Anal. Chem. 1993, 65, 117R-132R
Pharmaceuticals and Related Drugs R. K. Gilpin* Department of Chemistry, Kent State University, Kent, Ohio 44242
L. A. Pachla Sterling Drug, Inc., 9 Great Valley Parkway, Malvern, Pennsylvania 19355 Review Contents Alkaloids Antibiotics Inorganics Nitrogen- and Oxygen-ContainingCompounds Steroids Sulfur-Containing Compounds Vitamins Techniques and General Topics Miscellaneous
117R 118R 120R 120R 123R 123R 124R 124R 125R
The current review is a survey of the analytical methodology for pharmaceuticals and related drugs reported in either Analytical Abstracts or Chemical Abstracts between November 1990 and November 1992. Areas that are included are lised in the Review Contents. The citations selected represent only a sampling of the published work and do not include articles of a biochemical or clinical nature. The review is organized into major sections related to type of compound. In most instances a cited work will appear in only one of these.
ALKALOIDS Articles of a general nature which were published during this review period include the analytical profile of apomorphine hydrochloride ( A I )and a review of the applications of biosensors for the determination of drug substances (A2). The emphasis of the latter article is substances of abuse such as cocaine, morphine, and related alkaloids. Similarly, a biosensor has been reported for theophylline which employed a Nafion film containing theophylline oxidase in combination with a ferricytochrome c cofactor (A3). This same compound and other xanthine alkaloids have been determined amperometricallywith a potassium iodotriiodothallate titrant (A4). Other electrochemical methods which have appeared in the literature include the determination of papaverine using selective membranes that contain papaverine tetraphenylborate (A5,A6) and the trace level measurement of colchine via stripping voltammetry ( A n . In the latter procedure the limit of detection is approximately 0.1 nM. A liquid chromatographic procedure for the analysis of reserpine in the presence of various degradation products such as 3,4-didehydroreserpine, isoreserpine,3,4,5-trimethoxybenzoic acid, renoxidine, and 3,4,5,6-tetradehydroreserpine has been developed (AB). Likewise, HPLC has been utilized to quantitate reserpine in tablets (A9). Other liquid chromatographic methods have been described for the major classes of alkaloids, cinchona (AIO-AIZ), rauwolfia (AB,A9, A13), tropane (A14-A18), xanthine (A19-AZ2) and various miscellaneouscompounds such as pilocarpine hydrochloride (A23, A24), as well as the 9-acridone (A25), catharanthus (A26), and benzophenanthridine (A27, A B ) alkaloids. In most instances, reversed-phase conditions have been employed, and in some cases, this has been in combination with on-line mass spectrometric analysis via thermospray interface (All-A13, A26). In at least one of these, deuterated analogues served as the internal standards (A13). Reversed-phase methods also have been used in order to evaluate the optical purity of several alkaloids. Enantiomeric assays for cinchona alkaloids (AIO),cocaine (AIB),and atropine (A15,A16) have
* To whom correspondence should be addressed. 0003-2700/93/0365-0117R$12.00/0
Roger K. Gilpln Is Professor and Chairman of the Department of Chemistry at Kent State University. He received his B.S. degree in chemistry from Indiana State University in 1969 and his Ph.D. degree in analytical chemistry from the university of Arizona in 1973. From 1973 to 1975 he was employedas Senior Scientist and from 1975 to 1978 as Group Leader of Analytical Chemistry in the Research Division of McNeil Laboratories. I n 1978 Dr. Gilpin joined the faculty of Kent State University. Between 1981 and 1983 he also served as a Senior Technical Advisor for IBM Instruments. His research interests are in fundamental and applied gas, liquid, and chromatographic, ESR, IR, and NMR studies of chemically modified surfaces, and pharmaceuticaland related analysis. He has numerous publications in the areas of organometallic surface reactions, synthesis of organosilane and labeled reagents, pharmaceutical analysis, development of chemically modified surfaces for TLC, GC, and HPLC, physicochemicalstudies by chromatographictechniques, electron spin resonance, and nuclear magnetic resonance, and infraredinvestigations of immobilized ligands, liquid crystals, and related media, and metal, 13C, and wide-line *HNMR. Dr. Gilpin has organized or been involved In several symposia and short courses in the area of chromatographic analysis. Likewise, he has held offices in local chromatography and ACS groups. He is also a member of the American Chemical Society, Society of Applied Spectroscopy, American Association for the Advancement of Sciences, and Sigma Xi and serves on the Editorial Advisory Board of the Journal of Chromatographic Sciences. Lawrence A. Pachla is Assistant Director for the Analytical Information and Management Department within Sterling Winthrop PharmaceuticalResearchGroup. He received a B.Sc. in Chemistry from Lawrence Technological University and a Ph.D. in Analytical Chemistry from Purdue University. He has held a variety of increasinglyresponsiblepositions at McNell and Parke Davis in the area of Pharmacokinetics and Drug Metabolism and at Sterling Winthrop in Analytical Biotechnology and Analytical Discovery. He has been team leader for worldwide allergy development candidates at Parke Davis and has also lectured at Lawrence Technological University. His research interests lie in the areas of robotics, electroanalytical chemistry, chromatography, pharmacokinetics, drug metabolism, and bioanalytical chemistry of proteinaceous drugs. He has published more than 45 manuscripts and is an active member of ACS, AAPS, APHA, ADAC, and AAAS. He serves on the Editorial Board of Antimicrobial Agents and Chemotherapy and Biomedical Chromatography, has served on the Advisory Board of Ana/flica/Chemistry,and was Assistant Program Chair for FACSS (1988-1990).
