6 Infrared Microtechniques Useful for Identification of Pesticides at the Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on August 7, 2018 at 04:11:03 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Microgram Level R O G E R C.
BLINN
American C y a n a m i d C o . , Princeton, N. J. 08540
Infrared for
spectrophotometry
identification
pounds. oped for
extending
material.
Factors
in minimizing
the
of
conveniently
however, potassium
devel-
are for
achieved
trapping
amounts
of
this sensitivity
the sample
is also advantageous. micro
com-
have been
of contamination
from
usefulness
organic
to microgram
in achieving
effects
is most
chromatography; paring
amounts
this utility involved
of pesticides
acterization effluents
has a long history of
milligram
In recent years microtechniques
Isolation
/
of
gas
Various
pellets
well as the use of micro multiple
internal
charthin-layer
chromatographic
procedures
bromide
discussed.
infrared by
and
for
pre-
are described,
as
reflectance.
T p h e subject of " I d e n t i f i c a t i o n of P e s t i c i d e s at the R e s i d u e L e v e l " is b o t h J
- t i m e l y a n d i m p o r t a n t i n this p e r i o d w h e n w e are a c t i v e l y r e v i e w i n g
the values a n d h a z a r d s of p e s t i c i d e usage, since s u c h a r e v i e w is d e p e n d ent u p o n r e l i a b l e a n a l y t i c a l d a t a . T h e r e f o r e , the r e p o r t i n g of u n c o n f i r m e d r e s i d u e d a t a is m i s l e a d i n g a n d c a n often result i n controversy. of i n f r a r e d s p e c t r o p h o t o m e t r y
T h e use
has p i o n e e r e d i n this i m p o r t a n t task of
c o n f i r m i n g the i d e n t i t y of p e s t i c i d e residues. I n f r a r e d s p e c t r o p h o t o m e t r y has a l o n g h i s t o r y of usefulness i n h e l p i n g to establish a n d to c o n f i r m the i d e n t i t y of o r g a n i c c o m p o u n d s .
Func-
t i o n a l g r o u p - a b s o r p t i o n b a n d c o r r e l a t i o n charts are w e l l k n o w n a n d h a v e b e e n u s e d r o u t i n e l y b y o r g a n i c synthesis chemists a n d b y analysts for characterizing compounds
of u n k n o w n i d e n t i t y . W h e r e a s y n t h e t i c a l l y
p r e p a r e d c o m p o u n d is not a v a i l a b l e for c o m p a r i s o n w i t h the u n k n o w n , i n f r a r e d d a t a i n c o n j u n c t i o n w i t h mass, u l t r a v i o l e t , a n d n u c l e a r m a g n e t i c 81
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
82
PESTICIDES I D E N T I F I C A T I O N
resonance s p e c t r a l d a t a c a n a l l o w the d e d u c t i o n of the u n k n o w n c o m p o u n d s s t r u c t u r e w i t h reasonable assurance. H o w e v e r , p o s i t i v e i d e n t i f i c a t i o n m u s t a w a i t exact c o m p a r i s o n of the v a r i o u s p r o p e r t i e s of
the
u n k n o w n w i t h those of a c o m p o u n d p r e p a r e d s y n t h e t i c a l l y b y a n u n equivocal procedure.
I n p r a c t i c e , exact i n f r a r e d s p e c t r a l c o m p a r i s o n
alone u s u a l l y constitutes c o n f i r m a t i o n of i d e n t i t y . T h e l o w cost of m a n y fine i n f r a r e d spectrophotometers
has
con-
t r i b u t e d to t h e i r a v a i l a b i l i t y to most p e s t i c i d e r e s i d u e analysts, as c o n trasted to mass a n d n u c l e a r m a g n e t i c resonance
spectrometers.
The
s e n s i t i v i t y i n h e r e n t i n i n f r a r e d measurements for i d e n t i f i c a t i o n purposes is o n l y e x c e e d e d b y mass s p e c t r o m e t r y . T h i s s e n s i t i v i t y has b e e n r e a l i z e d b y the d e v e l o p m e n t
of s u i t a b l e a n d p r a c t i c a b l e m i c r o t e c h n i q u e s , a n d
some of these h a v e b e e n a v a i l a b l e for at least 10 years. N o w , w h a t are the factors that c a n be v a r i e d i n o r d e r to a c h i e v e s e n s i t i v i t y ? T h e l a w d e s c r i b i n g the a b s o r p t i o n of e l e c t r o m a g n e t i c energy b y a b s o r b i n g substances i n s o l u t i o n , Beer's L a w , states that the a b s o r b ance of a s o l u t i o n is p r o p o r t i o n a l to the a b s o r p t i v i t y of the a b s o r b i n g c o m p o u n d , the distance the e n e r g y b e a m passes t h r o u g h the s o l u t i o n , a n d the c o n c e n t r a t i o n of the a b s o r b i n g c o m p o u n d i n the s o l u t i o n .
In
other w o r d s , s e n s i t i v i t y c a n be a c h i e v e d b y p l a c i n g the m a x i m u m n u m b e r of the a v a i l a b l e m o l e c u l e s of a c o m p o u n d i n the u s a b l e e n e r g y b e a m of the spectrophotometer.
T h i s c a n b e a c c o m p l i s h e d b y i n c r e a s i n g the
distance the energy b e a m passes t h r o u g h the s o l u t i o n , a n d / o r b y i n c r e a s i n g the c o n c e n t r a t i o n of the s a m p l e i n the s o l u t i o n b y d e c r e a s i n g the v o l u m e r e q u i r e m e n t s of the s p e c t r o p h o t o m e t e r s s a m p l e h o l d i n g accessory.
