Perspectives in Molecular Sieve Science - American Chemical Society

just begun (3-4). ... contain apertures made by rings of 8, 10 or 12 linked ... 3-methylpentane i s sterically constrained in the pores .... Therefore...
0 downloads 0 Views 929KB Size
C h a p t e r 29

Shape-Selective Catalysis at the 30-Year Mark Downloaded via UNIV OF SYDNEY on July 15, 2018 at 20:12:51 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Ν. Y. Chen Central Research Laboratory, Mobil Research and Development Corporation, Princeton, NJ 08540

Summary Shape selective catalysis with molecular sieve zeolites has progressed in its first thirty years to become an established branch of catalytic science. Since the first demonstration of selective n-paraffin conversion over 5A molecular sieves, increased insight into how these catalysts function has created opportunities for the development of a number of new industrial processes. In the meantime, new characterization tools such as NMR, STEM, EXAFS, FTIR, and synchrotron XRD, etc., have allowed us to peer into the very heart of the zeolite and discern the nature and orientation of the active tetrahedral sites as well as determine the dimensions and connectivity of the zeolite pore systems. Today we find shape selective catalysis 30 years old but far from mature. Synthesis and preparation of molecular sieves has expanded to over 200 combinations of chemical compositions and crystal structures. Indeed, the number of elements which can be inserted into the crystal framework either by isomorphous substitution or by direct synthesis has grown dramatically in recent years. This paper presents a personal overview of the past progress and future horizons of shape selective catalysis from a practitioner's viewpoint. After 30 years of effort, we can now safely say that shape selective catalysis has established itself as a new and continually evolving branch of heterogeneous catalysis. I would like to give you a personal view of the major advances made with respect to the general principles of catalyst design and the industrial applications of shape selective catalysis. 0097-6156/88/0368-0468$06.00/0 © 1988 American Chemical Society

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

29.

CHEN

Molecular

Shape-Selective Catalysis at the SO- Year Mark sieve

469

zeolites

As we a l l know, t h e r e a r e two a s p e c t s t h a t make z e o l i t e s unique. F i r s t of a l l , being c r y s t a l s , t h e i r i n t r a c r y s t a l l i n e s u r f a c e i s an i n h e r e n t p a r t o f t h e c r y s t a l s t r u c t u r e and hence t h e y a r e t o p o l o g i c a l l y w e l l defined. T h i s i s i n sharp d i s t i n c t i o n t o the i l l d e f i n e d amorphous s o l i d s we a r e f a m i l i a r w i t h . The a v a i l a b i l i t y o f s o l i d s w i t h s u c h a l a r g e and w e l l d e f i n e d s u r f a c e a r e a i s c e r t a i n l y e x c i t i n g and w e l c o m i n g news t o u s . Secondly, the diameter of t h e i r pores i s of s i m i l a r m a g n i t u d e t o t h a t o f many o r g a n i c m o l e c u l e s o f interest. M o l e c u l a r s i e v i n g and shape s e l e c t i v i t y , p r e v i o u s l y unknown, became p o s s i b l e w i t h man-made catalysts. T h e r e f o r e , w i t h z e o l i t e s we c a n b e g i n t o d i s c u s s t h e c o n c e p t o f d e s i g n i n g n o v e l c a t a l y s t s on a m o l e c u l a r l e v e l - i t i s a f a s h i o n a b l e t h i n g these days t o t a l k about molecular engineering or nanotechnology. Of c o u r s e , we a r e f a r f r o m b e i n g s a t i s f i e d w i t h t h e c u r r e n t s t a t u s of c a t a l y s t design. To b e g i n w i t h , we have y e t t o s y n t h e s i z e a new s t r u c t u r e e n t i r e l y by t h e p r i n c i p l e s o f m o l e c u l a r engineering. I n f a c t , a l l o f t h e new s t r u c t u r e s were d i s c o v e r e d by c h a n c e and by e x p e r i e n c e r a t h e r t h a n by design. N e v e r t h e l e s s , many a d v a n c e s have b e e n made. F o r example, t h e s y n t h e s i s and p r e p a r a t i o n o f new m a t e r i a l s has expanded t o o v e r 200 c o m b i n a t i o n s o f c h e m i c a l c o m p o s i t i o n s and c r y s t a l s t r u c t u r e s , n o t t o mention the p o s s i b l e v a r i e t y of m o l e c u l a r l y engineered l a y e r e d s t r u c t u r e s s u c h as t h e MELS f r o m C a t a l y t i c a (JL) and many o t h e r p i l l a r e d c l a y s . W h i l e c l a s s i c a l z e o l i t e s c o n t a i n S i and A l , t h e s u b s t i t u t i o n o f a d d i t i o n a l e l e m e n t s s u c h as Ga, Ge, B, P, e t c . , i n framework p o s i t i o n s has b e e n a c h i e v e d . I n d e e d , t h e number o f e l e m e n t s w h i c h c a n be i n s e r t e d i n t o t h e c r y s t a l framework e i t h e r by i s o m o r p h o u s s u b s t i t u t i o n o r by d i r e c t s y n t h e s i s has grown d r a m a t i c a l l y i n recent years (2). The s y n t h e s i s o f aluminum p h o s p h a t e - b a s e d m a t e r i a l s has a l s o l e d t o some new f r a m e w o r k s and new c o m p o s i t i o n s o f known frameworks. E x t e n s i v e work on t h e s e new m a t e r i a l s has j u s t begun ( 3 - 4 ) . Z e o l i t e s derive t h e i r a c i d i t y or c a t a l y t i c a c t i v i t y f r o m t h e p r o t o n a s s o c i a t e d w i t h t h e framework aluminum. R e p l a c e m e n t o f aluminum by t h e o t h e r t h r e e v a l e n t elements c o u l d a l s o l e a d t o the g e n e r a t i o n of Bronsted a c i d s i t e s . However, one n e e d s t o e x e r c i s e caution i n proclaiming unusual c a t a l y t i c p r o p e r t i e s b e f o r e one t h o r o u g h l y u n d e r s t a n d s t h e n a t u r e o f t h e s e materials. F o r example, many s t u d i e s have b e e n r e p o r t e d on t h e n a t u r e o f t h e a c i d i t y o f b o r o n ZSM-5 (5-6-7-8). A l t h o u g h p h y s i c a l measurements (8-9) i n d i c a t e t h a t the p r o t o n i c s i t e a s s o c i a t e d w i t h the