been reported. For the latter two procedures chiral reagents were added to the mobile phase in order to resolve the isomers, whereas cocaine was esterified with optically pure 2-octanol prior to carrying out the chromatographic analysis. In addition to these chiral procedures, derivatization has been used to enhance HPLC detection. For example, the levels of theophylline in formulated products have been measured following its reaction with dansyl chloride (AZO). In another investigation, a comparison between a fluorometric immunoassay and a reversed-phase procedure which used tetrabutylammonium hydroxide as an eluent modifier was made ( A H ) . In general, ion-pairing reagents have been employed 0 1993 American Chemical Society
117R
PHARMACEUTICALS AND RELATED DRUGS
to separate a host of compounds, and in terms of alkaloids, these reagents have been used in liquid chromatographic assays for atropine (A14,A29),yohimbine hydrochloride, and strychnine (A30). In one of these, column switching made it possible to determine the compound of interest in a complex preparation of other gastrointestinal drugs (A14). In another investigation, the interaction of scopolamine hydrobromide with microcrystalline cellulose and sodium carboxymethyl cellulose has been examined (A31). The latter excipient was found to adsorb the active compound to a muchgreater extent. Other procedures developed during the review period that utilized chromatographic methodology included the separation of ergot alkaloids by several different thin-layer systems (A32,A33) as well as by capillary zone electrophoresis (A34). In the latter case,cyclodextrins were added to the background electrolyte in order to resolve the enantiomeric derivatives. Additionally, TLC in combination with spectrodensiometry (A35) and flame ionization detection (A36) has been used respectively to measure papaverine in natural formulations and in combination with other related drugs such as morphine, codeine, and thebaine. Similarly,a combined TLC-secondary ion mass spectrometric assay with a detection limit of 10 ng at a S/N of 5 has been reported for the vasodilator, nicergoline (A37). This same compound has been determined by a monoclonal antibody method which used avidin-coupled peroxidase and diaminobenzidine-H*O? as the detection system (A38). Another published thin-layer method was concerned with the separation of chelidonine and protopine by carrying out stepwise development (A39). Data are presented on samples obtained from industrial waste. Spectrometric procedures have been reported for berberine (A40-A42), ethylmorphine (A43), and theophylline (A44, A45). Both of the assays for theophylline are useful in the lower microgram per milliliter range following treatment respectively with either 4-nitroaniline or europium(II1). For the colorimetric procedure, measurement at 410 nm provided the best sensitivity, and for the fluorescence method, readings were made at 615 nm using an excitation of 300 nm. A segmented-flow assay has been developed for quinine and quinidine which involves the chemiluminescence reaction of them with CeIVand S03*-. The reported calibration curves are linear in the 5-500 pgimL range (A46). These same two compounds as well as other cinchona alkaloids have been treated with aqueous solutions of either zinc, cobalt, or copper; the resulting complexes were extracted with chloroform and subsequently measured using atomic absorption spectroscopy (A47). Similarly, an indirect atomic absorption method has been employed to quantitate pyrrolizidine alkaloids (A48). Measurements were made on the Bi14- ion-pair complex.
ANTIOBIOTICS General. This major section includes drugs that are derived from both natural and synthetic sources. The section discusses methods for antibacterials, antiinfectives, antifungals, antiparisitics, and antimicrobials. Anticancer drugs are included if they were originally discovered in fermentation broths. Twogeneral papers were published during this review period. The first focused primarily on capillary zone electrophoresis (CZE) analysis (B1) and the second on TLC methodology (B2). Cephalosporins. During the current review period a variety of methods were introduced for P-lactam antibiotics. Several papers appeared of a general interest. These included the determination of amoxycillin and cephalexin by secondderivative spectrometry (B3),the determination of cephalosporins after conversion to sulfides (B4,B5), and the use of near-IR for identification and assay (B6). The remaining compounds in this subsection will appear in alphabetical order. Cephalosporin C and byproducts have been monitored on line in fermentation broths using a reversed-phase method (B7). Microbore LC has been utilized to determine cefazolin, ceftizoxime, cefaloridine, and cefaclor (€3).Another report describes the effects of temperature and mobile-phase composition on the capacity factors for cefonicid, cefaclor, cephazolin, cefodizime, cephaloridine, cefamandole, and cephalotin (B9). LC-photolysis-electrochemical detection has been used to determine a modified neutral cephalosporin whereas a robotic procedure has been (L-658758) (BIO), 118R
ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
incorporated into methods for content uniformity for cefixime in oral dosage products (E1I ) . Size exclusion chromato aphy has been applied to the determination of high mof&ular weight impurities in sodium ceftiofur (B12). Other methods that appeared include the following: differential pulse adsorptive voltammetric determination of ceftriaxone (B13), a monograph on cefuroxime (B14),spectrophotometric determination of cephalexin (B15)and cephradine (B16),and the isotachophoretic analysis of p-lactam antibiotics and their precursors (BI 7 ) . Other studies of general interest include: the retention behavior of penicillinsand cephalosporins (B18), their colorimetric determination using 2-nitrophenylhydrazine (B19),and their separation on polymeric ion exchange resins (B20). Chloramphenicol and Isoniazid. Since the last review, several articles were published for the quantification of chloramphenicol and isoniazid. Methods for chloramphenicol include procedures for bulk drug and drug product (B21)and the application of thermospray LC-MS for the analysis of chloramphenicol and related compounds (B22). Spectrometric methods for isoniazid include using a indirect redox spectrophotometric methodology (B23),using ethyl quinolinoxyacetate (B24),or using radiochloramine B (€325). Quinolines. As indicated in the last two reviews, the literature on quinoline antibiotics has grown tremendously. A simple and rapid differential pulse polarographic method for ciprofloxacin has been introduced (B26). Its polarographic behavior as a function of pH was studied, and a pH of 8.5 was found to be most suitable for analysiswith reduction potentials at -1.44 and -1.64 V. Another method utilized a C18 reversedphase column for quantification of tablets dissolved at concentrations between 20 and 80 pg/mL (B27). Several spectrophotometric methods have also appeared for ciprofloxacin. The spectroscopic methods use the following reagents for enhanced detection: methyl orange and bromothymol blue (B28),p-benzoquinone (B29),and 3-methylbenzothiazolin-2-one with ceric ammonium sulfate (B30). A polarographic method