T h e w o r d " s o l u t i o n " m a y also refer to the essentially p u r e c o m -
p o u n d , e i t h e r as a film or as p a r t i c i p a t e d v e r y finely i n a m e d i u m . T h e other factor i n B e e r s L a w affecting s e n s i t i v i t y is the a b s o r p t i v i t y of the s a m p l e . T h e analyst, of course, has no c o n t r o l over this factor, b u t he c e r t a i n l y s h o u l d b e a w a r e of it. H e s h o u l d k n o w that a l a r g e r s a m p l e of the l o w - a b s o r p t i v i t y c y c l o d i e n e
pesticides, for e x a m p l e , w i l l be r e -
q u i r e d to a c h i e v e a satisfactory s p e c t r u m t h a n for the m o r e s t r o n g l y absorbing organophosphorus
pesticides.
O f course, the r e a l c h a l l e n g e to a c h i e v i n g s e n s i t i v i t y is i n e l i m i n a t i n g or m i n i m i z i n g the ever-present sources of interference.
A s the size of
the s a m p l e decreases into the m i c r o g r a m range, d e c r e a s i n g the i n t e r f e r ences at the same rate is i n c r e a s i n g l y difficult. T h e sources of interference are e v e r y w h e r e , a r i s i n g f r o m the s a m p l e , solvents, reagents, atmosphere, h a n d l i n g , a n d other s i m i l a r sources.
M a n y of these interferences c a n b e
m i n i m i z e d b y d u e care i n c h o o s i n g i s o l a t i o n p r o c e d u r e s ,
pre-washing
sorbents a n d glassware, p u r i f y i n g solvents a n d reagents, a n d p r o p e r m a n i p u l a t i v e t e c h n i q u e s . B u t c o m p l e t e e l i m i n a t i o n of a l l i n t e r f e r i n g m a t e rials is e x t r e m e l y difficult to a c c o m p l i s h .
T h u s , interferences d o
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
limit
6.
BLINN
Infrared
83
Microtechniques
the s e n s i t i v i t y t h a t c a n b e a c h i e v e d . C h e n a n d D o r i t y ( J ) r e c e n t l y d i s cussed the i m p o r t a n c e o f m i n i m i z i n g interferences i n m i c r o s a m p l i n g . W h a t o r d e r of s e n s i t i v i t y is a c h i e v a b l e i n the i n f r a r e d w i t h techniques a n d equipment presently available?
Several workers
the have
p r o p o s e d that the absolute l o w e r l i m i t of s e n s i t i v i t y is 10 n g of a c o m p o u n d w i t h m o d e r a t e l y s t r o n g a b s o r p t i v i t y values ( 2 , 3 ) .
However, be-
cause of the d i f f i c u l t y i n p l a c i n g a l l or most of the s a m p l e i n the a c t u a l u s a b l e e n e r g y b e a m of the spectrophotometer, a n a c t u a l l o w e r l i m i t of sensitivity is a b o u t o n e - t e n t h to o n e - h a l f of a m i c r o g r a m , t h a t is, a b o u t 100 to 500 n g (4, 5 ) .
F o r most w o r k e r s , this l i m i t w i l l b e a b o u t five to
ten m i c r o g r a m s . O n e does not h a v e to b e a p r o f e s s i o n a l i n f r a r e d spectroscopist to a t t a i n success i n the m i c r o g r a m r a n g e .
Students that h a v e
n e v e r p r e v i o u s l y u s e d a n i n f r a r e d spectrometer h a v e a c h i e v e d excellent spectra w i t h t e n m i c r o g r a m s or less of a p e s t i c i d e after a f e w h o u r s of i n s t r u c t i o n a n d p r a c t i c e , so m i c r o t e c h n i q u e s i n the i n f r a r e d are u s a b l e b y the p e s t i c i d e r e s i d u e analyst. A s stated p r e v i o u s l y , the p e s t i c i d e must b e i s o l a t e d f r o m the s a m p l e , w h e t h e r the s a m p l e is n a t u r a l w a t e r s , s o i l , or p l a n t or a n i m a l tissue. T h i s isolation must be virtually complete.
U s u a l l y , a c h r o m a t o g r a p h i c process
is u s e d to a c h i e v e this s e p a r a t i o n of the p e s t i c i d e f r o m n a t u r a l substances e x t r a c t e d f r o m the s a m p l e a n d f r o m other pesticides a n d f o r e i g n s u b stances r e s i d i n g i n the s a m p l e .
V a p o r phase a n d t h i n - l a y e r c h r o m a -
t o g r a p h y h a v e t r a d i t i o n a l l y b e e n the methods of c h o i c e for this p u r p o s e . W h e n u s i n g either of these c h r o m a t o g r a p h i c processes i n o r d e r to isolate a p e s t i c i d e for i n f r a r e d s c r u t i n y , i t is advantageous to subject the s a m p l e extract to a r i g o r o u s " c l e a n u p " p r i o r to c h r o m a t o g r a p h y .
W i t h a de-
creased a m o u n t of extraneous m a t e r i a l to be s e p a r a t e d f r o m the p e s t i c i d e , the c h r o m a t o g r a p h i c process w i l l be m o r e efficient. E v e n w i t h a r i g o r o u s c l e a n u p , a s a m p l e m a y r e q u i r e several c h r o m a t o g r a p h i c isolations b e f o r e reliable data can be obtained.
