Performance Assessment of a Portable Infrared Incinerator: Thermal

Apr 24, 1987 - All equipment is enclosed in a 45 foot trailer. Material is conveyed through the incinerator in a thin sheet on a wire mesh belt, givin...
0 downloads 9 Views 687KB Size
Chapter 25

Performance Assessment of a Portable Infrared Incinerator: Thermal Destruction Testing of Dioxin Philip L. Daily

Downloaded by UNIV LAVAL on May 13, 2016 | http://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch025

Shirco Infrared Systems, Inc., 1195 Empire Central, Dallas, TX 75247-4301

The Shirco Portable Unit was built in response to the increasing interest in on-site thermal treatment of waste and successfully demonstrated thermal destruction of dioxin in soil at Times Beach, Mo. The Portable Unit consists of a feed system, a primary chamber fired with electric infrared heating elements, a gas-fired secondary chamber, a wet gas scrubber, monitoring and control systems, and heating element power centers. All equipment is enclosed in a 45 foot trailer. Material is conveyed through the incinerator in a thin sheet on a wire mesh belt, giving all material the same residence time under controlled process conditions. One of the on-site tests performed by the Unit was the thermal destruction of dioxin at Times Beach, Mo. No dioxin was detected in the treated soil, flue gases, or scrubber effluent. The resulting Destruction and Removal Efficiencies (DRE) were greater than 99.9999 % and the particulate emissions were well below 0.08 gr/dscf required by RCRA.

The difficulty of transporting hazardous material to Shirco*s Test Facilities in Dallas, Texas, was increased significantly by the implementation of RCRA Regulations. A substantial need existed for a trailer-mounted system which could be moved to waste producing and waste storage sites for thermal treatment testing. Past experience indicated that the ceramic fiber insulated, infrared incinerator was much easier to transport than other similar equipment and was uniquely suited for this type of portable application. In response to this need, Shirco designed and built the Portable Unit to demonstrate the capabil i t i e s of a portable infrared incinerator at waste sites. The construction details of the Portable Unit and the results from

0097-6156/87/0338-0311$06.00/0 © 1987 American Chemical Society

Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

312

SOLVING HAZARDOUS WASTE PROBLEMS

the thermal d e s t r u c t i o n t e s t i n g w i l l be r e v i e w e d h e r e i n .

Downloaded by UNIV LAVAL on May 13, 2016 | http://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch025