applicable to the determination of flumequine in tablets has been proposed (B31). The method was based upon dissolution in Britton Robinson buffer containing methanol as the solubilizer. A well-defined cathodic wave was obtained in the pH range of 5-10, and accuracy and precision results were found to be satisfactory. Another paper described two spectrophotometric assays (B32). The first method utilized the ferric hydroxamate procedure for carboxylic acids followed by chelation with iron(II1)whereas the second method was based upon the direct chelation of flumequine with iron(II1). The influence of pH on the reversed-phase separation of fluoroquinolones was the subject of another paper (B33). Recently, a monograph on norfloxacin appeared (B34). Ofloxacin methods that have appeared include adsorptive stripping polarographic determinations (B35) and C8 reversed-phase determinations of the drug in tablets (B36). Two colorimetric methods were published during the last two years for pefloxacin. The first requires reaction with iron(III), and results were comparable to a selective LC procedure (B37),whereas the second relied on an ion-pairing procedure with either bromocresol blue, bromocresol green, or bromocresol purple (B38). Other quinoline papers which have appeared include the reversedphase (B39),fourth-derivative spectroscopic (B40), fluorometric (B41)determination of rufloxacin and the fluorometric (B42) and LC (B43,B44) determination of temafloxacin. Penicillins. Since the last review,a variety of papers were published describing analytical methodology for penicillins. A second-derivative spectroscopic procedure has appeared for the determination of ampicillin and cloxacillin (B45).The method consisted of dissolution of the formulation in water followed by scanning the spectra between 260 and 300 nm. Derivative measurements were obtained at 269 and 288 nm for ampicillin and cloxacillin, respectively. Beer's law was obeyed up to 14 mg % of each penicillin, and the method was successfully applied to commercial preparations containing both antibiotics. Another paper described the hydrolysis of the same two penicillins followed by direct spectrophotometric determination at 373 nm (B46). The method was specific for ampicillin in the presence of cloxacillin and was linear from 5 to 35 pg/mL. Amoxycillin methods which have appeared include the second-derivative spectroscopic procedure for oral suspensions (B47)and liquid chromatographic methodology
PHARMACEUTICALS AND RELATED DRUGS
(B48-B50).A stability indicating method for azloxacillinwas published (B511. The method was based upon reversed-phase chromatography and was able to separate degradanta from the princi le active at stor e conditions of 50 OC. A differentiafcolorimetric meth8appeared for benzylpenicillin (B52). The method involved hydrolysis of the 8-lactam with subsequent reaction with ferricyanide. The amount of benzylpenicillin was determined via the difference from the hydrolyzed vs unhydrolyzed sample. The method is also applicable to ampicillin and benzathine penicillin v. Other methodologies for enicillins include reaction with Ellman's reagent (B53) anzflow injection analysis (B54-B56). Ticarcillin and clavulanic acid have been simultaneously determined in injectable dosage forms using potentiometric titrimetry (B57) and a polarographic method was reported for the selective and sensitive determination of clavulanic acid (B58). In this method, clavulanic acid was first hydrolyzed in sulfuric acid and then quantified at -0.75 V vs SCE with a detection limit of 2 M in the presence of amoxicillin. A LC method also appeared for the determination of clavulanic acid (B59). The method was linear from 0.2 to 3.0 mg/mL and compared favorably with a microbiologicalassay. Near-IR reflectance spectroscopy was the basis for another quality control method (B60).In this method, creams were extracted with light petroleum after dissolution in methanolic sodium hydroxide. The method was comparable to those obtained by potentiometric titration and IR. Other methods which have appeared include the determination of dicloxacillin preparations by LC (B61),titrimetric determinations of a variety of penicillins (B62),and the reversed-phase ion pairing of penicillins (B63). Streptomycesand Related Analogues. As has been the case for the last several reviews, chromatographic techniques continue to be employed for the selective determination of stre tomyces and related analogues. A postcolumn LC metIod a peared for abamectin (B64). The method involved normal-pkase separation followed by reaction with napthalene-2-sulfonic acid in an alkalinenonaqueous mixing solvent. The absorbance of the eluant was monitored at 570 nm and was linear from 20 to 100 ppm injected. Another derivatization method was based on the reaction of amikacin with o-phthaladehyde in pharmaceutical preparations (B65). The method utilized an autosampler at ambient conditions to derivatize the primary amino groups of amikacin. A method linear from 10to 10oO pg/mL was recently introduced for the determination of several bleomycins in commercial products (B66).Severalpapers appeared on clarithromycin (B67-B69). These methods include the following: the reversed- hase determination of clarithromycin (B67),a cleaning valigation procedure (E&?), and the estimation and identification of nonpolar compounds in drug substance (B69). Two unique method appeared for clindamycin (B70, B71). The first method involved LC with electrochemical detection using a dual-electrode approach (B70). The detection limit was 100 pg with a linearity range of 0.05-1.0 pg. The second method utilized postcolumn chemiluminescence detection with a ruthenium(II1) salt (B71) and was found to be rectilinear over 4 orders of magnitude. Other test procedures which have appeared includethe NMR analysisof doxorubicin(B72), the reversed-phase determination of iododoxorubicin in the presence of its impurities (B73),and the LC determination of dirithromycin (B74). Several methods for erythromycin and analogues were reported ( B 7 5 4 8 0 ) . These include a study on ion- air formation as a basis for quantifying formulations (175) and a variety of liquid chromatographic methods (B76B80). LC-thermospraymass spectrometrywas utilized as a technique for the determination of gentamicin in drug substance (B81). This paper utilized a simplex algorithmto optimizethe separation. A robotic method which has been compared to amanual method for ivermectin content uniformity analysis has been introduced (B82). The system has resulted in significant manpower savings and was totally programmed in less than 1month. Neomycin methodology which has appeared during this review period includesrobotic microbiological methodology (B83),indirect atomic absorption spectroscopy (B84), and spectroscopic methodology (B85). Thin-layer chromato aphic methodology has been ) fermentation broths used to isolate nybomycin (B6from and to quantif rifaximin and oxidation products (B87) in pharmaceuticJproducta, whereas a GLC procedure has been