H o w e v e r , for e a c h process to w h i c h the
s a m p l e is subjected, there is a n i n e v i t a b l e loss of a p o r t i o n of the s a m p l e . T h e loss m a y b e m i n o r , b u t a p o r t i o n of the s a m p l e is lost f r o m infrared procedure.
the
T h e r e f o r e , the s t a r t i n g s a m p l e m u s t b e of sufficient
size so that there w i l l b e e n o u g h p e s t i c i d e i s o l a t e d via a l l of the i s o l a t i o n p r o c e d u r e s to a l l o w i n f r a r e d e v a l u a t i o n . T h e w e l l - d e s e r v e d p o p u l a r i t y of gas c h r o m a t o g r a p h y i n the
field
of p e s t i c i d e r e s i d u e analysis suggests that this t o o l b e u s e d for i s o l a t i o n purposes. T h e t r a p p i n g of gas c h r o m a t o g r a p h i c peaks for i n f r a r e d i d e n tification has b e e n a n d is b e i n g u s e d . S e v e r a l factors m u s t b e c o n s i d e r e d i n the successful use of gas c h r o m a t o g r a p h y for t r a p p i n g a n d the m e a n i n g f u l e v a l u a t i o n of the s p e c t r u m of the t r a p p e d m a t e r i a l .
The high
temperatures a n d the l a r g e , often c a t a l y t i c a l l y a c t i v e , surface areas that are e n c o u n t e r e d
i n the gas c h r o m a t o g r a p h i c process c a n c h a n g e
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
the
84
PESTICIDES I D E N T I F I C A T I O N
chemical nature of the sample. Gas chromatography of such compounds can
r e s u l t i n u s a b l e a n d r e l i a b l e e l u t i o n peaks for m e a s u r e m e n t s , b u t
c o u l d b e m i s l e a d i n g f o r i d e n t i f i c a t i o n purposes.
T h e larger amounts o f
m a t e r i a l n e e d e d for i n f r a r e d purposes c o m p a r e d w i t h a n a l y t i c a l studies makes the c h r o m a t o g r a p h i c process m o r e difficult a n d increases the p o s s i b i l i t y f o r c h e m i c a l a l t e r a t i o n o f the p e s t i c i d e .
Another factor to b e
c o n s i d e r e d w h e n t r a p p i n g a gas c h r o m a t o g r a p h i c p e a k i s t h a t the spec i f i c i t y o f a detector w i l l often o b s c u r e the s i m u l t a n e o u s e l u t i o n o f i n t e r f e r i n g substances f r o m the s a m p l e a n d the c o l u m n .
S u c h detectors as
t h e e l e c t r o n c a p t u r e , t h e r m i o n i c , flame p h o t o m e t r i c ,
microcoulometric,
a n d n i t r o g e n detectors r e s p o n d s e l e c t i v e l y to c e r t a i n types o f c o m p o u n d s a n d i n s e n s i t i v e l y o r not a t a l l t o others.
T h i s i s the reason t h a t these
detectors w e r e chosen f o r p e s t i c i d e r e s i d u e analysis. T h e r e f o r e , a detector response as a s h a r p p e a k f r o m a b a s e l i n e m a y e i t h e r b e c a u s e d b y the e l u t i o n o f a single c o m p o u n d
o r b y this c o m p o u n d
i n company
o t h e r m a t e r i a l t o w h i c h the detector i s u n r e s p o n s i v e .
with
T h e l a t t e r case
c o u l d b e u n s u i t a b l e for i n f r a r e d purposes. A n o t h e r source o f i n t e r f e r e n c e of this t y p e is f r o m c o l u m n " b l e e d . "
T h e s t a t i o n a r y phase o f a n y gas
c h r o m a t o g r a p h i c c o l u m n does possess a c e r t a i n a m o u n t o f v o l a t i l i t y a n d w i l l s l o w l y e l u t e a n d often collect at the exit p o r t .
T h e investigator
s h o u l d b e f a m i l i a r w i t h the i n f r a r e d s p e c t r u m o f his stationary phase. F i g u r e 1 shows the s p e c t r u m o f one o f the c o l u m n m a t e r i a l s u s e d i n p e s t i c i d e analysis, s i l i c o n e o i l . E v e r y o n e u s i n g i n f r a r e d t e c h n i q u e s s h o u l d k n o w this s p e c t r u m , as i t c a n arise as w e l l f r o m s t o p c o c k gease o n glassware
(I).
B e c a u s e o f t h e d e s t r u c t i v e n a t u r e a n d / o r extreme s e n s i t i v i t y o f c o m m o n l y u s e d detectors f o r p e s t i c i d e p r o b l e m s , the gas c h r o m a t o g r a p h u s e d for p e s t i c i d e analysis u s u a l l y is n o t s u i t a b l e f o r t r a p p i n g .
Although
splitters are a v a i l a b l e that c a n b e u s e d to c o n v e r t the a n a l y t i c a l i n s t r u 0.0 .10 UJ
g.20
r v / V
£.30
SUo
350
SILICONE OIL
.70 1.0 1.5 1 4000 3000
1
i
2000
1500
Figure 1.
i
1200 CM"!
i
i
1000
900
i
800
Infrared spectrum of silicone oil
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1 700
6.
BLINN
Infrared
85
Microtechniques
m e n t for p r e p a r a t i v e purposes, this u s u a l l y is not satisfactory o w i n g to the lost i n s t r u m e n t t i m e for a n a l y t i c a l purposes a n d the m a n - h o u r s a n d f r u s t r a t i o n r e q u i r e d to a c h i e v e
conversion.