Portable Unit

of d i o x i n contaminated

soil

Construction

T h e P o r t a b l e U n i t was d e s i g n e d t o d e m o n s t r a t e t h e p e r f o r m a n c e o f t h e S h i r c o I n f r a r e d I n c i n e r a t o r i n many t h e r m a l treatment applications. The c o n s t r u c t i o n d e t a i l s and p r o c e s s f u n c t i o n s of the t r a i l e r - m o u n t e d i n c i n e r a t o r are i d e n t i c a l t o a f u l l s c a l e i n f r a r e d i n c i n e r a t o r . The s y s t e m c o n s i s t s o f a f e e d p r e p a r a t i o n system, a n i n f r a r e d p r i m a r y chamber, a g a s - f i r e d s e c o n d a r y chamber, a wet gas s c r u b b e r , a n exhaust system, h e a t i n g element power c e n t e r s ( H E P C ) , and d a t a a c q u i s i t i o n and c o n t r o l systems. A l l equipment i s enclosed w i t h i n a 45-foot trailer. A schematic r e p r e s e n t a t i o n of the Portable U n i t i s s h o w n i n F i g u r e 1. Feed P r e p a r a t i o n System. M a t e r i a l f o r thermal treatment i s fed by a p a i l o r i n c l i n e d c o n v e y o r o n t o a s h o r t c o n v e y o r l o c a t e d a b o v e t h e p r i m a r y chamber a t t h e f e e d e n d . The f e e d e n d i s l o c a t e d a t the r e a r door of t h et r a i l e r t o f a c i l i t a t e access. The b e l t i s s y n c h r o n i z e d w i t h t h e p r i m a r y chamber c o n v e y o r t o c o n t r o l the m a t e r i a l feed r a t e . The d r i v e s y s t e m i n c l u d e s a c l u t c h f o r automatic feed shut o f f should process c o n d i t i o n s necessitate. The p r e p a r a t i o n s e c t i o n i n c l u d e s a h o p p e r mounted over a conveyor b e l t . The c o n v e y o r i s s h r o u d e d and h a s r u b b e r s k i r t s t o minimize a i r l e a k i n g i n o r furnace gases escaping out o f t h e i n c i n e r a t o r . An a d j u s t a b l e k n i f e g a t e a t t h e conveyor discharge d i s t r i b u t e s the m a t e r i a l across the width of the b e l t . F i n a l s e a l i n g i n the feed area i s provided by an a d d i t i o n a l a d j u s t a b l e k n i f e gate i n the feed chute a t t h e e n t r a n c e t o t h e p r i m a r y chamber. P r i m a r y Chamber. The p r i m a r y chamber h a s a r e c t a n g u l a r c r o s s s e c t i o n and h a s a n e x t e r n a l s h e l l o f c a r b o n s t e e l w i t h n o m i n a l d i m e n s i o n s o f 2.5 f t w i d e X 9 f t l o n g X 3 f t h i g h . T h e i n s t a l l e d w e i g h t o f t h e chamber i s 3000 p o u n d s . The i n n e r chamber i s l i n e d w i t h m u l t i p l e l a y e r s o f c e r a m i c f i b e r b l a n k e t insulation. The i n s u l a t i o n i s mounted o n s t a i n l e s s s t e e l s t u d s and r e t a i n e d b y c e r a m i c f a s t e n e r s . The f e e d m a t e r i a l i s c o n v e y e d t h r o u g h t h e i n c i n e r a t o r o n a w i r e mesh b e l t w h i c h r i d e s upon h i g h - t e m p e r a t u r e a l l o y s h a f t s supported by e x t e r n a l l y mounted b e a r i n g s . The b e l t i s woven w i t h a l l o y s t e e l w i r e . A f r i c t i o n d r i v e system p u l l s the b e l t through the primary chamber. When t h e m a t e r i a l r e a c h e s t h e d i s c h a r g e e n d , i t d r o p s from the b e l t i n t o an enclosed hopper. The h o p p e r c o n t a i n s a sampling drawer f o r c o l l e c t i o n o f a s hsamples d u r i n g o p e r a t i o n . A d i s c h a r g e screw conveyor i s l o c a t e d a t the bottom o f t h e t a p e r e d hopper and t r a n s p o r t s t h et r e a t e d m a t e r i a l o u t o f t h e t r a i l e r i n t o a s e a l e d c o l l e c t i o n drum. The p r i m a r y chamber t o p i s c o n s t r u c t e d s u c h t h a t t h e g a s f l o w w i t h i n t h e c h a m b e r c a n be either counter-current or co-current. I n f r a r e d energy i s s u p p l i e d by h e a t i n g e l e m e n t s w h i c h a r e t r a n s v e r s e l y mounted a c r o s s , a n d e q u a l l y s p a c e d a l o n g , t h e l e n g t h o f t h e chamber. The e l e m e n t s a r e s i l i c o n c a r b i d e rods and a r e connected i n wireways e x t e r n a l t o t h e chamber. The c o n n e c t i o n s a r e a c c e s s e d by

Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Figure

PRIMARY CHAMBER

FEED PREPARATION SECTION

BURNER

ZONE A HEPC

1. S h i r c o p o r t a b l e

SECONDARY CHAMBER

BLOWER

-STACK

unit

schematic.

