4 , 5 ) . A s e c o n d a n a l y s i s p r o c e d u r e I n v o l v e s u s i n g t h e r e s u l t s f r o m many s c a t t e r i n g a n g l e s t o e x t r a c t t h e mass f r a c t i o n d i s t r i b u t i o n o f p a r t i c l e s i z e f r o m t h e d a t a . S i n c e i t w o u l d be h a r d t o f i n d a n o p t i m u m s c a t t e r i n g a n g l e ( t h a t w h i c h has a r e l a t i v e l y h i g h i n t e n s i t y f o r the p a r t i c l e s i z e ( s ) of i n t e r e s t ) w i t h o u t a l r e a d y knowing the p a r t i c l e s i z e d i s t r i b u t i o n , one p o s s i b i l i t y i s t o a v e r a g e i n f o r m a t i o n f r o m s e v e r a l s c a t t e r i n g a n g l e s . We u s e t h e n o n - n e g a t i v e l y c o n s t r a i n e d l e a s t s q u a r e s method ( 6 ) , w i t h o u t f u r t h e r r e g u l a r i z a t i o n , t o o b t a i n the p a r t i c l e s i z e d i s t r i b u t i o n . T h e n , t h e M i e f a c t o r s ( 7 ) a r e com puted f o r each p a r t i c l e s i z e . These s c a t t e r i n g f a c t o r s are used to c o n v e r t t h e i n t e n s i t y d i s t r i b u t i o n a t e a c h a n g l e t o a mass d i s t r i b u t i o n of p a r t i c l e s i z e s . F i n a l l y , t h e 10 m a s s d i s t r i b u t i o n s ( o n e f o r each angle) are averaged t o g e t h e r to form a composite d i s t r i b u t i o n . O t h e r i n v e s t i g a t o r s (8,9,10) have used a s i m i l a r method i n w h i c h i n t e n s i t y d i s t r i b u t i o n s f r o m NNLS a r e c o n v e r t e d t o m a s s d i s t r i b u t i o n s u s i n g Mie f a c t o r s ; however, they o b t a i n d a t a f o r l o n g e r time periods at a single scattering angle. Experimental F o u r s e p a r a t e l a t e x s a m p l e s w e r e a n a l y s e d . A b i m o d a l m i x t u r e was c o m p o s e d by m i x i n g e q u a l p a r t s o f s o l u t i o n s w i t h 0 . 0 0 3 % s o l i d s o f Dow l a t e x m o n o d i s p e r s e s t a n d a r d s w i t h n o m i n a l d i a m e t e r s 1 0 9 - a n d 497-nm h a v i n g s t a n d a r d d e v i a t i o n s o f 2.7 a n d 5.9 nm r e s p e c t i v e l y . T h e m i x t u r e was s o n i c a t e d t o e l i m i n a t e a g g r e g a t e s . A p o l y s t y r e n e l a t e x w i t h a b r o a d d i s t r i b u t i o n was o b t a i n e d f r o m K o d a k . This d i s t r i b u t i o n h a d b e e n c h a r a c t e r i z e d p r e v i o u s l y by e l e c t r o n m i c r o s c o p y , u l t r a c e n t r i f u g e and C o u l t e r c o u n t e r . A m o n o d i s p e r s e , s u r f a c t a n t f r e e , s u l f a t e d , p o l y s t y r e n e s t a n d a r d a n d a m i x t u r e o f 10 such monodisperse s t a n d a r d s were purchased from I n t e r f a c i a l Dynamics Corporation. A p o l y v i n y l c h l o r i d e l a t e x w i t h a broad d i s t r i b u t i o n was d o n a t e d by B. F. G o o d r i c h . T h i s s a m p l e h a d b e e n c h a r a c t e r i z e d by J o y c e L o e b l d i s c c e n t r i f u g e . T h e s e s a m p l e s w e r e d i l u t e d t o 0.01% s o l i d s and s o n i c a t e d t o e l i m i n a t e a g g r e g a t e s . T h e c o r r e l a t i o n f u n c t i o n was m e a s u r e d u s i n g a M a l v e r n K 7 0 2 5 correlator. The w a v e l e n g t h o f t h e i n c i d e n t l i g h t ( a r g o n i o n l a s e r , L e x e l M o d e l 9 5 ) was 514.5 nm. The t e m p e r a t u r e o f t h e w a t e r b a t h s u r r o u n d i n g t h e s a m p l e c e l l was 3 0 7 . 