A
preparative instrument
w h i c h is u s e d o n l y for i d e n t i f i c a t i o n purposes is p r e f e r a b l e . T h e a c t u a l t r a p p i n g p r o c e d u r e to b e u s e d is a m a t t e r of i n d i v i d u a l preference, since there are m a n y p u b l i s h e d p r o c e d u r e s a n d c o m m e r c i a l types a v a i l a b l e . T h e c a p i l l a r y - t y p e t r a p p i n g d e v i c e ( 6 , 7, 8 ) is a p p e a l i n g l y s i m p l e , a n d the c o n c e n t r a t e d t r a p p e d p e s t i c i d e is c o n f i n e d o n the s m a l l i n n e r surfaces of the t u b e f r o m w h i c h i t is q u i c k l y , e a s i l y , a n d , m o r e i m p o r t a n t , efficiently t r a n s f e r r e d to w h i c h e v e r i n f r a r e d m i c r o s a m p l i n g d e v i c e is to b e used. T h i n - l a y e r c h r o m a t o g r a p h y is a m o r e a d a p t a b l e p r o c e d u r e f o r the i s o l a t i o n of m i c r o g r a m q u a n t i t i e s of a p e s t i c i d e p r i o r to its i d e n t i f i c a t i o n b y i n f r a r e d e v a l u a t i o n , a n d the t h i n - l a y e r process aids i n the i d e n t i f i c a t i o n as w e l l .
L o c a t i n g the area i n w h i c h the p e s t i c i d e resides o n the d e v e l -
o p e d chromatogram can be a problem, however.
A sorbent w i t h
fluores-
cent i n d i c a t o r c a n b e u s e d for those c o m p o u n d s w h i c h q u e n c h
fluo-
rescence. A l t e r n a t i v e l y , the c h r o m a t o g r a p h y of standards i n a side c h a n n e l c a n b e u s e d for l o c a t i n g purposes
or a n a l i q u o t of the u n k n o w n
s o l u t i o n c a n b e c h r o m a t o g r a p h e d i n a side c h a n n e l for c o l o r i m e t r i c d e tection. O n c e l o c a t e d , the s o r b e n t f r o m that area c a n be s c r a p e d f r o m the p l a t e for e l u t i o n .
Elution
s h o u l d be
accomplished
with
a minimum
a m o u n t of as n o n p o l a r a solvent as possible, thus r e s t r i c t i n g the a m o u n t of c o - e l u t i n g interferences f r o m the sorbent.
V e r y p o l a r solvents
will
elute interferences f r o m the sorbent w h i c h are v e r y difficult to c l e a n u p {1,4).
T h e sorbent o n the t h i n - l a y e r p l a t e s h o u l d h a v e b e e n p r e - w a s h e d
w i t h the e l u t i n g solvent or a solvent of greater p o l a r i t y p r i o r to the c h r o m a t o g r a p h y , of course.
O n e s h o u l d not o v e r l o o k the p o s s i b i l i t y for
c h e m i c a l a l t e r a t i o n of the p e s t i c i d e o n the sorbent, as s e v e r a l types of c o m p o u n d s are subject to s u c h changes—e.g., p h e n o l s a n d amines. A l s o , v e r y p o l a r c o m p o u n d s are often difficult or i m p o s s i b l e to elute f r o m the sorbent.
A s i d e f r o m these l i m i t a t i o n s , t h i n - l a y e r c h r o m a t o g r a p h y is a d -
vantageous
for i s o l a t i n g pesticides p r i o r to i n f r a r e d e v a l u a t i o n .
s i m p l e e q u i p m e n t a n d t e c h n i q u e s r e q u i r e d a n d the r e l a t i v e
The
freedom
f r o m c h e m i c a l a l t e r a t i o n makes this a p p r o a c h u s e f u l to a l l . N o w as to the m i c r o t e c h n i q u e s w h i c h h a v e p r o v e d u s e f u l for i n f r a r e d s p e c t r o m e t r y , there are s e v e r a l types a v a i l a b l e i n the l i t e r a t u r e , s u c h as m i c r o c e l l s for solutions (9, 10),
m i c r o g r o o v e d plates for confined
(7, I I ) , s u s p e n d e d p a r t i c l e s on a m e m b r a n e filter (12,13), s p e c t r o m e t r y (14),
the v a r i o u s m i c r o p e l l e t p r o c e d u r e s (15,
20, 21, 22, 23, 24, 25),
a n d m u l t i p l e i n t e r n a l reflectance
films
microspecular 16,17,18,19,
(5,12,15,26,27).
T h e n , of course, there is m u l t i p l e scan interference s p e c t r o m e t r y
(28)
w i t h c o m p u t e r storage a n d h a n d l i n g of the d a t a . It is w i t h this t e c h n i q u e
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
86
PESTICIDES I D E N T I F I C A T I O N
t h a t significant gains i n s e n s i t i v i t y a n d s p e e d w o u l d a p p e a r p r o m i s i n g for the f u t u r e . B u t for the present, the use of m i c r o p o t a s s i u m b r o m i d e pellets a n d m u l t i p l e i n t e r n a l reflectance
are p r o v i n g most u s e f u l for
pesticide problems. O f a l l of the m i c r o s a m p l i n g t e c h n i q u e s d e s c r i b e d for i n f r a r e d spect r o m e t r y , the use of p o t a s s i u m b r o m i d e pellets of 1-2 m m i n d i a m e t e r offers the best o p p o r t u n i t y for p l a c i n g the m a x i m u m n u m b e r of m o l e c u l e s of the u n k n o w n i n the u s a b l e e n e r g y b e a m of the
spectrophotometer.