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

470

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

framework b o r o n e x h i b i t s some weak a c i d i c p r o p e r t i e s , t h e s t u d i e s o f Chu and Chang (8) showed t h a t t h e c a t a l y t i c a c t i v i t y o f B o r o n ZSM-5 was due t o t h e aluminum c o n t a m i n a n t i n t h e s a m p l e . As f a r a s shape s e l e c t i v e c a t a l y s i s i s c o n c e r n e d , the s t r u c t u r e c h a r a c t e r i s t i c o f g r e a t e s t i n t e r e s t i s the pore/channel system o f these m o l e c u l a r s i e v e s . As we know, d e p e n d i n g o n t h e l a r g e s t c h a n n e l , z e o l i t e s a r e c h a r a c t e r i z e d a s s m a l l , medium o r l a r g e p o r e i f t h e y c o n t a i n a p e r t u r e s made by r i n g s o f 8, 10 o r 12 l i n k e d tetrahedra. I n a d d i t i o n t o t h e d i f f e r e n c e i n s i z e and s h a p e , t h e c h a n n e l s y s t e m i n t h e s e z e o l i t e s may be o n e d i m e n s i o n a l a s i n ZSM-48 (10) o r m u l t i d i m e n s i o n a l as i n ZSM-5. T h e s e c h a n n e l s c o u l d be r e l a t i v e l y u n i f o r m i n s i z e o r they c o n s i s t of i n t e r c o n n e c t i n g supercages. Principles