6 K. T h e same e q u i p m e n t was used i n a p r e v i o u s p u b l i c a t i o n ( 1 ) . However, the d a t a c o l l e c t i o n p r o g r a m was m o d i f i e d t o d i s c r i m i n a t e a g a i n s t d u s t ( 1 1 ) . I n t h i s FORTRAN p r o g r a m t o t a l p h o t o n c o u n t f r o m s e v e r a l s h o r t ( 5 o r 10 second) runs were used t o e s t a b l i s h p h o t o n c o u n t a v e r a g e and s t a n dard deviation. A f t e r e a c h s h o r t e x p e r i m e n t t h e d a t a was a c c e p t e d o n l y i f i t s p h o t o n c o u n t was l e s s t h a n t h e mean p h o t o n c o u n t p l u s three standard deviations. E a c h s h o r t e x p e r i m e n t was n o r m a l i z e d t o i t s own b a s e l i n e . A s e r i e s o f 60 f i v e s e c o n d e x p e r i m e n t s w e r e
In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
7.
STOCK AND RAY
Dynamic Light Scattering
109
a v e r a g e d t o y i e l d one a u t o c o r r e l a t i o n f u n c t i o n . Three c o r r e l a t i o n sample times were used a t each a n g l e . The maximum a n d minimum w e r e c o m p u t e d u s i n g R a c z e k ' s f o r m u l a ( 1 2 ) f o r t h e 4 9 7 - a n d 109-nm p a r ticles respectively. F o r the Kodak d i s t r i b u t i o n the e x p e c t e d upper and l o w e r bounds o f the d i s t r i b u t i o n were used. F o r t h e b r o a d d i s t r i b u t i o n s a n a l y s e d by t h e NNLS m e t h o d , d a t a was t a k e n a t 10 s c a t t e r i n g a n g l e s : 20°, 30°, 40°, 50°, 60°, 70°, 8 0 ° , 9 0 ° , 100° a n d 110°. A t each a n g l e t h r e e sample times were used. These sample t i m e s were computed u s i n g R a c z e k ' s f o r m u l a w i t h d i f f e r e n t v a l u e s f o r the bandwidth of the a u t o c o r r e l a t i o n f u n c t i o n : v » 2 , 4 a n d 8. F o r e a c h s e t o f c o n d i t i o n s a s e r i e s o f 30 t e n s e c o n d e x p e r i m e n t s were averaged to y i e l d a s i n g l e a u t o c o r r e l a t i o n f u n c tion. Results We now d e m o n s t r a t e t h e s e m e t h o d s o n e x p e r i m e n t a l d a t a . F i r s t we c o n s i d e r P r o v e n c h e r ' s method as m o d i f i e d u s i n g the examples o f a b i m o d a l d i s t r i b u t i o n and b r o a d d i s t r i b u t i o n . T h e NNLS m e t h o d i s d e m o n s t r a t e d o n a m o n o d i s p e r s e d i s t r i b u t i o n , a m i x t u r e o f 10 monod i s p e r s e s t a n d a r d s and a b r o a d d i s t r i b u t i o n . F o r P r o v e n c h e r s method as m o d i f i e d , the s t a t i s t i c s f o r the i n t e n s i t y a n d mass f r a c t i o n d i s t r i b u t i o n s f o u