C e r t a i n l y , the best sensitivities h a v e b e e n r e a l i z e d b y this t e c h n i q u e .
The
e q u i p m e n t c o m m o n l y u s e d for p r e p a r i n g m i c r o p o t a s s i u m b r o m i d e pellets is s h o w n i n F i g u r e 2. T h e k e y to s e n s i t i v i t y is the a b i l i t y to transfer t h e m a x i m u m a m o u n t of c o m p o u n d to the m i n i m u m a m o u n t of p o t a s s i u m b r o m i d e to b e pressed i n t o the m i c r o p e l l e t .
Conventional mixing pro-
cedures u s i n g a m o r t a r a n d pestle, s u c h as is s h o w n i n F i g u r e 2, are s u b ject to v e r y l a r g e losses of c o m p o u n d to the surface area of the m i x i n g vessel w h e n o n l y 10 m g or less of p o t a s s i u m b r o m i d e are u s e d ( J , O n e of
the first attempts to resolve this p r o b l e m was the
i l l u s t r a t e d i n F i g u r e 3, w h i c h w a s d e v e l o p e d b y M c C a u l l e y (21) t h e n r e f i n e d b y C h e n (16).
18).
procedure and
W i t h this t e c h n i q u e , p o w d e r e d p o t a s s i u m
b r o m i d e was p a c k e d t i g h t l y i n the 1.5-mm orifice of the stainless steel disk. T h e s a m p l e i n s o l u t i o n of a v o l a t i l e solvent was a d d e d
dropwise
to the p o t a s s i u m b r o m i d e , a l l o w i n g the solvent to evaporate
between
a d d i t i o n s . A f t e r c o m p l e t i n g the a d d i t i o n s , the p e l l e t w a s pressed i n the c o n v e n t i o n a l m a n n e r for i n f r a r e d e v a l u a t i o n . T h i s p r o c e d u r e t h e o r e t i c a l l y offers c o m p l e t e transfer of the s a m p l e to the e n e r g y b e a m of the spectro-
Figure
2.
Equipment
useful in preparing
micro potassium
bromide
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
pellets
6.
BLINN
Figure
3.
photometer.
Infrared
Microtechniques
Illustration
of technique Chen
87
described (16)
by
McCaulley
(21)
and
P r a c t i c a l l y , this u s u a l l y does n o t h a p p e n since a p o r t i o n
of the s o l u t i o n is p r e f e r e n t i a l l y d r a w n f r o m the p o t a s s i u m b r o m i d e
be-
cause of the greater surface t e n s i o n of the m e t a l disk. T h e losses are often v e r y great, b u t w i t h d u e care a n d steady nerves, excellent s e n s i t i v i t y c a n b e r e a l i z e d w i t h this t e c h n i q u e . Another technique developed
to m i n i m i z e losses of c o m p o u n d
c o n t a i n e r surfaces is d e s c r i b e d b y C h e n a n d D o r i t y (1)
on
a n d b y de K l e i n
( 2 9 ) , i n w h i c h the s a m p l e is d e p o s i t e d i n a c a p i l l a r y tube. T h e p o w d e r e d p o t a s s i u m b r o m i d e c a n b e a d d e d to the c a p i l l a r y t u b e e i t h e r p r i o r to the a d d i t i o n of the s a m p l e or a f t e r w a r d s ; m i x i n g is a c c o m p l i s h e d i n the latter case b y s h a k i n g a n d l e t t i n g the s c o u r i n g a c t i o n of the p o t a s s i u m b r o m i d e r e d u c e r e s i d u a l t u b i n g surface losses. C u r r y et al. (18)
d e s c r i b e another t e c h n i q u e , s h o w n i n F i g u r e 4,
i n w h i c h t h e y " d i s p e n s e " a b o u t h a l f of a m i c r o l i t e r of a c h l o r o f o r m s o l u t i o n of the s a m p l e to the t i p of a s y r i n g e needle, " p i c k i n g u p " p o w d e r e d p o t a s s i u m b r o m i d e b y a d h e r i n g a c t i o n o n the n e e d l e t i p , d i s p e n s i n g a n other a l i q u o t of the s o l u t i o n to the p o w d e r , a n d e v a p o r a t i n g the c h l o r o form.
T h e " d i s p e n s i n g " of the s o l u t i o n is c o n t i n u e d u n t i l the e n t i r e
s a m p l e is t r a n s f e r r e d to the p o w d e r , w h i c h is t h e n pressed i n t o a m i c r o pellet.
This procedure
is t h e o r e t i c a l l y s o u n d b u t w o u l d seem to
be
n e r v e - w r a c k i n g i n o p e r a t i o n . A c t u a l l y , the greatest d i f f i c u l t y is i n a c h i e v i n g the i n i t i a l a d h e s i o n of the p o w d e r e d p o t a s s i u m b r o m i d e to t h e s y r i n g e needle.
O n c e a d h e r e d , the p o w d e r
w i l l stick to the n e e d l e t i p u n t i l
c o m p l e t e l y d r y of solvent. T w o t e c h n i q u e s for t r a n s f e r r i n g samples to p o t a s s i u m b r o m i d e p o w d e r are e s p e c i a l l y s u i t e d for use w i t h t h i n - l a y e r c h r o m a t o g r a p h y . p r o c e d u r e d e s c r i b e d b y de K l e i n (30)
is i l l u s t r a t e d i n F i g u r e 5.
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
A
It i n -
88
PESTICIDES I D E N T I F I C A T I O N
Figure 4.