used to quantify streptomycin (B88).Other streptomycin antibiotic procedures which were reported include LC metha nearodology for tobramycin (B89) and trospectin (B90), IR method for a variety of streptomyces derivatives (B91), and spectroscopic methodologies ( B 9 2 4 9 4 ) . Techniques utilized include TLC with densitometric detection (B95), electrocatalytic detection at ruthenium dioxide-modified and absorbance ratioing (B97). graphite electrodes (B96), Sulfonamides. During the two-year review period, a variety of new methods have appeared for sulfonamide antibiotics. Chromatographic methods continue to be the most popular; however, electroanalytic and spectroscopic techniques still enjoy popularity for routine use. A Monte Carlo approach was used to improve a method for the determination of a sulfonamidemixture (B98). Supercritical fluid extraction was used to isolate sulphamethoxazole and trimethoprim in formulations (B99). A LC method for trimethoprim in the presence of ita de adation products has appeared (B100) as well as methog for sulfaguanidine, sulfadiazine,and succinylsulfathiazole(Bl011. Spectroscopic procedures have been based on reaction with p-benzoquinone (B102), derivative ratio spectroscopy for sulfamethizole (B1031, direct absorbance monitoring of trimethoprim and sulfadiazine (Bl 04), fiist-derivative spectroscopy for sulfametrole and trimethoprim (B105), ratio derivative spectroscopy for sulfamethoxazole and trimethoprim (B106) or sulfathiazole and sulphanilamide (B107), or the use of 2-napthaquinone-4-sulfonatefor a variety of sulfonamides (B108). Sulfamerazine has been determined in pharmaceutical preparations using a glassy-carbon electrode (BlO9). Tetracyclines. In the current review period, many new articles describin the determination of tetracycline antibiotics were publisted. A variety of general methods have appeared for tetracycline mixtures. These papers include LC methodology (B1IO);the use of uranyl acetate in spectroscopic determinations ( B l l l ) ;observations of adsorption onto laboratory glassware (B112);TLC identification methodology (B113);LC(B114)andHPTLCmethodology(B115); and the utilization of continuous-flow chemiluminescence (B116), second-derivative spectroscopy ( B l l 7 ) , and phosphorimetry (B118). Chlortetracycline and four related substances have been successfullyse arated on a polymeric stationary phase (B119). An assay a n i purity method for chlortetracycline and demeclocyline has been developed using TLC and found to be comparable to a LC method (B120). Keto-enol tautomers of chlortetracycline and 4-epichlortetracyclinewere resolved on a polymeric stationary phase (B121). On-line and off-line UV spectroscopy,13Cand 'H NMR spectroscopywas utilized to determine the chemical structure of the tautomers. Demeclocyline has been determined using sodium molybdate as a spectroscopic reagent (B122) or by LC (B123). Purity and assay methods for metacycline were intoduced that use TLC with UV-fluorescence densitometric detection (B124), and oxytetracycline methods that appeared include TLC investigations (B125), flow injection analysis (B126), and spectroscopic analysis (B127, B128). Other tetracycline methods utilize TLC for the control of tetracycline (B129), polymeric based LC separations (B130), and spectroscopy (B131). Miscellaneous. A variety of methods have appeared durin this review period for various antibiotics. These inclufe LC and UV methods for aztreonam (B132, B133); LC, countercurrent chromatography, and electrochemical methods for bacitracin (B134-Bl36);FIA analpis of cetylpyridinium chloride (B137);and passive electroanalytical methods for chloroquine (B138, B139). Cortalcerone has been determined by LC (B140) whereas ethambutol has been determined using spectroscopy(B141,B142),chromatography (B143, B144), or titrimetry (B145). Other methods cited during the review period includethe determination of penems (B146,B147), flucytosine (B148, B149), griseofulvin (B150), ketoconazole (B151, B152), nalidixic acid (B153, B154), niridazole (B155),nitrofurantoin (B156),oxaminiquine (B157), piperazine-based antibiotics (B158), praziquantel (B159), primaquine (B160,B162), thiabendazole (B163),thiomersal (B164, B165), tolnaftate (B166),furazolidine (B167, B168), and other antibiotic mixtures (B16SB176). ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
1lQR
PHARMACEUTICALS AND RELATED DRUGS
INORGANICS Single and Multiple Element Analysis. As might be expected, inorganics have been analyzed most often by some form of atomic or molecular spectroscopy. These have ranged from atomic absorption methods for aluminum and manganese (Cl , C2), to spectrophotometric assays for aluminum, iron, and potassium (C3-C6), to the fluorometric determination of fluoride ion (C7). The levels of fluoride in raw materials and formulated products also have been measured titrimetrically (C8) as well as by gas chromatography (C9). In the latter instance, the inor anic fluoride was converted into trimethylfluorosilane and quantitated with a flame ionizationdetector. Using this approach, the levels of fluoride in 17 different pharmaceutical ingredients such as KC1 and tribasic calcium phosphate were evaluated. Chromatographic procedures also have been reported for germanium (C10)and sulfur ( C l l ) . The cited methodologies were used respectively to measure bis(2-carboxyethyl)germanium-132sesquioxide in pharmaceutical formulations and the amounts of sulfur in either antibacterial or antiinflammatory ointments. Reviews appeared which discussed techniques for determining boron in neutron-capture therapy agents (C12) and the use of membrane electrodes for analyzing inorganics in pharmaceuticals ((213). Other topics considered during the last two years were the levels of iron (C14, C15) and iodide (C16)in dietary supplements and related items, simultaneous quantitation of chloride and calcium in Ringer's injections (Cl7),measurement of water in freeze-dried products by an in-situ Karl-Fischer titration (C18),and automation of energydispersive X-ray fluorescence for assessing the level of aluminum in antiacid tablets (C19). Labeled Compound Analysis. The general subject of rapid methods of radioiodine labeling has been examined (C20). Radiopharmaceuticals for RIA and diagnostic applications are discussed as well as the labeling of proteins. The r meso-dimercaptosuccinic acid tumor-targeting agent IggmTc1 (DMSA) has been studied by several different techniques such as liquid chromatography, thin-layer chromatography, electrophoresis, and gel filtration (C21). The report includes information about the structure and chemical properties of DMSA. In addition, liquid chromato aphic procedures have been used to investigate t l1'In1 diethy enetriaminepentaacetic acid (C22) and 99Tc-bone-scanning agents (C23).
F