n d f o r t h e b i m o d a l m i x t u r e a r e s h o w n i n T a b l e I . We s e l e c t t h e s a m p l e t i m e s w h i c h g i v e t h e i n t e n s i t y d i s t r i b u t i o n s h a v i n g t h e p e a k a r e a r a t i o o f t h e 109 nm p e a k t o t h e 497 nm p e a k c l o s e s t t o u n i t y . T h e f i n a l mass d i s t r i b u t i o n s show o v e r a l l means w h i c h a r e q u i t e a c c u r a t e , s e e T a b l e I . F r o m F i g u r e 3 one o b s e r v e s t h a t t h e r e l a t i v e p e a k a r e a s a n d p e a k l o c a t i o n s a r e q u i t e a c c u r a t e . F i g u r e 3 a l s o s h o w s t h a t t h e f i n a l mass f r a c t i o n d i s t r i b u t i o n i s t h e same a t t h r e e d i f f e r e n t s c a t t e r i n g a n g l e s a l t h o u g h the i n t e n s i t y d i s t r i b u t i o n f o r a s c a t t e r i n g a n g l e of 30° was v e r y d i f f e r e n t . T a b l e I I shows d a t a o b t a i n e d f r o m a b r o a d p o l y s t y r e n e l a t e x s a m p l e d o n a t e d by K o d a k . The m a s s a v e r a g e a n d s t a n d a r d d e v i a t i o n c o m p a r e w e l l w i t h t h e s t a t i s t i c s f r o m t h e mass d i s t r i b u t i o n f o u n d by e l e c t r o n m i c r o s c o p y . The s o l u t i o n s f o r s c a t t e r i n g a n g l e s o f 30° a n d 90° r e p r e s e n t t h e m a j o r f e a t u r e s o f t h e d i s t r i b u t i o n f a i r l y w e l l b u t they a r e too smooth. Note that the d i s t r i b u t i o n f o u n d a t 60° h a s t h e h i g h e s t d u s t l e v e l o f a l l t h e s e solutions; i t i s l i k e l y t h a t t h e low mean i s due t o o v e r c o m p e n s a t i o n o f the d u s t term. Thus P r o v e n c h e r ' s method as m o d i f i e d y i e l d s s a t i s f y i n g r e s u l t s f o r b o t h the b i m o d a l and b r o a d d i s t r i b u t i o n e x a m p l e s e x c e p t when t h e d u s t t e r m i s l a r g e . 1
In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
110
PARTICLE SIZE DISTRIBUTION
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
Table I .
Angle Actual
b
Initial 0
b
Initial Chosen
Sample Time
a
b
Initial
Results
Relative Standard
Average D i a m e t e r ( nm) Mass Intensity
(microsec)
Chosen
Chosen
Bimodal D i s t r i b u t i o n
Intensity
Deviation Mass 0.64
303
30
140
478
281
0.23
0.74
30
140
472
281
0.15
0.66
60
8
337
243
0.80
0.89
60
8
313
328
0.68
0.62
90
9
347
353
0.56
0.56
90
9
346
348
0.55
0.57
* The c h o s e n s o l u t i o n h a s t h e o p t i m a l amount o f r e g u l a r i z a t i o n . The i n i t i a l s o l u t i o n has l i t t l e o r no r e g u l a r i z a t i o n .
T a b l e I I . Kodak D i s t r i b u t i o n
Relative Standard
Average D i a m e t e r ( nm) Angle Actual
Sample Time
Intensity
(microsec)
Results
Mass
Deviation
Intensity
Mass
Dust (%)
0.30
1050
90
14
1000
1044
0.21
0.24
11
Chosen*
60
98
906
892
0.08
0.09
15
0
30
28
1112
1075
0.13
0.16
0
Chosen
Chosen
0
The c h o s e n s o l u t i o n
has the o p t i m a l
amount o f
regularization.
In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
7.