Illustration of technique described by Curry et al. (18)
volves s c r a p i n g the sorbent f r o m a r o u n d the c h r o m a t o g r a p h i c spot of interest, p l a c i n g a " d a m " of p o w d e r e d p o t a s s i u m b r o m i d e a r o u n d the t i p of the spot, e l u t i n g the c o m p o u n d w i t h a v o l a t i l e solvent, a n d a l l o w i n g the solvent to s p i l l o v e r to the " d a m " of p o t a s s i u m b r o m i d e w h e r e i t is a l l o w e d to d r y . T h e other t e c h n i q u e i n v o l v e s u s i n g the c o m m e r c i a l l y a v a i l a b l e " w i c k s t i c k " a n d is d e s c r i b e d b y K r o h n e r a n d K e m m n e r
(5).
T h e w e d g e of p o t a s s i u m b r o m i d e is d i p p e d at its base into a s o l u t i o n of the c o m p o u n d i n a v o l a t i l e solvent. T h e s o l u t i o n migrates u p the w e d g e to the t i p , w h e r e i t evaporates, a n d the c o m p o u n d is c o n c e n t r a t e d i n the tip.
T h e t i p is t h e n b r o k e n f r o m the w e d g e a n d pressed i n t o a m i c r o -
p e l l e t . T h e use of " w i c k s t i c k s " is s i m p l e , r e l i a b l e , a n d r e c o m m e n d e d
for
p r e p a r i n g m i c r o p o t a s s i u m b r o m i d e pellets. A l l of these m i c r o t e c h n i q u e s are successful i n t r a n s f e r r i n g the s a m p l e to the p o t a s s i u m b r o m i d e m i c r o p e l l e t , b u t losses of s a m p l e are i n h e r e n t f o r e a c h of t h e m . T h e s e losses c a n b e v e r y great w i t h o u t a t t e n t i o n to detail.
E l i m i n a t i o n of w a t e r a b s o r p t i o n b a n d s is also q u i t e difficult to
accomplish.
A f u r t h e r d i s a d v a n t a g e of this p r o c e d u r e is the d i f f i c u l t y
i n r e c o v e r y of the s a m p l e for e v a l u a t i o n b y other means.
B u t the ex-
c e l l e n t s e n s i t i v i t y a c h i e v a b l e does r e c o m m e n d this s a m p l i n g p r o c e d u r e for m i c r o q u a n t i t i e s of m a t e r i a l . I n F i g u r e 6 is p r e s e n t e d the p r i n c i p l e b y w h i c h i n f r a r e d spectra are o b t a i n e d b y m u l t i p l e i n t e r n a l reflectance.
T h e i n f r a r e d e n e r g y is
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BLINN
Infrared
Figure 5.
89
Microtechniques
Illustration
of technique
described by de Klein
(30)
d i r e c t e d i n t o the entrance face of the i n f r a r e d t r a n s p a r e n t c r y s t a l l i n e plate.
T h i s e n e r g y is reflected r e p e a t e d l y f r o m the i n n e r faces of the
top a n d b o t t o m surfaces as i t transverses the p l a t e , emerges t h r o u g h the exit face, a n d is d i r e c t e d i n t o the spectrophotometer.
T h e s a m p l e is
p l a t e d as a film o n the top a n d b o t t o m surfaces of the p l a t e . A t e a c h t o t a l l y i n t e r n a l reflection there is a p e n e t r a t i o n of the
electromagnetic
field i n t o the r a r e r m e d i u m b e y o n d the reflecting interface. A n y s a m p l e i n c o n t a c t w i t h the surface is p e n e t r a t e d a f e w m i c r o n s , a n d a s p e c t r u m results. flectance
T h e most u s e f u l c r y s t a l l i n e m a t e r i a l for m u l t i p l e i n t e r n a l r e spectrometry
is K R S - 5 , a m i x t u r e of
thallous i o d i d e . W h e n u s i n g a 50- X
20- X
thallous bromide
a b o u t 15 to 20 fig are r o u t i n e l y a c h i e v e d w i t h stronger a b s o r b i n g
Figure 6.
and
1-mm p l a t e , sensitivities of
Pathway of infrared energy beam in multiple internal ance plate
com-
reflect-
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
90
PESTICIDES I D E N T I F I C A T I O N
4 . 9 fiq A B A T E ® MOSQUITO LARVACIDE 0.0
.10 .20 .30 .40 .50
MICRO MULTIPLE INTERNAL REFLECTANCE K R S - 5 12.7 X 5 X I mm PLATE
.701.0l.5b_ 4000 3000
Figure
pounds.
1.5 mm. POTASSIUM BROMIDE PELLET
2000
1500
_L
1000
1200 CM"'
7. Infrared spectra of Abate mosquito ternal reflectance and micro potassium
I
900
larvicide bromide
800
700
by multiple inpellet
T h e r e is n o w a m i c r o v e r s i o n o f this t e c h n i q u e i n t r o d u c e d b y
W i l k s Scientific C o . u s i n g a 12.7- X 5- X 1-mm p l a t e w h i c h w i l l a l l o w sensitivities o f a b o u t 3 to 5 jig. T h e great a d v a n t a g e o f m u l t i p l e i n t e r n a l reflectance is t h e ease o f a p p l y i n g t h e s a m p l e to t h e surface o f t h e r e flectance
p l a t e . I t is just s t r e a k e d o r d o t t e d as a s o l u t i o n o n t o t h e s u r -
faces, a l l o w i n g t h e solvent to evaporate.