COLLECTION DRUM-

DISCHARGE CONVEYOR -

ZONE B HEPC

ROTARY RAKES

SEPARATOR/SUMP HEATING ELEMENTS CERAMIC FIBER INSULATION

Downloaded by UNIV LAVAL on May 13, 2016 | http://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch025

314

SOLVING HAZARDOUS WASTE PROBLEMS

Downloaded by UNIV LAVAL on May 13, 2016 | http://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch025

r e m o v i n g w i r e w a y c o v e r s . The h e a t i n g e l e m e n t s a r e g r o u p e d i n t o two c o n t r o l z o n e s . E a c h z o n e i s p o w e r e d b y a 12 K V A h e a t i n g e l e m e n t power c e n t e r (HEPC). The p r o c e s s i n g c a p a b i l i t i e s i n c l u d e u p t o a n 1850°F t e m p e r a t u r e , w i t h t h e r e s i d e n c e t i m e o f s o l i d p h a s e m a t e r i a l v a r i a b l e b e t w e e n 10 a n d 180 m i n u t e s . A n y a t m o s p h e r e , o x i d i z i n g , r e d u c i n g , o r n e u t r a l , c a n be u s e d . An exhaust duct which i s i n t e r n a l l y i n s u l a t e d w i t h ceramic f i b e r i n s u l a t i o n c o n n e c t s t h e p r i m a r y chamber and s e c o n d a r y chamber. S e c o n d a r y Chamber. The s e c o n d a r y chamber h a s a r e c t a n g u l a r c r o s s - s e c t i o n w i t h a carbon s t e e l s h e l l w i t h e x t e r n a l dimensions of 3 f t wide X 9 f t long X 3 f t h i g h . T h e c h a m b e r w e i g h s 1,500 pounds and i s l i n e d w i t h c e r a m i c f i b e r b l a n k e t i n s u l a t i o n . A p r o p a n e - f i r e d b u r n e r i g n i t e s any c o m b u s t i b l e gases c a r r i e d over f r o m t h e p r i m a r y chamber and p r o v i d e s t h e energy t o m a i n t a i n t h e p r i m a r y chamber e x h a u s t g a s e s a t a p r e d e t e r m i n e d temperature. An a r r a y o f s i l i c o n c a r b i d e bars a r e i n s t a l l e d t o p r o v i d e t u r b u l e n c e f o r good g a s m i x i n g . The chamber i s s i z e d to p r o v i d e s u f f i c i e n t gas r e s i d e n c e time f o r combustion o f the g a s e s ( t y p i c a l l y 1.5 t o 2.5 s e c o n d s ) . The p r o c e s s t e m p e r a t u r e c a n be m a i n t a i n e d a t u p t o 2300°F w i t h a 2.2 s e c o n d g a s r e s i d e n c e t i m e a n d u p t o 100 % e x c e s s a i r . The b u r n e r i s mounted i n t h e chamber end p l a t e , w i t h t h e f l a m e p a t t e r n i n t e r s e c t i n g t h e i n c o m i n g p r i m a r y c h a m b e r e x h a u s t g a s e s a t a 90° a n g l e a s t h e y e n t e r t h e s e c o n d a r y chamber. E l e c t r o n i c flame m o n i