of catalyst

design

The d e s i g n o f shape s e l e c t i v e c a t a l y s t s may be d e s c r i b e d as the s c i e n c e o f c o u p l i n g chemical r e a c t i o n s w i t h s o r p t i o n and d i f f u s i o n c h a r a c t e r i s t i c s o f t h e z e o l i t e t o a l t e r t h e r e a c t i o n pathway and t h e p r o d u c t s e l e c t i v i t y o f known c h e m i c a l r e a c t i o n s . R e a c t i o n s e l e c t i v i t y b a s e d on t h e p r i n c i p l e o f m o l e c u l a r e x c l u s i o n o r m o l e c u l a r s i e v i n g a c t i o n was d e m o n s t r a t e d many y e a r s a g o . S t e r i c i n h i b i t i o n of the formation of bulky r e a c t i o n intermediates can a l s o l e a d t o unexpected selectivity. T h i s i s known a s s p a t i o s e l e c t i v i t y o r transition state selectivity. C s i c s e r y f i r s t proposed t h i s i n 1978 i n h i s s t u d y w i t h m o r d e n i t e ( 1 1 ) . With medium p o r e z e o l i t e s , t h e r e l a t i v e l y s l o w r a t e o f c r a c k i n g o f 3 - m e t h y l p e n t a n e compared t o t h a t o f n— h e x a n e , known a s t h e C o n s t r a i n t I n d e x o f t h e s e z e o l i t e s (12) i s a t y p i c a l example o f t h i s t y p e o f shape selectivity. The r e a c t i o n i n t e r m e d i a t e f o r 3-methylpentane i s s t e r i c a l l y c o n s t r a i n e d i n the pores o f ZSM-5. I n a d d i t i o n t o s i z e e x c l u s i o n and s t e r i c i n h i b i t i o n , t h e i n t e r m o l e c u l a r f o r c e s between t h e z e o l i t e and s o r b a t e m o l e c u l e s o f f e r o p p o r t u n i t i e s t o a c h i e v e u n i q u e s e l e c t i v i t y b a s e d on c o m p e t i t i v e sorption properties of various z e o l i t e s . Variables such as s i l i c a t o alumina r a t i o , the nature o f the cation s p e c i e s and t h e g e o m e t r y o f t h e c h a n n e l s have b e e n shown t o be i m p o r t a n t f a c t o r s f o r c o n s i d e r a t i o n (13-14). They a l s o c a n c o n t r i b u t e t o c a t a l y s t s t a b i l i t y and r e d u c e d c o k i n g p r o p e n s i t y , two i m p o r t a n t c h a r a c t e r i s t i c s of commercially u s e f u l c a t a l y s t s .

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

29.

Shape-Selective Catalysis at the SO- Year Mark

CHEN

Design

for diffusion

471

c o n s t r a i n e d systems

One may w i s h t o t a k e a d v a n t a g e o f t h e d i f f e r e n c e i n t h e d i f f u s i v i t y of the molecules i n the z e o l i t e channels t o achieve high s e l e c t i v i t y . In t h i s case, b e s i d e s the s e l e c t i o n o f a s p e c i f i c z e o l i t e s t r u c t u r e and c h e m i c a l c o m p o s i t i o n , t h e s u c c e s s f u l d e s i g n o f a shape s e l e c t i v e c a t a l y s t o f t e n depends on t h e a b i l i t y t o a l t e r and c o n t r o l t h e m o r p h o l o g y o f t h e c r y s t a l s and t h e means t o a d j u s t the c o n c e n t r a t i o n of a c t i v e s i t e s w i t h i n each crystal. H i g h s e l e c t i v i t y w i l l r e s u l t when t h e r a t e o f t h e r e a c t i o n s i n v o l v i n g the u n d e s i r a b l e b u l k i e r molecules i s i n the s e v e r e l y d i f f u s i o n c o n s t r a i n e d regime. The o b s e r v e d s e l e c t i v i t y depends on t h e r e l a t i v e r a t e o f r e a c t i o n t o t h a t of d i f f u s i o n of these molecules. It i s o b v i o u s t h a t t h e d e g r e e o f s e l e c t i v i t y c a n be a d j u s t e d by v a r y i n g t h e d i f f u s i o n pathway and i t s a c i d s i t e d e n s i t y (15). The a d v a n c e s o f o u r c a p a b i l i t y i n t h i s a r e a were a i d e d by a number o f r e m a r k a b l e new d e v e l o p m e n t s i n a n a l y t i c a l instrumentation. T h e s e new c h a r a c t e r i z a t i o n t o o l s i n c l u d e , among many, NMR, which p r o v i d e s i n f o r m a t i o n on t h e l o c a l e n v i r o n m e n t o f atoms i n t h e s t r u c t u r e ( 1 6 - 1 7 ) , s y n c h r o t r o n XRD, w h i c h p r o v i d e s v e r y h i g h r e s o l u t i o n x - r a y d a t a f r o m powders ( 1 8 - 1 9 ) , t h e a p p l i c a t i o n of R i e t v e l d a n a l y s i s of x-ray or neutron d i f f r a c t i o n data to z e o l i t e structure determination ( 2 0 ) , and STEM, w h i c h p r o v i d e s a t o m i c r e s o l u t i o n o f t h e c r y s t a l s t r u c t u r e and i t s c h e m i c a l c o m p o s i t i o n ( 2 1 ) , t o name j u s t a few. E q u a l l y s i g n i f i c a n t i s the development of a v a r i e t y o f c a t a l y t i c d i a g n o s t i c t o o l s w h i c h complement t h e p h y s i c a l c h e m i c a l c h a r a c t e r i z a t i o n t o o l s and provide a l i n k t o the r e a l world of i n d u s t r i a l catalysis. On t h e o t h e r hand, o u r knowledge o f c o n f i g u r a t i o n a l d i f f u s i o n i n z e o l i t e s i s f a r from b e i n g adequate. W h i l e F i c k ' s law on d i f f u s i o n has b e e n commonly u s e d t o o b t a i n d i f f u s i o n c o e f f i c i e n t s i n z e o l i t e s , t h e r e i s e x p e r i m e n t a l d a t a s u c h as t h e window o r c a g e e f f e c t o b s e r v e d i n e r i o n i t e w h i c h c a n n o t be i n t e r p r e t e d by s u c h e q u a t i o n s . D a t a on d i f f u s i o n o f high molecular weight molecules i n z e o l i t e s are almost nonexistent. D i s c r e p a n c i e s a l s o remain u n r e s o l v e d between d i f f u s i o n c o e f f i c i e n t s d e t e r m i n e d by NMR and uptake d a t a (22-23). N e e d l e s s t o s a y , much r e m a i n s t o be i n v e s t i g a t e d , b o t h i n t h e o r y (24-25) and i n e x p e r i m e n t a l measurement ( 2 6 ) . Catalytic