A f t e r t h e s p e c t r u m is r e c o r d e d ,
the s a m p l e c a n b e w a s h e d f r o m t h e surfaces f o r a n y f u r t h e r e v a l u a t i o n d e s i r e d . T h e o n l y r e a l d i f f i c u l t y w i t h s a m p l e p r e p a r a t i o n is w i t h those c o m p o u n d s w h o s e c r y s t a l l i n e s t r u c t u r e makes i n t i m a t e contact w i t h t h e surface difficult a n d those m a t e r i a l s w h i c h react w i t h t h e t h a l l o u s b r o m i d e o r i o d i d e . T h e s p e c t r u m r e s u l t i n g f r o m m u l t i p l e i n t e r n a l reflectance is s i m i l a r b u t s l i g h t l y different f r o m t r a n s m i s s i o n spectra, since a b s o r p t i o n is greater at t h e l o n g e r w a v e l e n g t h s . F i g u r e 7 shows t h e spectra o b t a i n e d f r o m 4.9 fig o f A b a t e m o s q u i t o l a r v i c i d e , u s i n g b o t h t h e m i c r o m u l t i p l e i n t e r n a l reflectance a n d m i c r o p o t a s s i u m b r o m i d e p e l l e t t e c h n i q u e s . T h e t e c h n i q u e o f C u r r y et al (18), d i s p e n s i n g t h e s o l u t i o n o f t h e i n s e c t i c i d e onto t h e p o t a s s i u m b r o m i d e
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BLINN
Infrared
91
Microtechniques
p o w d e r adhered to a syringe needle, was used. I n F i g u r e 8 is shown the s p e c t r a o f 9.8 fig o f t e c h n i c a l D D T o b t a i n e d i n t h e same m a n n e r , a n d F i g u r e 9 shows s i m i l a r l y p r e p a r e d s p e c t r a f o r 24.6 fig o f e n d r i n . T h e s e three figures w e r e p r e p a r e d t o i l l u s t r a t e t h e sensitivities a c h i e v a b l e , t h e superior sensitivity of the micro potassium bromide pellet technique, a n d the greater s e n s i t i v i t y a c h i e v e d f o r the h i g h l y a b s o r b i n g o r g a n o p h o s phorus pesticide than for the organochlorine
compounds.
I n c o n c l u s i o n , three factors a r e v e r y i m p o r t a n t t o m i c r o t e c h n i q u e s in infrared spectrophotometry.
F i r s t , i n o r d e r to g a i n s e n s i t i v i t y , a n effi-
c i e n t transfer o f t h e s a m p l e t o t h e u s a b l e e n e r g y b e a m o f t h e s p e c t r o p h o t o m e t e r m u s t b e a c h i e v e d . M i c r o t e c h n i q u e s s t r i c t l y l i m i t the a m o u n t of a l l o w a b l e c o n t a m i n a t i o n f r o m s u c h sources as t h e s a m p l e , solvents, sorbents, reagents, a t m o s p h e r e , h a n d l i n g , a n d t h e l i k e . S e c o n d l y , start the i s o l a t i o n p r o c e d u r e w i t h sufficient s a m p l e so t h a t there w i l l b e e n o u g h o f the finally i s o l a t e d p e s t i c i d e to a l l o w a s p e c t r u m . R e m e m b e r that e a c h h a n d l i n g step i n t h e i s o l a t i o n p r o c e d u r e s a n d t h e m i c r o i n f r a r e d techniques results i n some loss o f t h e sought p e s t i c i d e . T h i r d a n d last, i n f r a r e d s p e c t r o p h o t o m e t r y
is o n l y o n e t o o l u s e d
b y t h e p e s t i c i d e r e s i d u e analyst, a n d h e cannot b e e x p e c t e d t o b e c o m e 9.8 fJLQ TECHNICAL DDT 0.0 .10 .20 .30
MICRO MULTIPLE INTERNAL REFLECTANCE KRS-5 12.7 X 5 X I mm PLATE
.40 .50
.4050-
1.5mm POTASSIUM BROMIDE PELLET
.701.01.5b I 4000 3000
Figure 8.
2000
1500
1200 CM-I
1000 900
800
Infrared spectra of technical DDT by multiple reflectance and micro potassium bromide pellet
700
internal
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
92
PESTICIDES IDENTIFICATION
24.6 fig ENDRIN 0.0 .10 .20 .30 .40 .50
WITH TRACE OF MINERAL OIL MICRO MULTIPLE INTERNAL REFLECTANCE K R S - 5 1 2 . 7 X 5 X 1 mm PLATE
4000 3000
Figure 9.
Infrared spectra of endrin by multiple internal reflectance and micro potassium bromide pellet
as s k i l l e d as t h e p r o f e s s i o n a l spectroscopist.
B u t h e c a n achieve
suc-
c e s s f u l results i n t h e 5 - 1 0 jig r a n g e i f h e uses t h e s i m p l e s t t e c h n i q u e s c o m m e n s u r a t e w i t h t h e objectives o f t h e p r o b l e m .
Literature Cited (1) (2) (3) (4) (5) (6)
C h e n , J. Y. T . , Dority, R .W.,"Contamination C o n t r o l i n Infrared M i c r o analysis," Annual Meeting of the Association of Official Analytical Chemists, 83rd, Washington, D. C., October 14, 1969. M a s o n , W. B . , "Infrared Microspectrophotometry," Microchem. J. (Symp. Ser.) (1961) 1 , 2 9 3 - 3 1 0 . Traber, W. F., "'Thinking Small' w i t h Microanalysis Techniques," Ind. Res. (October 1966), pp. 80-85. F a h r , E., Rohlfing,W.,"Infrared Spectroscopy i n Biochemistry a n d Clinical Chemistry," Z. Anal. Chem. (1968) 243, 43-48. Krohner, P., Kemmner, G . , "Methods a n d Detection L i m i t s in the IR-Spectroscopic Investigation of M i c r o Quantities," Z . Anal. Chem. (1968) 243, 80-92. E d w a r d s , R . A., Fagerson, I. S., "Collection of Gas Chromatographic Fractions for Infrared Analysis," Anal. Chem. (1965) 3 7 , 1630.