NITROGEN- AND OXYGEN-CONTAINING COMPOUNDS General. The chemistry and related analytical methodamiodarone ( 0 2 ) )celiprolol hyology for acebutolol (01)) drochloride (031,fluoxetine (041,lobelinehydrochloride ( 0 5 ) , lomustine ( 0 6 ) )mexiletine hydrochloride (07)) and polythiazide ( 0 8 ) were reviewed in Analytical Profiles. of Drug Substances. These chapters present comprehensive information on the analytical methodolo chemical and physical properties, stability, and toxicity of t g c i t e d pharmaceuticals. In addition, the determination of terfenadine by severalsimple analytical procedures has been reported ( 0 9 ) . Gas Chromatography. Gas chromatography in combination with on-lineinfrared detection has been used to analyze pharmaceuticals containing barbiturates (010). The reported separation of the 10 compounds studied was carried out at 200 O C on a phenyl methyl silicone capillary column. Information is given in terms of retention times, response factors, and infrared spectra. Other published methods which used capillary columns involved the measurement of hydrazine in hydralazine ( 0 1 1 ) and the determination of clonidine in tablet formulations ( 0 1 2 ) . In the first case, the analysis was carried out on a SE-54 fused-silica column following derivatization of the analyte with benzaldehyde. Similarly, derivatization was used prior to the analysis of ketoprofen and propylpenazone ( 0 1 3 ) ,and in the case of ibuprofen and acetaminophen, on-column reactions with hexadimethylsilazane were employed (014). In addition to these latter compounds, which have analgesic properties, salicylic acid and related methyl and ethyl salicylates have been assayed by gas chromatography ( 0 1 5 ) . Likewise, methyl salicylate, in combination with menthol, and camphor also have been uantitated ( 0 1 6 ) . Other pharmaceuticals determined by C procedures include the antihypertensive atenolol (Dl 7),
8
120R
ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
the vasodilator pentoxifylline ( 0 1 8 ) ) and antidepressant imipramine hydrochloride, and the tranquilizer diazepam ( 0 1 9 ) . In all of the last three procedures, the separations were carried out on OV-1 columns. Liquid Chromatography, During this review period, liquid chromatography is again dominant in terms of the most widely used techni ue to assay nitrogen- and oxy encontaining compounls. Likewise, standard reversed-p ase (RP) methods constitute the largest subgrou in (020-073). As might be expected, in most cases octa&c$ (020-054) and octyl(055-064) columns were used. However, in a few instances cyano (065-068) and other (064-071) packings were em loyed. Besides these, other RP procedures were describelin combination with an amine or ion-pairingreagent added to the eluent in order to enhance the chromatographic performance (072-089). Again most of these utilized C18 columns (072-086). In addition to the cited reversed-phase separations, a normal-phase assa for benzocaine and phenidamine tartrate was describei(D90) and a variety of chiral methods were reported (091-0115). Although a majorit of the published accounts dealt with general assay metho&logy, in a few instances other topics were considered. For example, an on-line precolumn apparatus was developed that allowed the eluent's pH to be altered photochemically (Dl16). This device was used for measuring trace levels of aminopterine and methylpterine in methotrexate. On-line photochemical reactions also were carried out postcolumn in order to enhance the detection limit for barbiturates ( 0 1 1 7 ) and tamoxifen (0118). In the first study, which examined seven com ounds, the combined UV irradiation-fluorometric procefure was most effective for pentobarbitone with an increase in sensitivity of 90-fold. The latter account dealt with the separation and quantitation of the cis and trans isomers of tamoxifen. Enhanced detection also has been the subject of another study which utilized combined HPLC-thermospray MS to analyze taxol(0119). The linearity of the method was from 1 to 1000 ng of the analyte. In terms of other equipment-related topics, a metalfree liquid chromatograph was assembled for the analysis of 8-hydroxyquinoline (0120)and a hybrid reversed-phase ion exchange column was synthesized and used to quantitate nicotine in transdermal dosa e forms (0121). Other miscellaneous studies examined t f e influence of photode adation on nifedipine and nitrendipine (0122))binding proflems related to loss of chlorhexidine digluconate (01231, and collection and postanalysis of impurities in selegiline hydrochloride (0124). As a therapeutic grouping, methods for the analgesics, antipyretics, and antiinflammatories were reported most often (020-034,040,057-059, 0 6 8 , 0 6 9 , 0 7 1 , 0 7 6 ,077). The amounts of the various possible impurities in 5-aminosalicylic acid were measured with (077) and without (040) sodium 2-heptanesulfonate added to the mobile phase. An assay for quantitating 5-aminosalicylic acid in tablets and suppositories also was published which used tetrabutylammonium phosphate as an eluent additive (076). Other specificcompounds studied included amidopyrine and phenazone ( 0 2 0 ) )acetaminophen (028-032,068))aspirin (057),diclofenacsodium (031, 0 6 8 ) )dipyrone ( 0 2 1 ) ,flurbiprofen ( 0 7 2 ) ,ibuprofen (021, 0 3 0 ) ) indomethacin ( 0 2 8 ) ) ketoprofen (022-024)) mefenamic acid (025,0 2 9 ) ,naproxen ( 0 2 6 , 0 2 7 ) ,oxyphenbutazone ( 0 5 9 ) , phenacetin and phenazone ( 0 5 8 ) )propyphenazone (023, 0 5 7 ) ) and tolfenamic acid (033, 0 3 4 ) . Additionally,a procedure to analyze many of these compounds was described which employed underivatized silica as the column material in combination with an aqueous mobile phase (071). Another grouping of pharmaceuticals which received considerable attention were the antihistaminic bronchodilators and vasoconstrictors (035-039, 0 6 0 , 0 7 3 , 0 8 7 ,0 8 9 ) . A method was described for determining bamipine in combination with either salbutamol(035) or terbutaline sulfate ( 0 3 6 ) using UV detection. Additionally, an assay was developed for salbutamol which employed amperometric detection (038). Limits for detections of the analyte are given for several mobile phases which ranged from 10 ng to 1 pg. Similarly, electrochemical detection has been used in the case of phenylpropanolamine with a reported 10-foldenhancement in sensitivity over UV procedures ( 0 3 9 ) . Phenylpropanolamine also has been measured in combination with various
!
PHARMACEUTICALS AND RELATED DRUGS
other cou h-cold agents usin a cyano column with triethylamine aided to the mobile p ase (089)and on an octadecyl column with heptanesulfonicacid as an eluent additive (073). In both cases, the lower microgram per milliiter range was reported for limits of detection with ood coefficients of variation. Other antihistamines studie! during the time of this review were antazolinesulfate (0601,clemastinehydrogen fumarate (037),and diphenh dramine (087). The latter method was used to measure t i e active compound in liquid and solid formulations as well as for stability testing. The antianginal q e n t s nifedipine (041-045,063), nicardipine (0611,and nitrendipine (064)received considerable attention. As with the other therapeutic areas, most of these and the methods utilized octadecyl columns (041-045,063) remainder octyl columns. Half of the rocedures em loyed binary combinations of either methanor-water (042-844)or acetonitrile-water (064)as the mobile phases. The remaining separationswere carried out with various temary eluents (041, 061-063). In most cases the reported assays were for purity and stability testing of the drug substances. However, in two of these, nifedipine was determined in a combination product which also contained the antihypertensiveatenolol(044,045). Alternate procedures for measuring atenolol in tablets also appeared which employed either an internal reversed-phase packing (070)or a standard C18 phase with triethylamine added to the mobile phase to enhance the separation (081). The second assay was used for the simultaneous determination