acidity

When z e o l i t e s were f i r s t shown t o have a c i d i t y f o r c a t a l y t i c c o n v e r s i o n n e a r l y 30 y e a r s ago, we were

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

472

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

f i l l e d with the e x p e c t a t i o n t h a t these porous c r y s t a l l i n e m a t e r i a l s o f h i g h s u r f a c e a r e a would p r o v i d e u s w i t h t h e o p p o r t u n i t y t o work w i t h w e l l d e f i n e d p o r e s o f known d i m e n s i o n s and a c t i v e s i t e s , w h i c h c o u l d be r e l a t e d t o t h e s t r u c t u r e o f t h e c r y s t a l . T h i s e x p e c t a t i o n has been o n l y p a r t i a l l y r e a l i z e d . As we showed many y e a r s ago, t h e p r o t o n i c s i t e s a s s o c i a t e d w i t h t h e framework aluminum c a n have a c i d a c t i v i t y many o r d e r s o f m a g n i t u d e h i g h e r t h a n t h a t o f t h e amorphous c a t a l y s t o f s i m i l a r aluminum c o n c e n t r a t i o n . But t h i s s h o u l d n o t be c o n s t r u e d a s an i n d i c a t i o n t h a t t h e c o r r e l a t i o n between s t r u c t u r e a n d a c t i v i t y i s completely understood. In fact, there i s s t i l l disagreement as t o t h e nature o f t h e a c i d s i t e i n d i f f e r e n t c h e m i c a l environments and d i f f e r e n t s t r u c t u r a l c o n f i g u r a t i o n s . Questions such as t h e r e l a t i o n s h i p between s i t e d e n s i t y a n d s i t e s t r e n g t h , and t h e n a t u r e o f d e f e c t s i t e s a n d a c t i v a t e d s i t e s (27) remain unresolved. In a d d i t i o n , the s u b s t i t u t i o n of a d d i t i o n a l e l e m e n t s , s u c h a s Ga, Ge, Β , P, e t c . , adds t o t h e c o m p l e x i t y o f t h e system, which i s a l s o f a r from b e i n g completely understood. B u t I b e l i e v e t h a t t h e most i m p o r t a n t c h a l l e n g e a t hand i s t o d e v i s e r a p i d and r e l i a b l e screening t e s t s t o i d e n t i f y the p r a c t i c a l u t i l i t y of t h i s large variety of catalysts. Industrial applications P e r h a p s f o r o b v i o u s r e a s o n s , most o f t h e c u r r e n t c o m m e r c i a l p r o c e s s e s u s i n g shape s e l e c t i v e c a t a l y s t s a r e i n t h e p e t r o l e u m and p e t r o c h e m i c a l i n d u s t r i e s . These p r o c e s s e s a l s o l a r g e l y f a l l i n t o t h e c a t e g o r y o f hydrocarbon c o n v e r s i o n o r c o n v e r s i o n o f nonhydrocarbons t o hydrocarbons over a c i d c a t a l y s t s . They include the r e a c t i o n s of o l e f i n s , p a r a f f i n s , aromatics and t h e i r m i x t u r e s i n t h e p r o d u c t i o n o f h i g h o c t a n e gasoline, high quality diesel, j e t f u e l , d i s t i l l a t e f u e l s and l u b r i c a n t s . T a b l e 1 shows a p a r t i a l l i s t o f these processes. The b e n e f i t s o f shape s e l e c t i v i t y c a n be d i s c u s s e d i n t e r m s o f t a n g i b l e g o a l s o f [1] r e d u c i n g t h e c o s t o f p r o d u c t i o n , [2] i m p r o v i n g t h e q u a l i t y o f t h e p r o d u c t , [3] i n c r e a s i n g t h e s u p p l y o f p r o d u c t f r o m u n c o n v e n t i o n a l f e e d s t o c k s a n d [4] c r e a t i n g t o t a l l y new products. The o c t a n e b o o s t i n g p r o c e s s e s a l l o w u s t o r e d u c e c o s t by i n c r e a s i n g y i e l d w i t h o u t s a c r i f i c i n g p r o d u c t quality. To r e d u c e c o s t , a new c a t a l y t i c d e w a x i n g p r o c e s s r e p l a c e s an e x p e n s i v e n o n c a t a l y t i c p r o c e s s . C a t a l y t i c d e w a x i n g d o e s n o t have t h e t e m p e r a t u r e l i m i t a t i o n o f a s o l v e n t dewaxing p r o c e s s . Thus, i t c r e a t e s a new c l a s s o f s u p e r - l o w f r e e z e p o i n t o r p o u r p o i n t p r o d u c t s f o r low t e m p e r a t u r e a p p l i c a t i o n s . The