t o r i n g i s i n c l u d e d w i t h t h e b u r n e r f o r a u t o m a t i c shutdown upon l o s s o f flame. P r o v i s i o n s w e r e made i n t h e c h a m b e r e n d p l a t e o n e i t h e r s i d e o f the burner t o add i n j e c t i o n o f l i q u i d s . C o m b u s t i o n A i r . Combustion a i r f o r t h e p r i m a r y and s e c o n d a r y chambers i s s u p p l i e d by a b l o w e r w h i c h m a n u a l l y a d j u s t s t h e a i r flowrate. A s p l i t t e r m a n i f o l d w i t h two dampers i s l o c a t e d a t t h e b l o w e r o u t l e t a n d p r o v i d e s c o n t r o l o f a i r f l o w t o b o t h chambers. A i r i s i n j e c t e d a t 10 p o i n t s o n e i t h e r s i d e a n d a l o n g t h e l e n g t h o f t h e p r i m a r y chamber t h r o u g h a m a n i f o l d system. Adjustment o f the f l o w t o the i n j e c t i o n tubes i s by a gate valve. I n t h e s e c o n d a r y chamber, a i r i s i n j e c t e d t h r o u g h two j e t s on e i t h e r s i d e o f t h e chamber, d i r e c t e d a t t h e i n t e r s e c t i o n o f t h e b u r n e r f l a m e and i n c o m i n g g a s f l o w . The j e t s a r e o f f s e t to produce a s w i r l i n g a c t i o n o f the gases. The a i r f l o w r a t e i s a d j u s t e d b y means o f a g a t e v a l v e a n d t h e b u r n e r a i r r e g i s t e r s . Wet G a s S c r u b b e r . E x h a u s t gases from t h e s e c o n d a r y chamber pass through a wet gas s c r u b b e r . T h i s system c o n s i s t s o f a v e n t u r i s e c t i o n c o n t a i n i n g l i q u i d s p r a y s and a s e p a r a t o r tower w i t h a d d i t i o n a l l i q u i d s p r a y s a n d a sump t a n k . A c o n e - t y p e damper i s l o c a t e d i n t h e v e n t u r i s e c t i o n and i s used t o c o n t r o l s c r u b b e r p r e s s u r e drop. The s p r a y s i n t h e v e n t u r i i n j e c t a f i n e l i q u i d mist into the exhaust stream t o agglomerate p a r t i c u l a t e g r a i n s . The l a r g e r a n d h e a v i e r p a r t i c u l a t e g r a i n s a r e t h e n r e m o v e d i n the s e p a r a t o r tower by g r a v i t y , c e n t r i f u g a l f o r c e , and the a d d i t i o n a l l i q u i d s p r a y s . The s c r u b b e r a l s o c o o l s t h e gases from t h e i r i n c o m i n g t e m p e r a t u r e (1000°F t o 2300°F d e p e n d i n g o n p r o c e s s i n g c o n d i t i o n s ) t o s a t u r a t i o n t e m p e r a t u r e , u s u a l l y about 180°F. S u b c o o l i n g c a n be p e r f o r m e d , b u t c o n s u m e s s u b s t a n t i a l l y

Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

25.

DAILY

Thermal Destruction Testing of Dioxin

Downloaded by UNIV LAVAL on May 13, 2016 | http://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch025

more l i q u i d . A r e c i r c u l a t i o n pump i s u s e d t o t r a n s p o r t t h e l i q u i d f r o m t h e sump t a n k t o t h e s c r u b b e r s p r a y s . R e a c t i v e m a t e r i a l , s u c h as l i m e o r c a u s t i c s o d a , c a n be a d d e d t o t h e s c r u b b e r sump t a n k f o r a c i d r e m o v a l . Exhaust System. An i n d u c e d d r a f t e x h a u s t b l o w e r i s l o c a t e d on t h e d i s c h a r g e s i d e o f t h e s c r u b b e r . The b l o w e r i s c a p a b l e o f e x h a u s t i n g t h e p r i m a r y and s e c o n d a r y c h a m b e r s , p r o d u c i n g a s l i g h t d r a f t on t h e s y s t e m , w h i l e o v e r c o m i n g t h e p r e s s u r e d r o p o f t h e s c r u b b e r . A b u t t e r f l y damper i s l o c a t e d on t h e o u t l e t s i d e o f t h e b l o w e r t o p r o v i d e a means o f a d j u s t i n g t h e e x h a u s t gas f l o w . A removable exhaust s t a c k i s i n s t a l l e d through the t r a i l e r roof. The s t a c k e x t e n d s 10 f e e t a b o v e t h e t r a i l e r r o o f a n d i s e q u i p p e d w i t h two s t a n d a r d E P A s a m p l i n g p o r t s . Access t o t h e s a m p l i n g p o r t s i s p r o v i d e d by s c a f f o l d i n g i n s t a l l e d beside the t r a i l e r . D a t a A c q u i s i t i o n and C o n t r o l . The s y s t e m i n c l u d e s a m a s t e r c o n t r o l c a b i n e t w h i c h c o n t a i n s p r o c e s s c o n t r o l l e r s , a l a r m and s t a t u s l i g h t s , a n d d a t a r e c o r d i n g and m o n i t o r i n g e q u i p m e n t . The c a b i n e t h a s a t e m p e r a t u r e c o n t r o l l e r f o r e a c h o f t h e two p r i m a r y chamber h e a t e d z o n e s . A s i x p o i n t t e m p e r a t u r e r e c o r d e r and a t w e l v e p o i n t thermocouple s w i t c h w i t h d i g i t a l i n d i c a t o r a r e used f o r t e m p e r a t u r e m o n i t o r i n g and r e c o r d i n g . Table I l i s t s the p r o c e s s i n s t r u m e n t a t i o n i n c l u d e d f o r m o n i t o r i n g and c o n t r o l o f the U n i t . The m a i n e l e c t r i c a l c o m p o n e n t s u s e l i g h t s t o a n n u n ciate their status. Alarm l i g h t s are a l s o i n s t a l l e d i n the c a b i n e t to a n n u n c i a t e h i g h p r i m a r y chamber t e m p e r a t u r e , an open w i r e w a y c o v e r , b o t h l o w and h i g h s e c o n d a r y c h a m b e r t e m p e r a t u r e , and h i g h s t a c k t e m p e r a t u r e . Table I . Measured

Portable Unit Process Instrumentation

Variable

Temperature

Pressure

Level Flowrate Time Voltage Current Power

Identification P r i m a r y Chamber ( 5 p o i n t s ) P r i m a r y Chamber E x h a u s t S e c o n d a r y Chamber S e c o n d a r y Chamber E x h a u s t Stack Discharge Chute P r i m a r y Chamber S e c o n d a r y Chamber B u r n e r Gas Combustion A i r V e n t u r i Water S e p a r a t o r Tower Scrubber Water V e n t u r i Sprays S e p a r a t o r Tower S p r a y s P r i m a r y C h a m b e r Run T i m e a l l 3 p h a s e s , e a c h HEPC a l l 3 p h a s e s , e a c h HEPC e a c h HEPC

Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

316

SOLVING HAZARDOUS WASTE PROBLEMS

Downloaded by UNIV LAVAL on May 13, 2016 | http://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch025

H e a t i n g Element Power C e n t e r (HEPC). The h e a t i n g e l e m e n t s i n t h e two p r i m a r y chamber zones a r e powered by two h e a t i n g e l e ment p o w e r c e n t e r s . T h e p r i m a r y p o w e r c o n n e c t i o n i s t o a 3phase, 480-volt source. E a c h HEPC h a s a t r a n s f o r m e r a n d a power c o n t r o l u n i t . The power c o n t r o l u n i t (PCU) r e g u l a t e s t h e power by t h e phase-angle f i r i n g method. A bank o f s i l i c o n c o n t r o l r e c t i f i e r s (SCR) a d j u s t s t h ec u r r e n t waveform, a l l o w i n g o n l y a p e r c e n t a g e o f t h e i n c o m i n g power t o r e a c h t h e t r a n s former s e c t i o n . T h e t r a n s f o r m e r r e c e i v e s p o w e r f r o m t h e PCU and l o w e r s t h e v o l t a g e , i n c r e a s i n g t h e c u r r e n t , o f t h e h e a t i n g element c i r c u i t . T h e t r a n s f o r m e r a n d PCU a r e m o u n t e d i n a v e n tilated enclosure. Thermal