of atenolol and two diuretics, hydrochlorothiazide and amiloridehydrochloride. Similarly,various amines have been usedto alter the separations of dilazep dihydrochloride (0801, trazodone (083),camphor-10-sulfonates (075) and glutathione (082). Several other published methods have used secondary additives in the eluent in order to improve the chromatographic performance. For example, tetrabutylammonium salts was added to the mobile phase in order to quantitate cisplatin and 5-fluorouracil(074)and sodium nitroprusside (085).The method for the second compound was reported to be more sensitive than existing titrimetric and potentiometric assays. Likewise, various alkylsulfonates or sulfonic acids have been employed to aid in the separation of chlorhexidine 4-aminopyridinein 3,4diaminopyridine (086)) degradation products (0791,calcium channel blockers (072), sympathomimetic drugs (078),and a-methyldopa in SUBtained-releasecapsules (088). The a-methyldopa procedure, which used a cyano column, was reported to be more selective and sensitive than the current USP spectrophotometric method. Lastly, ion pairing in combination with column switchinghas been carried out in order to measure sennoaides A and B in pharmaceutical preparations (084). The optical purity of harmaceuticals and related chiral most cases, separations continue to {e important topics. ~n the various methods involved some form of chiral resolving stationary phase (091-0108). However, in a few instances the analytes were derivatized prior to carrying out the HPLC separation (0109-0113)or a chiral mobile-phase additive (0114)was used. Compounds analyzed by these approaches an analogue included denopamine (D109),foainopril (DllO), of p i n e (0114),6-adrener 'c blocking agents and a-sympat icomimetics (DIll), car oxy and hydroxy metabolites of ibuprofen (01121,and impurities in (+)-pseudoephedrine (0113).In addition, the optical purity of (+)-pseudoephedrine, as well asephedrine,has been evaluated via emplo of a dual optical rotation-UV detection system Several procedures were developed for the ,%adrenergic blockers which used chiral stationary phases (091-D95).Of these accounts, one is especially interesting in that it involved the development of new chiral resolving hases formed via molecular imprinting techniques (091).!"he surfaces were prepared from either methacrylic acid or itaconic acid by a tem let approach. a1 acid glyco rotein columns have been usef to resolve barbituric acid Arivatives (D96), alfuzosin (097),analogues of vin cetine (0981, and ibuprofen (099). In one of these studies tceffect of the modifier was examined (0961, and in another the influence of 2H20 enantiomeric resolution was evaluated (099).The latter reference suggests that bettar resolution is obtained with heavy water mobile phases. Another oup of opular chiral phases has been those based on ce&ose ancfrelated materials. Methods for the cholinergic physthe antithromboic indobufen (DlOO),
E
f
ostigmine (0100,the antihypertensive com ounds carazolol (Dl02),dihydropyridine derivatives (0103,!104), isradipine (D105),and ramipril (0106))and the antiinflammatories ketoprofen and flurbiprofen (0107)all have used this type of column material. Thin-LayerChromatography. A study has been carried out to correlate the retention behavior obtained by reversedhase thin-layer chromatography (RPTLC) with that from igh-performance liquid chromatography (01%). A total of 18 benzodiazepine derivatives were examined. In addition, RPTLC in combination with densitometry has been used for the determination of methotrexate in the presence of degradation producta (0126). The method has been used to screen the bulk drug as well as pharmaceutical dosage forms. Quantitative TLC-densitometry assays also have been published for diazepam and related compounds (0127),5-iso), hydrochloride, sorbide mononitrate (0128chlordiazepoxide (01291,and demoxepam and 2-amino-5-chlorobenzophenone impuritiesin metoprololtartrate (0130).In the latter citation, fluorescence scanning was used following formation of the dansyl derivatives. Overpressured layer chromatogra hy on silica gel modified with tricaprylmethylammonium cdoride (TCMA) has been carried out in order to separate minoxidiland its intermediates (0131)as well as barbiturates (0132).In the first case it was observed that retention of the compounds increased with increasing amounts of TCMA, however, the reverse was true for the barbiturates. Other Separation Methods. Although the number of published methods which have used capillary electrophoresis (CE) and related methods is still relatively small, it is clearly an emerging oup of techniques which will increase in importance. owever, one comparative stud rated CE as less than impressive in terms of dosageform d y s i s compared to existin HPLC methods (0133). Another comparison concludetthat, with appropriate care, comparable results could be obtained between capillaryelectrophoresis and highperformance liquid chromatograph (0134).By therapeutic class, examples of published rocedlres include the analysis of insulin (0133),common Kronchodilators (0134,0135)) antiinflammatories (0136))antidepressants (0137))and antihistamines (0138). It also has been used to assay 5-fluorouraciland related metabolites (Dl39). In one of these, cyclodextrins were added to the background electrolyte in order to resolve enantiomers of terbutaline and propranolol (0135).Similarly, 8-cyclodextrin was used in the carrier in combination with sodium dodec 1sulfate and tetrabutylammonium hydrogen sulfate in orler to separate nine antihistamines (0138). In addition to capillaryelectrophoresis,supercritical fluids continue to be applied in the analysis of pharmaceuticals. Representative examples of the types of separation being &ed out by supercriticalfluid (SF) chromatography include resolution of racemic compounds (0140),analysis of radiolabeled pharmaceuticals (0140,on-line extraction measurement procedure for pros landin in controlled-release formulations (0142), and gra lent elution using added olar modifiers for assaying seven purine and pyrimidine :rugs (0143). Spectroscopy (Colorimetric). As in the past, analgesics, antipyretics, and antiinflammatories are an important group of com ounds which have been studied often by colorimetric methogs (0144-0151).Acetaminophen has been measured following treatment with phosphomol bdic acid (0144)and with uranyl acetate (0145).Since the ratter reagent is useful for quantitating oxyphenbutazone, phenylbutazone, and salicylamide, spectrophotometric information is included in the same citation for these drugs. In addition, other methods and have been developed for ox henbutazone (0146,0147) phenylbutazone (0146).#e first procedure is based on a decolorizationreaction and the second on a oxidative couplin reaction. In at least one case, methylene blue has been utilize! to determine ibuprofen in dosage forms which also contain Measurements were linear in the acetaminophen (0148). 2&200 pglmL range with good recoveries. Other antiinflammatoriesstudied includediclofenacsodium (O149,D150) and tolmetin sodium (0151). Although the first assay involved a copper complex, the others involved iron. Metal com lexation reactions have been used to assay a chlorhexidine host of other g u g s including adrenaline (0152))
E
IF
2.
ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
121R
PHARMACEUTICALS AND RELATED DRUGS
(0153),dihydralazine sulfate (0154),dipyridamol (01551, levodopa (0156,0157),methyldopa (0157,0158),minoxidil (0159-0161 ), and isoxsuprine, nylidrine, and pholedrine (0162). Except for the first five reports, which involved chromium, manganese, molybdium, or palladium complexes, the remainder were based on reactions with an iron reagent. In the case of minoxidil, which has been studied often by various analytical methods, additional colorimetricprocedures were reported (0163,0164).This was also true for dopamine and levodopa (0165, 0166). Several methods were developed which used various dye reagents. Compounds assayed by these procedures included the tranquilizer chlordiazepoxide (D167),the antihistamine chlorpheniramine maleate (D168),the anticholinergic dicyclomine hydrochloride (D169),and the /3-blockermetoprolol tartrate (0170). In all but one of these (D169),the methods are good in the 10 Mg/mL ran e and each was satisfactory for dosage form analysis. In ajdition to metoprolol tartrate, acetbutololhydrochloride, another /3 blocker has been assayed as the p-N-methylbenzo uinone monoimine charge-transfer complex ( 0 171,Dl 72). &her pharmaceutically active compounds determined by this same methodology include nicoumalone and warfarin sodium (0172). Spectroscopy (Fluorometric). A sensitive ambienttem erature photochemical fluorescence procedure has been usefto study henylbutazone and its degradation products (0179). Reafings are made following irradiation of an ethanolicsolution of the analytes. Clioquinolhas been assayed as its In(II1) complex using a micellar medium (0180). Another reported procedure, which used a reagent, was the determination of the antihypertensive hydralazine hydrochloride (0181). This same compound also has been quantitated simultaneously with propranolol using the firstderivative synchronous spectra (0182). Spectroscopy (UV). In most cases, first- and secondderivative procedures have been used in conjunction with the UV measurements. However, in a few instances, other types of data manipulation procedures have been employed. UV assays have been developed for analgesicsand antipyretics such as aspirin (0184),acetaminophen (0184-0188),p-aminophenol (0185),phenacetin (0186)and salicylic acid (0190). In all of these, the data were analyzed by either some form of derivative or simultaneous analysis procedure. Similarly, the antiinflammatory indomethacin in the presence of its alkaline degradation products has been measured by a firstderivative treatment (0191). The accuracy of the method was evaluated using synthetic mixtures of the active ingredients and its degradation products. Several other over-thecounter combination cough-cold products have been assayed using multiple extractions and mathematical manipulations (0192-0194). Both solid and liquid dosage forms were examined by these methods. Additional, combination products in which UV methods were used in the analytical procedures involved tranquilizerantidepressant (0195)and antihypertensive-diuretic ( 0 196, 0197) mixtures. In each case, the quantitative treatments employed both the first- and second-derivative spectra. During the time of this review, several other compounds which were studied by UV techniques were bromazepam (0198, D199), minoxidil (0200), nifedipine (0201), salbutamol sulfate (0202-0204) and biriperone (0205). Thelatter study reports analytical and shelf-life information on the new neuroleptic compound in tablet, capsule, and injectabledosage forms. Spectroscopy (Other). Several other types of spectrometric techniques have been applied to various aspects of nitrogen- and oxygen-containing compounds. Assays based on atomic absorption (0207, 0208), infrared (0208-021 0 ) , ion mobility (02111, nuclear magnetic resonance (02110216),refractometry (0217), and X-ray (0218-0221) measurements have been published. Although most of these have involved the quantitative determination of the active compound or its degradation products, a few of the cited works examined other questions. For example, vibrational spectroscopy was used to study the structure of cetostearyl alcohol and cetrimide emulsions (0209) and X-ray diffraction to evaluate the polymorphic content of prazosin (0220). Other questions examined were the optical purity of cycolprofen (0213) and ketazolam (02141, the ratios of dehydrated to 122R
ANALYTICAL CHEMISTRY, VOL. 65,
NO. 12, JUNE 15, 1993
hydrated forms of carbamazepine (0218),and the level of bromine in sodium diclofenac (0221). An indirect atomic absorption (AA)method was developed for chlorpheniramine maleate (0207). Measurement of the analyte in different formulations was made following its conversion to either a copper or cobalt complex. In another investigation, AA and FTIR techniques were compared as alternate means of measuring the metal-carbonyl complexes generated in an immunoassay procedure for desipramine (0208). Infrared detection was found to be superior. An optical system has been designed for the near-infrared analysis of salicylic acid in aspirin tablets (0210). The system used a gold integrating sphere and PbS detectors. The resulting data were evaluated by principal-component analysis. In addition, aspirin and acetaminophen have been assayed in several preparations via ion mobility spectrometry (0211 ) . In this same citation, the application of the technique to other compounds also was considered. Other miscellaneous spectrometric methods include the determination of ibuprofen (0212),metoclopramide hydrochloride (0215), nifedipine (0216), diazepam (0217), and carbamazepine (0219). The first three procedures used proton NMR spectrometry and the latter two refractometry and X-ray diffractometry, respectively. Electrochemical Analysis. The general electrochemical behavior of several compounds has been evaluated and the resulting information used to develop a selective assay procedure. Compounds studied include estazolam (0222), flumazenil (0223),glafenine(0224),loprazolam (0225,D226), metronidazole ( 0 2 2 7 ) , nitrofuroxime (02291, and dipyridamole (0230). The reduction of loprazolam involves a three-electron process, and flumazenil, a new benzodiazepine antagonist, undergoes reduction via a four-electron mechanism. The level of detection of the second analyte is reported M. In the case of dipyridamole, to be slightly better than the resulting electrochemical assay gave results equivalent to those obtained by accepted UV methods and was judged to be suitable for content uniformity testing. A similar comparative study was reported for content uniformity testing of tablets which contain the calcium channel blocker nimodipine (0231). The procedure was used to evaluate formulations from different sources. A variety of other compounds have been assayed by either differential pulse polarography (0232, D233), cyclic voltammetry (0234),stripping voltammetry (0235, 0236), or ac polarography (0237). These techniques have been emplo ed in reported procedures for buspirone (0232),chlorhexi ine (0233), nicardipine and other dihydro yridines (0234), midazolam (0235),naftazone (0236),ancf tolmetin sodium (0237). In addition, a spectopolarimetric method has been published for determining the enantiomeric purity of (+)propoxpyhene (0238). The method is claimed to be faster, more accurate, and less hazardous than the USP XXI method. As in the past, ion-selectiveelectrode methods continue to be developed for a variety of pharmaceuticals. Electrodes based on ion-pair complexes incorporated into a polymer matrix have been fabricated for amitriptyline (0241), diazepam (0242), indomethacin, (0243), bupivacaine and oxybuprocaine (0244),and lidocaine,procaine, and tetracaine (0245). Typically linear responses were observed in the 10-3-10-5 or better range. Beside this type of construction, enzyme electrodes also have been produced. Allopurinol has been quantitated by this approach using xanthine oxidase immobilized onto a carbon paste electrode (0246). Flow Injection Analysis and Miscellaneous Methods. A number of types of detection systems have been used in conjunction with flow injection techniques. These have included atomic (0248, 0249) and molecular (0250-0252) spectroscopy as well as turbidimetric (0253, 0254) and electrochemical (0255,0256)techniques. As a single class common analgesics were studied the most (0250-0252,0256). However, methods for other compounds such as amitriptyline (0253),diphenhydramine hydrochloride (0254),and glycine (0249) have been reported. In addition general aspects of detection via atomic absorption spectroscopy have been discussed (0248)and details a flow injection extraction unit given (0257). Studies of a miscellaneous nature that were described in the last two years include various kinetic procedures for bromazepam (0258),oxprenolol (0259),and epinephrine and
d
PHARMACEUTICALS AND RELATED DRUGS
norepinephrine (0260, 02611, simultaneous diode array quantitation for atenolol and related impurities (0262), computer-aided differential thermal analysis (0263), and titration methods for several compounds (0264-0270). The latter citation includes methodology, respectively, for dipyridamole, salbutamol sulfate,mercaptopurine, and quaternary ammonium drugs.