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

29.

CHEN

Shape-Selective Catalysis at the SO- Year Mark

Table 1 Processes U t i l i z i n g Catalysts

Shape S e l e c t i v e

473

Zeolite

S e l e c t o f o r m i n g (28-29) Octane b o o s t i n g M-Forming (30) Octane b o o s t i n g C a t a l y t i c c r a c k i n g (31-32-33-34-35) Octane b o o s t i n g MDDW (36-37-38-39-40) D i s t i l l a t e dewaxing MLDW (41-42) Lube dewaxing M2-Forming (43) Gas t o a r o m a t i c s C y c l a r (44-45) Gas t o A r o m a t i c s MOGD (46-47-48) Light olefins t o gasoline and d i s t i l l a t e MTG (49-50-51-52) Methanol t o g a s o l i n e MTO (53-54) Methanol t o l i g h t o l e f i n s MVPI, MLPI, MHTI (15-55) Xylene i s o m e r i z a t i o n MTDP (15) Toluene d i s p r o p o r t i o n a t i o n MBB (56) Ethylbenzene synthesis P a r a - s e l e c t i v e r e a c t i o n s (57-58-59) p-Xylene s y n t h e s i s p-ethyltoluene synthesis a b i l i t y t o produce f u e l s and c h e m i c a l s from u n c o n v e n t i o n a l f e e d s t o c k s by shape s e l e c t i v e c a t a l y s t s i s e x e m p l i f i e d by a r o m a t i z a t i o n o f l i g h t g a s e s , p r o d u c t i o n o f g a s o l i n e and d i s t i l l a t e from l i g h t o l e f i n s , and p r o d u c t i o n o f l i g h t o l e f i n s and g a s o l i n e from oxygenates, such as methanol. In the p e t r o c h e m i c a l a r e a , t h e r e a r e a number o f p r o c e s s e s i n v o l v i n g the p r o d u c t i o n o f aromatics. However, t h e r e i s l i t t l e d o u b t t h a t t h e a p p l i c a t i o n o f shape s e l e c t i v e c a t a l y s i s w i l l be extended from hydrocarbons t o the c o n v e r s i o n o f nonhydrocarbons and from a c i d c a t a l y s i s t o metal c a t a l y z e d and b i - f u n c t i o n a l c a t a l y s i s . A c u r s o r y l o o k a t t h e p a t e n t l i t e r a t u r e shows t h a t , f o r example, t h e d o u b l e bond o f u n s a t u r a t e d a l d e h y d e s a n d k e t o n e s c a n be i s o m e r i z e d o v e r l o w a c i d i t y medium p o r e z e o l i t e s w i t h o u t c l e a v i n g t h e c a r b o n y l g r o u p , a n d a l d e h y d e s a n d k e t o n e s c a n be i n t e r c o n v e r t e d by s k e l e t a l i s o m e r i z a t i o n (60-61). In s p i t e o f t h e f a c t t h a t a c i d s i t e s are prone t o be p o i s o n e d b y b a s i c n i t r o g e n compounds a n d p h e n o l s , n i t r o g e n compounds s u c h a s a m i n e s , p y r i d i n e s , a n i l i n e s , n i t r i l e s a n d p h e n o l s have been s y n t h e s i z e d w i t h medium pore z e o l i t e s w i t h the d e s i r e d s e l e c t i v i t y (62-63). Aromatic a l k y l a t i o n r e a c t i o n s which l e d t o a number o f p a r a - s e l e c t i v e p r o d u c t s have b e e n d u p l i c a t e d on p h e n o l s a n d t h i o p h e n e s (64-65-66-67). So have h a l o g e n a t i o n and n i t r a t i o n r e a c t i o n s (68-69). T h e r e f o r e , we a r e n o t o n l y a d d r e s s i n g t h e i s s u e o f p r o v i d i n g improved c a t a l y s t s f o r e x i s t i n g p r o c e s s technology, b u t a l s o e x p e c t i n g the c r e a t i o n o f t o t a l l y new p r o c e s s e s a n d new p r o d u c t s h e r e t o f o r e n o n - e x i s t e n t .