STOCK A N D RAY
111
Dynamic Light Scattering
700 Diameter
1ΘΘ
F i g u r e 3. C o n s t r a i n e d d i s t r i b u t i o n f o r three
ι
I
(nm)
I I I I
200 300 400 500 Diameter (nm)
700
r e g u l a r i z a t i o n solutions f o r the bimodal s c a t t e r i n g a n g l e s shown.
( a ) No c o r r e c t i o n w i t h M i e f a c t o r . (b) I n c l u d i n g c o r r e c t i o n w i t h M i e f a c t o r .
In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
112
PARTICLE SIZE DISTRIBUTION
F o r t h e second method, c o m p o s i t e d i s t r i b u t i o n r e s u l t s from t h e n o n - n e g a t i v e l y c o n s t r a i n e d l e a s t s q u a r e s method u s i n g s e v e r a l a n g l e s a r e shown i n T a b l e I I I . The c o m p o s i t e mass d i s t r i b u t i o n s l i g h t l y u n d e r e s t i m a t e s t h e mean o f t h e b r o a d d i s t r i b u t i o n s s h o w n . However, t h e e s t i m a t e o f t h e mean n e v e r d i s p l a y s a g r e a t e r e r r o r t h a n 5%. T h e s t a n d a r d d e v i a t i o n o f t h e c o m p o s i t e mass d i s t r i b u t i o n o v e r e s t i m a t e s t h a t o f a l l d i s t r i b u t i o n s . I n T a b l e I I I a n d i n F i g u r e 4 we c o n s i d e r t h e r e s u l t s f r o m t h e B. F . G o o d r i c h s a m p l e . B o t h F i g u r e s 4 a and 4b a r e t h e a v e r a g e o f 10 p a r t i c l e s i z e d i s t r i b u t i o n s e a c h f r o m a n a u t o c o r r e l a t i o n f u n c t i o n c o l l e c t e d f o r 15 m i n u t e s . I n Figure 4a each a u t o c o r r e l a t i o n f u n c t i o n was f r o m s c a t t e r i n g a t a d i f f e r e n t s c a t t e r i n g a n g l e w h i l e i n F i g u r e 4b a l l t h e a u t o c o r r e l a t i o n f u n c t i o n s w e r e f r o m s c a t t e r i n g a t 90°. N o t e t h a t somewhat b e t t e r r e s u l t s a r e o b t a i n e d by c o m b i n i n g d a t a f r o m s c a t t e r i n g a t s e v e r a l a n g l e s .
Table I I I .
M o d i f i e d NNLS M e t h o d R e s u l t s ; C o m p o s i t e D i s t r i b u t i o n s from A l l Angles
Average diameter(nm) Intensity Mass A c t u a l
Relative Standard Deviation Actual Intensity Mass
412-nm PS S t a n d a r d
451
428
412
0.181
0.077
0.02
Mixture of Standards
564
612
648
0.66
0.54
0.40
BFG
PVC1 C o m p o s i t e
618
641
658
0.44
0.50
0.41
BFG
P V C 1 90
571
617
658
0.46
0.39
0.41
only
Conclusion By i n c o r p o r a t i n g t h e o r e t i c a l p r e d i c t i o n s o f t h e i n t e n s i t y a s a f u n c t i o n o f p a r t i c l e s i z e f o reach s c a t t e r i n g angle given the i n c i d e n t w a v e l e n g t h and approximate r e f r a c t i v e i n d e x r a t i o i n t o t h e data anal y s i s ( v i a c o n s t r a i n e d r e g u l a r i z a t i o n and NNLS), i t i s p o s s i b l e t o o b t a i n t h e mass f r a c t i o n d i s t r i b u t i o n o f p a r t i c l e s i z e f r o m t h e p h o ton a u t o c o r r e l a t i o n function of Mie s c a t t e r e r s without separate measurements o f i n t e n s i t y s c a t t e r i n g a s a f u n c t i o n o f a n g l e and without extrapolation to zero angle. The M i e s c a t t e r i n g f a c t o r