Destruction

Testing

Times B e a c h , M i s s o u r i , h a d a p o p u l a t i o n o f o v e r 2000 when t h e roads were s p r a y e d w i t h waste o i l f o r d u s t c o n t r o l . The r o a d s w e r e l a t e r f o u n d t o be c o n t a m i n a t e d w i t h d i o x i n . The p r o p e r t y i n t h e t o w n was e v e n t u a l l y p u r c h a s e d b y t h e U.S. G o v e r n m e n t a n d i s now d e s e r t e d a n d u n d e r g u a r d w i t h r e s t r i c t e d e n t r y . S h i r c o t a l k e d w i t h the M i s s o u r i Department o f N a t u r a l R e s o u r c e s i n e a r l y 1985 about t h e Times Beach s i t e and c o n v i n c e d them o f t h e U n i t ' s c a p a b i l i t y based on t h e s e d i s c u s s i o n s and t h e i r observation of another test. Subsequently, the d e c i s i o n was made t o t a k e t h e U n i t t o t h e T i m e s B e a c h s i t e t o d e m o n s t r a t e i t s c a p a b i l i t y with dioxin decontamination. The P o r t a b l e U n i t a r r i v e d a t t h e T i m e s B e a c h D i o x i n R e s e a r c h F a c i l i t y o n J u l y 8, 1 9 8 5 , t o d e m o n s t r a t e d e c o n tamination of the d i o x i n laden s o i l . T h e U n i t was s e t u p a n d made r e a d y f o r o p e r a t i o n w i t h i n a f e w h o u r s a f t e r a r r i v a l t o t h e site. This r a p i d setup demonstrated i t s unique c a p a b i l i t y f o r mobility. The t e s t i n g p e r s o n n e l f o l l o w e d a s a f e t y p l a n devel o p e d b y t h e M i s s o u r i DNR w h i c h i n c l u d e d p r e t e s t p h y s i c a l e x a m i n a t i o n s , use o f C l a s s C s a f e t y c l o t h i n g , and v i t a l s i g n m o n i t o r i n g a n d r e s t p e r i o d s f o r p e r s o n n e l . T h e w e a t h e r was h o t a n d h u m i d w h i c h r e q u i r e d t h e w o r k i n t h e t r a i l e r t o be l i m i t e d t o 20 m i n u t e s a t a t i m e . The s o i l u s e d f o r t e s t i n g w a s c o n t a m i n a t e d w i t h 2 , 3 , 7 , 8 t e t r a c h l o r o d i b e n z o - p - d i o x i n (TCDD) a t a c o n c e n t r a t i o n o f a b o u t 2 0 0 p p b . Two t e s t s w e r e r u n a t a 48 l b / h r f e e d r a t e a n d s o l i d p h a s e r e s i d e n c e t i m e s o f 3 0 m i n u t e s a n d 15 m i n u t e s . The p r i m a r y c h a m b e r t e m p e r a t u r e was 1490°F t o 1560°F. The s e c o n d a r y chamber t e m p e r a t u r e was m a i n t a i n e d a b o v e 2200°F. The t h e r m a l t r e a t m e n t c o n d i t i o n s f o r b o t h t e s t s a r e l i s t e d i n T a b l e I I . The t e s t i n g was p e r f o r m e d o v e r t w o d a y s f o l l o w e d b y d e c o n t a m i n a t i o n o f t h e i n c i n e r a t o r and t r a i l e r . T h e i n c i n e r a t o r was d e c o n t a m i n a t e d b y an e x t e n d e d , h i g h t e m p e r a t u r e bake o u t . F l u e gas samples were t a k e n over a 7 hour p e r i o d f o r t h e 30 m i n u t e s r e s i d e n c e t i m e c a s e a n d o v e r a 2.5 h o u r p e r i o d f o r t h e 15 m i n u t e c a s e . These s a m p l i n g t i m e s were chosen so t h a t s u f f i c i e n t g a s s a m p l e c o u l d be c o l l e c t e d t o d e m o n s t r a t e t h e required destruction efficiency. The f l u e g a s s a m p l i n g was c o n d u c t e d i n a c c o r d a n c e w i t h a m o d i f i e d EPA Method 5 p r o c e d u r e a n d t h e ASME d i o x i n p r o t o c o l ( 1 ) . T h e s a m p l e s w e r e c o l l e c t e d i s o k i n e t i c a l l y a t a s i n g l e stack sampling point. A t the conclu-

Exner; Solving Hazardous Waste Problems ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

25.