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

474

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

Literature Cited 1. 2.

3.

4. 5. 6. 7.

8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.

20.

Catalytica Highlights. 1986, 12, (4) 1. Flanigan, E. M., Lok, B. M., Patton, R. L. and Wilson, S. T . , Proc. 7th Int. Zeol. Conf., Murakami, Υ., Iijima, A. and Ward, J . W., eds., Kodansha/Elsevier, 1986; p 103. Pellet, R. J., Rabo, J . Α., Long, G. N. and Coughlin, P. Κ., paper presented at the 10th North Am. Mtg. Catal. Society, May 17-22, 1987; paper No. B-2. Pellet, R. J., Rabo, J . Α., Long, G. Ν., Poster 75 presented at the 10th North Am. Mtg. Catal. Society, May 17-22, 1987. Taramasso, M., Perego, G. and Notari, Β . , Proc. 5th Int. Conf. on Zeolites, Rees, L. V., ed., Heyden, London, 1980; p 40. Ione, K. G., Vostrikova, L. Α., Paukshtis, Ε. Α., Yurchenko, E., and Stepanov, V. G., Akad. Nauk SSSR, 1981, 27, 1160. Hoelderich, W., Eichhorn, H . , Lehnert, R., Marosi, L., Mross W., Reinke, R., Ruppel, W., and Schlimper, H . , Proc. 6th Int. Zeol Conf., Olson, D. H. and Bisio, Α., eds., Butterworths, 1984, p 545. Chu, C. T-W, and Chang, C. D., J . Phys. Chem., 1985, 89, 1569. Scholle, K. F. M. G. J., Kentgens, A. P. M., Veeman, W. S., Frenken, P. and van der Welden, G. P.M., J . Phys. Chem., 1984, 88, 5. Schlenker, J . L., Rohrbaugh, W. J., Chu, P., Valyocsik, E. W., and Kokotailo, G. T., Zeolites, 1985, 5, 355. Csicsery, S. Μ., J . Catal., 1978, 52, 453. Frilette, F. J., Haag W. O., and Lago, R. M., J . Catal. 1981 67, 218. Dessau, R. Μ., Am. Chem. Soc. Symp. Ser. 1980, 135, 123. Santilli, D. S., J . Catal., 1986, 99, 327. Olson, D. H. and Haag, W. O., Am. Chem. Soc. Symp. Ser., 1984, 248, 275. Engelharde, G., Lohse, U., Lippmaa, E., Tarmak, Μ., Magi, M. Z . , Anorg. Alleg. Chem. 1981, 482, 49. Ramdas, S., Thomas, J . M., Klinowski, J., Fyfe, C. Α., Fyfe, J . S., Hartman, J . S., Nature 1981, 292, 228. Eisenberger, P., Newsam, J . M., Leonowicz, M. E. and Vaughan, D. E. W., Nature, 1984, 309, 45. Cox, D. E., Hastings, J . Β . , Cardoso, L. P. and Finger, L. W., "Materials Science Forum", High Resolution Powder Diffraction, C.R.A. Catlow, Ed. 1986; vol. 9, p 1-20. Baerlocher, C . , Proc. Sixth Intern. Zeolite Conf., Olson, D., and Bisio, Α., Editors, Butterworths, Guildford, UK, 1984, p 823.