was i n c l u d e d i n t h e k e r n e l o f t h e i n t e g r a l a n a l y s e d by c o n s t r a i n e d regularization. F o r t h e NNLS m e t h o d , t h e i n t e n s i t y d i s t r i b u t i o n d e t e r m i n e d by a n a l y s i s o f t h e a u t o c o r r e l a t i o n f u n c t i o n was c o n v e r t e d t o a mass d i s t r i b u t i o n by m u l t i p l y i n g e a c h h i s t o g r a m s t e p a r e a by t h e appropriate s c a t t e r i n g f a c t o r (average over the p a r t i c l e s i z e repres e n t e d by t h e s t e p ) . We h a v e s h o w n t h a t t h e c o m p o s i t e mass d i s t r i b u t i o n a v e r a g e d o v e r s e v e r a l s c a t t e r i n g a n g l e s i s s o m e t i m e s more a c c u r a t e t h a n t h e c o m p o s i t e m a s s d i s t r i b u t i o n a v e r a g e d o v e r t h e same t o t a l time from a s i n g l e s c a t t e r i n g angle. The m o d i f i c a t i o n o f t h e NNLS m e t h o d i n v o l v e s s i m p l e r a n d f a s t e r c o m p u t a t i o n t h a n t h e m o d i f i c a t i o n o f t h e c o n s t r a i n e d r e g u l a r i z a t i o n method.
In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
113
Dynamic Light Scattering
STOCK AND RAY
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
7.
b
0
900
1Θ00
1900
2000
Diameter (nm) F i g u r e 4. NNLS s o l u t i o n s f o r t h e B. F. G o o d r i c h s a m p l e . Both s o l u t i o n s i n c l u d i n g the M i e f a c t o r (mass) and w i t h o u t c o r r e c t i o n ( i n t e n s i t y ) a r e shown. (a) Average o f r e s u l t s from c o r r e l a t i o n f u n c t i o n s taken a t t e n scattering angles, (b) Average o f r e s u l t s
from
ten correlation
functions
t a k e n a t 90?
In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 3, 2016 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch007
114
PARTICLE SIZE DISTRIBUTION
Literature Cited 1. R. S. Stock and W. H. Ray, J. Polym. Sci. Polym. Phys. Ed., 23, 1393, (1985). 2. Β. Bedwell, Erd. Gulari and D. Melnik in "Measurement of Suspended Particles by Quasielastic Light Scattering", Β. E. Dahneke Ed., Wiley, New York, p. 237, 1983. 3. S. Bott, in this volume. 4. S.W. Provencher, J. Hendrix, L. DeMaeyer and N. Paulussen, J. Chem. Phys., 69, 4273 (1978). 5. S. W. Provencher, Comput. Phys. Commun., 27, 213 and 219, (1982). 6. E. F. Grabowski and I. D. Morrison in "Measurement of Suspended Particles by Quasielastic Light Scattering", Β. E. Dahneke Ed., Wiley, New York, p. 199, 1983. 7. H. H. Denman, W. Heller and W. J. Pangonis, "Angular Scattering Functions for Spheres", Wayne State University Press, Detroit, 1966. 8. C. A. Herb, I. D. Morrison and E. F. Grabowski, in this volume. 9. C. A. Herb, I. D. Morrison and E. F. Grabowski, in "Magnetic Resonance and Scattering in Surfactant Systems", L. Magid, ed., Plenum Press, to be published. 10. I. D. Morrison, E. F. Grabowski and C. A. Herb, Langmuir, 1, 496, (1985). 11. Erd. Gulari, Es. Gulari, S. Tsunashima and B. Chu, Polymer, 20, 347, (1979). 12. J. Raczek, Eur. Polym. J., 18, 863 (1982). RECEIVED August 7, 1986
In Particle Size Distribution; Provder, Theodore; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.