Thermal Destruction Testing of Dioxin

DAILY

317

s i o n o f e a c h t e s t r u n , t h e s a m p l i n g t r a i n was t a k e n t o a d e s i g n a t e d c l e a n a r e a f o r sample r e c o v e r y . Orsat analyses of t h e f l u e g a s e s w e r e a l s o p e r f o r m e d u s i n g E P A M e t h o d 3. S e v e r a l grab samples were c o l l e c t e d o f t h e t h e r m a l l y t r e a t e d s o i l f o r each r u n c o n d i t i o n . Samples from t h e s c r u b b e r r e c i r c u l a t i o n s y s t e m were c o l l e c t e d t o p r o v i d e a c o m p o s i t e , 1000 m l sample f o r each run. A l l samples were p l a c e d i n a p r e c l e a n e d , 1000 m l amber g l a s s c o n t a i n e r f o r s u b s e q u e n t a n a l y s i s . L a b o r a t o r y anal y s e s f o r t h e TCDD i s o m e r w e r e p e r f o r m e d u s i n g a g a s c h r o m a t o g r a p h c o u p l e d w i t h t a n d e m mass s p e c t r o m e t r y (GC/MS/MS).

Downloaded by UNIV LAVAL on May 13, 2016 | http://pubs.acs.org Publication Date: April 24, 1987 | doi: 10.1021/bk-1987-0338.ch025

Table

II.

Incinerator Operating Conditions

S o l i d Phase R e s i d e n c e Time (minutes)

Feed Rate (lb/hr)

P r i m a r y Chambe r Zone A Zone B Temp. Temp. (°F) (°F)

Secondary Chambe r Temp. (°F)

T e s t #1

30

47.68

1560

1550

2250

T e s t #2

15

48.12

1490

1490

2235

The s a m p l i n g r e s u l t s a r e p r e s e n t e d i n T a b l e I I I a n d i n d i c a t e t h a t t h e f l u e g a s , t h e t r e a t e d s o i l , and t h e s c r u b b e r e f f l u e n t were f r e e o f d i o x i n a t t h e d e t e c t i o n l i m i t s l i s t e d . The p a r t i c u l a t e s a m p l i n g r e s u l t s i n d i c a t e t h a t t h e p a r t i c u l a t e was a s m a l l p e r c e n t a g e o f t h e O.08 g r / d s c f RCRA R e g u l a t i o n requirement. The f l u e g a s a n d f e e d m a t e r i a l s a m p l i n g d a t a w e r e c o m b i n e d f o r t h e c a l c u l a t i o n o f t h e d e s t r u c t i o n and r e m o v a l e f f i c i e n cies. T a b l e I V t a b u l a t e s t h e c a l c u l a t i o n o f t h e DREs f o r b o t h

Table Sample

III.

Results of D i o x i n D e s t r u c t i o n Testing

Stream

Units

A n a l y s e s f o r 2,3,7,8-TCDD: Waste Feed ng/g Treated S o i l * ppt Scrubber E f f l u e n t * ug/1 F l u e Gas* pg Analyses f o r P a r t i c u l a t e : F i l t e r C a t c h a t 7 % O2 g r / d s c f Orsat Analyses of F l u e Gas: C0 % 0 % CO % N % 2

2

2

* TCDD was n o n - d e t e c t a b l e

T e s t #1

Test

227