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

29. CHEN

Shape-Selective Catalysis at the SO- Year Mark 475

21. Thomas, J . Μ., New Scientist, 1980, August 21, 580. 22. Karger, J.; Pfeifer, Η., Freude, D., Caro, J., Buelow, M. and Uehlmann, G., Proc. 7th Int. Zeol. Conf., Murakami, Υ., Iijima, A. and Ward, J . W., eds., Kodansha/Elsevier, 1986, p633. 23. Ma, Y. H.,Tang, T. D., Sand, L. B. and Hou, L. Y., ibid, 1986, p 531. 24. Doros, T . , Wei, J.; J . Catal., 1983, 83, 205. 25. Sundaresan, S., Hall, C. Κ., Chem. Eng. Sci., 1986, 41, 1631. 26. Chang, A. S., Dixon, A. G. and Ma, Υ. Η., Chem. Eng. Sci., 1984, 39, 1461. 27. Haag, W. O. and Dessau, R. Μ., Proc. 8th Intern. Congr. Catal. 1984, 2, 305. 28. Chen, Ν. Υ., Maziuk, J , Schwartz, A. B. and Weisz, P. B.,Oil Gas J.; 1968, 66 (47) 154. 29. Roselius, R. R., Gibson, K. R., Ormiston, R. Μ., Maziuk, J . and Smith, F. Α., paper presented at the NPRA Annual Meeting, San Antonio, TX, Apr. 1973. 30. Chen, Ν. Y., Garwood, W. E. and Heck, R. Η., Ind. Chem. Eng. Res., 1986, 26, 706. 31. Anderson, C. D., Dwyer, F. G., Koch, G. and Niiranen, P., paper presented at the 9th Iberoamerican Symp. Catal., Lisbon, Portugal, Jul. 1984. 32. Yanik, S. J.; Demmel, E. J.; Humphries, A. P. and Campagna, R. J.; Oil Gas J.; 1985, 83 (19), 108. 33. Sparrell, P. T . , Donnelly, S. P. and Schipper, P. Η., paper presented at the 10th North Am. Catal. Soc. Mtg., San Diego, CA, May 17-22, 1987. 34. Dwyer, F. G. and Schipper, P. Η., paper presented at the Ketjen Motor Octane Symposium, Amsterdam, Netherlands, June 25-26, 1987. 35. Donnelly, S. P., Mizrahi, S, Sparrell, P. T . , Huss, J r . , Α., Schipper, P. H. and Herbst, J . Α., paper presented at the 19th Nat. Am. Chem. Soc. Mtg., New Orleans, LA, Aug. 30 - Sep. 4, 1987. 36. Chen, N.Y., Gorring, R. L., Ireland, H. R. and Stein, T. R., Oil Gas J . 1977, 75 (23) 165. 37. Perry, J r . , R. Η., Davis, J r . , F. E. and Smith, R. B., Oil Gas J.; 1978, 76, (21) 78. 38. Ireland, H.R., Redini, C., Raff, A. S. and Fava, L., Hydrocarbon Proc. 1979, 58, (5) 119. 39. Donnelly, S. P. and Green, J . R., paper presented at the Symp. Japan Petrol. Inst., Oct. 1980. 40. Graven, R. G. and Green, J . R., paper presented at the Congr. Australia Inst. Petrol., Sidney, Australia, Sept. 1980. 41. Smith, K. W., Starr, W. C. and Chen, Ν. Υ., Oil Gas J. 1980, 78 (21) 75.