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BLINN
Infrared
Microtechniques
93
(7) Kabot, F . , "How to Collect Fractions from the Model 800 Series Gas Chromatograph," Perkin-Elmer Corp., G . C. Newsletter (1967) 3 (1), 1-4. (8) Oadland, R. K., Glock, E., Bodenhamer, N . L., " A Simple Technique for Trapping Gas Chromatographic Samples from a Capillary Column for Mass Spectrometry or Re-Chromatography on Another Column," J. Chromatog. Sci. (1969) 7, 187-189. (9) Crosby, N . T . , Laws, E . Q., "The Use of Infrared Spectroscopy in the Analysis of Pesticide Residues," Analyst (1964) 89, 319-327. (10) Price, G . C., Sunas, E . C., Williams, J. F . , "Micro Cell for Obtaining Normal Contrast Infrared Solution Spectra at the Five Microgram Level," Anal. Chem. (1967) 39, 138-140. (11) Mills, A . L . , "Infrared Identification of Microgram Quantities of Heroin Hydrochloride," Anal. Chem. (1963) 35, 416. (12) Hannah, R. W . , Dwyer, J. L . , "Analysis of Suspended Particulates with Membrane Filters and Attenuated Total Reflection," Anal. Chem. (1964) 36, 2341-2344. (13) Sloane, H . J . , "Infrared Differential Technique Employing Membrane Filters," A n a l . Chem. (1963) 35, 1556-1558. (14) Sloane, H . J., Johns, T., Cadman, W . J . , Ulrich, W . R., "Infrared Examination of Microsamples. Application of a Specular Reflectance System," Appl. Spectry. (1965) 19, 130-135. (15) Blinn, R. C., "Infrared Techniques Useful in Residue Chemistry," J. Assoc. Offic. Agr. Chemists (1965) 48, 1009-1017. (16) Chen, J. Y. T., "Micro-KBr Technique of Infrared Spectrometry," J. Assoc. Offic. Agr. Chemists (1965) 48, 380-384. (17) Chen, J. Y. T . , Gould, J. H . , "Micro-AgCl Technique of Infrared Spectrometry," Appl. Spectry. (1968) 22, 5-7. (18) Curry, A. S., Read, J. F . , Brown, C., Jenkins, R. R., "Micro Infrared Spectroscopy of Gas Chromagraphic Fractions," J. Chromatog. (1968) 38, 200-208. (19) Garner, H . R., Packer, H . , "New Techniques for the Preparation of KBr Pellets from Micro-Samples," Appl. Spectry. (1968) 22, 122-123. (20) Hayden, A . L., Brannen, W . L . , Craig, N . R., " A Micro-Extraction Technique with Compounds Isolated from Thin-Layer Chromatograms," J. Pharm. Sci. (1968) 57, 858-860. (21) McCaulley, D . F . , " A n Approach to Separation, Identification, and Determination of at Least Ten Organophosphate Pesticide Residues in Raw Agricultural Products," J. Assoc. Offic. Agr. Chemists (1965) 48, 659-665. (22) Mount, D . I., Boyle, H . W . , "Parathion—Use of Blood Concentrations to Diagnose Mortality of Fish," Environ. Sci. Technol. (1969) 3, 11831185. (23) Payne, W . R., Jr., Cox, W . S., "Micro-Infrared Analysis of Dieldrin, E n drin, and other Chlorinated Pesticide Residue in Complex Substrates," J. Assoc. Offic. Agr. Chemists (1966) 49, 989-996. (24) Robbins, J. D . , Bakke, J. E., Fjelstul, C. E., "Practical Micro-KBr Disk Techniques for Infrared Spectrometry," 157th Meeting, ACS, Minneapolis, Minn., April 14, 1969. (25) Sterling, K. J . , "Preparation of Potassium Bromide Disks for Infrared Microanalysis by Using a Half-Inch Die," Anal. Chem. (1966) 38, 1804. (26) Hermann, T . S., "Identification of Trace Amounts of Organophosphorous Pesticides by Frustrated Multiple Internal Reflectance Spectroscopy," Appl. Spectry. (1965) 19, 10-14.
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
94 (27) (28) (29) (30)
PESTICIDES
IDENTIFICATION
W i l k s Scientific C o r p . (South Norwalk, C o n n . ) , "Internal Reflectance Spectrometry," V o l . 1, 40 pp., 1965. L o w , M. J . D . , " A p p l i c a t i o n of Multiple-Scan Interferometry to the Measurement of Infrared Spectra," Appl. Spectry. (1968) 22, 463-471. de K l e i n , W . J., "Infrared-Spectroscopic Identification of Compounds Separated by Gas Chromatography, using a Potassium Bromide M i c r o -pellet Technique," Z . Anal. Chem. (1969) 246, 294-297. de K l e i n , W . J., "Infrared Spectra of Compounds Separated by T h i n L a y e r Chromatography using a Potassium Bromide Micro-pellet T e c h nique," Anal. Chem. (1969) 41, 667-668.
RECEIVED
June 29,
1970.
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.