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

476

PERSPECTIVES IN MOLECULAR SIEVE SCIENCE

42. Wise, J . J., Katzer, J . R. and Chen, Ν. Υ., "Catalytic dewaxing in petroleum processing", paper presented at the Am. Chem. Soc. 173rd Annual Mtg., New York, NY, Apr. 14-15, 1986. 43. Chen, Ν. Y. and Yan, Τ. Υ., Ind. Eng. Chem., Process Res. Devel. 1986, 25, 151. 44. Johnson, J . A. and Hilder, G. Κ., paper presented at the NPRA Annual Mtg., San Antonio, TX, March 1984. 45. Anderson, R. F . , Johnson, J . A. and Mowry, J . R., paper presented at the AIChE Spring National Mtg., Houston, TX, March 24-28, 1985. 46. Garwood, W. Am. Chem. Soc. Symp. Ser., 1983, 218, 383. 47. Tabak, S. Α., paper presented at the AIChE National Meeting, Phila. PA, Aug. 1984. 48. Tabak, S. Α., Krambeck, F. J.and Garwood, W. paper presented at the AIChE Mtg., San Francisco, CA, Nov., 1984. 49. Chang, C. D., Catal. Rev. - Sci. Eng. 1983, 25, 1. "Hydrocarbons from Methanol", Marcel Dekker, Ν. Y.; 1983. 50. Penick, J . Lee, W. and Maziuk, J., paper presented at the Intern. Symp. Chem. Reactor Eng., (ISCRE-7) Boston, MA, Oct. 1982. 51. Gierlich, Η. Η., Keim, Κ. H . , Thiagarajan, Ν., Nitschke, Kam, Α. Υ., Daviduk, Ν., paper presented at the 2nd EPRI Conf. "Synthetic Fuels ­ -Status and Directions", San Francisco, CA, Apr. 1985. 52. Yurchak, S., paper presented at the Symp. Production of Fuels and Chemicals from Natural Gas, Auckland, NZ, Apr. 1987. 53. Chang, C. D., Chu, C. T-W. and Socha, R. F . , J. Catal. 1984, 86, 289. 54. Gould, R. M., Avidan, Α. Α., Soto, J . L., Chang, C. D. and Socha, R. F . , "Scale-up of a Fluid-bed Process for Production of Light Olefins from Methanol", paper presented at the AIChE National Mtg., New Orleans, LA, April 6-10, 1986. 55. Haag, W. O. and Dwyer, F. G., paper presented at the AIChE 8th Natl. Mtg., Boston, August 1979. 56. Dwyer, F. G., Lewis, P. J . and Schneider, F. Μ., Chem. Eng., 1976, 83, (1) 90. 57. Chen, N. Y . , Kaeding, W. W. and Dwyer, F. G., J. Am. Chem. Soc. 1979, 101, 6783. 58. Kaeding, W. W., Chu, C., Young, L. Β . , Weinstein, B. and Butter, S. Α., J . Catal. 1981, 67, 159. 59. Kaeding, W. W., Young, L. B. and Prapas, A. G., Chemtech. 1982, 12, 556. 60. Hoelderich, W., Merger, F . , Mross, W. D. and Fischer, R. European Patent 162,387, Nov. 27, 1985.

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

29. CHEN

Shape-Selective Catalysis at the SO- Year Mark 477

61. Hoelderich, W., Proceedings 7th Intern. Zeolite Conf., Murakami, Υ., Iijima, A. and Ward, J . W., Eds,. Kodadansha/Elsevier, 1986; p 827. 62. Chang, C. D. and Lang, W. Η., U.S. Patent 4,220,783, Sept. 2, 1980. U.S. Patent 4,380,669, Apr. 19, 1983; U.S. Patent 4,434,299, Feb. 28, 1984. 63. Chang, C. D. and Perkins, P. D., U.S. Patent 4,388,461, Jun. 14, 1983. U.S. Patent 4,395,554, Jul. 26, 1983. 64. Cullo, L. Α., Restelli, E. F., Shiring, F. J., Intern. Pub. No. WO 8604834, Aug. 28, 1986. 65. Swanson, B. J., Shubkin, R. L., U. S. Patent 4,532,368, Jul. 30, 1985. 66. Toray Ind., Japan Patent 61050933, Mar. 13, 1986. 67. Baltes, H . , Leupold, Ε. I, European Patent 144760, Jun. 19, 1985. 68. Japan Syn. Rubber, Japan Patent 59216851, Dec. 5, 1984. 69. Ihara Chem., Japan Patent 59206322, Nov. 22, 1984; 60048943, Mar. 16, 1985; 61053234, Mar. 17, 1986; European Patent 154236, Sept. 11, 1985. RECEIVED January

25, 1988

Flank and Whyte; Perspectives in Molecular Sieve Science ACS Symposium Series; American Chemical Society: Washington, DC, 1988.