STEROIDS Chromatography. As noted for other drug classes, chromatographic techniques continue to be popular for the selective and sensitive determination of steroids. Chromatora hictechnology employed during the current review period fnckdes gas chromatography, supercritical fluid chromatography, liquid chromatography, and thin-layer chromatography. Cyproterone acetate and ethinylestradiol have been simultaneously quantified by capillar gas chromatogra hy with FID detection (El). Powdered taglets were first was!ed with water to remove the sugar coating followed by dissolution in methanol containing mestranol as the internal standard. Calibration curves were linear from 0.05 to 3 pg/mL for cyproterone and 0.02 to 3.0 pg/mL for ethyn lestradiol. Methyltestosterone has been quantified in taileta after derivatization to unique silyl analogues (E2). The method was accurate and selective in the concentration ran e of 0.11.5 pg/mL after derivatization with either (dimetiylethylsily1)imidazole or (dimethylisopropylsily1)imidazole. One paper has evaluated the use of supercritical fluid chromatography with light-scatterin detection using either a tungsten or a laser light source 833). Liquid chromatographic methodolo continues to be popular and the technique of choice for t g s class of compounds. A stereoselectivemethod has appeared for the determination of the epimers of betamethasone and dexamethasone in tablets (E4). The method was based upon production of their diastereomers as the chiral derivausing N-carbobenzoxy-L-phenylalanine tization reagent. Betamethasone,prednisolone,and cortisone have been quantified as adulterants in pharmaceutical preparations (E5). Separation was achieved on an ODS column with detection at 240 nm. Acceptable recoveries, accuracy, and precision were found for other corticosteroids using an ultrasphere stationary phase (E6). An LC purity method has been introduced for estriol and flumethasone pivalate as a replacement for the German Pharmacopeia TLC method ( E n . A LC method to monitor the release of estrone from poly(1actic acid) microspheres was also reported (Et?). A sim le, rapid, and specific stability indicatin method was introtuced for hydrocortisone 17-butyrate (#9). This reversed-phase method was applied to stability samples and drug levels were well above the USP lower limits. The method was ca able of resolving the degradants (hydrocortisoneand ita 21-{utyrate analogue. Another C8 reversed-phase procedure which has appeared involves the separation and quantification of norethisterone, ethanate, and estradiol valerate (EIO). Other LC methods include the resolution and identification of syn and anti isomers ( E l l ) ,the quantification of spironolactonein the presence of canrenone (E12), and a detailing of the problems associated with the analysis of triamcinolone acetonide in dermatological patches (El3). Thin-layer chromato raph continues to be a useful rapid and quantitative tooffor t i e determination of steroids. A variet of procedures appeared during the current review perioi (E14-El9). A chemometric study reports on the separation of 70 steroids on silica plates (El4). Clioquinol, hydrocortisone, and hydrocortisone acetate have been quantified from creams and ointments on silica HPTLC plates (E15). Low detection limits (5 ng for cyproterone acetate and 30 ng for ethynylestradiol)were demonstrated using silica HPTLC for routine control of tablets (E26). Structure retention relationships were described for the densitometric determination of equine estro ens ( E l 7) and for conjugated estrogens in raw materials an%formulations (Elt?). Triamcinolone, triamcinoloneacetonide,and fluocinonide have also been uantified using TLC with UV detection (E19);estrone, estrajiol, equilin, and 17-a dihydroequilin have been determined using a fluorodensitometric technique (E20). Spectroscopy. A preliminary investigation on the use of near-IR reflectance spectrosco y has appeared for the determination of ethinylestradiofand norethisterone content
uniformity ( E 2 l ) . The rocedure required chloroform extraction followed by $irect reflectance measurements. 3-Acetylaminobenzaldehyde thiosemicarbazone has been shown to be a useful derivatization reagent for quantifyin mesterolone (E22). A recent paper compared an automated segmented-flow spectrofluorometric method for conjugated estrogens with the USP GC procedure (E23). The paper advocates the use of the spectrofluorometric method since significant sam le preparation time and analysis is dramatically reducez Direct, first-derivative, and second-derivative spectroscopic methodology has been compared for the 3-phenolic forms of conjugated equine estrogens (E24). Miscellaneous. Two monographs have a peared during this review period. The first describedsteroix analysisin the pharmaceutical industry (E%), and the second was an analyticalprofile for diethylstilbisterol(E26). Other methods which have appeared include a radioreceptor assay for human chronotropic gonadothropin (E27),a derivatizationprocedure for clobestasol propionate (E%), chromatographic and spectroscopictechniquesfor compoundsrelated to dexamethasone (E29),electrochemicalinvestigations on estriol and estradiol (E30),LC and NMR procedures for impurity profiling of ethynylestrene steroids (E31),polarographic procedures for steroids in ointments and creams (E32),and continuous-flow methodolo for steroids using chemiluminescence (E33-E34) as the m o g o f detection.
SULFUR-CONTAINING COMPOUNDS General. This major section is classified into Cardiovascular, Antiulcer0 enic, Hypoglycemic, Immunological, Phenothiazines, andbiscellaneous sections. Cardiovascular. During the current review period, a variety of methods for determining captopril were reported (Fl-F6). One paper described two simple spectroscopic procedures using oxidative coupling reagents (Fl). Diamine chloride and methylbenzothiazolinonehydrazone were both used as thiol derivatizing reagents. The absorbance of the derivatized product was measured at 460 and 400 nm, respectively. Two other oxidativespectroscopicmethods have also been described (F2, F3). The first method was linear from 0.8 to 4.0 pg/mL after reaction with a ferric chlorideferricyanidemixture in sulfuric acid (F2). The second method involved reaction with 4,4'-dithiopyridine at pH 7.2 to give a 4-thiopyridone derivative which was quantified at 324 nm (F3). Another oxidative method involved reaction with Ce(II1)in a flow injection ap aratus and utilized fluorometric detection (F4). Other citex captopril methods include the colorimetric (F5) and stereospecific gas chromatogra hic determinations (F6). Hydrochlorothiazideand captopriliave been simultaneously quantified in dosage forms (F7). The proposed method had recoveries of greater than 99.5 % and precisions of less than 3.4%. A spectroscopic paper has described the utility of methyl orange, eriochrome black, tropaeolin 00,and picric acid as suitable colorimetricreagents for the determination of diltiazem (Ft?). Chiral separations of diltiazem and trimtoquinol have been achieved using micellar electrokinetic chromatogra hy (8'9). Methodology for other cardiovascular drugs incluies the determination of heparin in ointmenta (FIO)and the fluorometricflow injection analysis of tiapronin (Fl1). I32 Antagonists. A second-derivativespectroscopic method has appeared for the determination of cimetidine in the presence of its acid-induced de adation products (Fl2). Another paper has described the Etermination of cimetidine in pharmaceutical reparations using capillary zone electrophoresis (Fl3). Tiis method involved extraction with petroleum ether followed by dissolution in phosphate buffer. Relative standard deviations for formulations ranged from 1.9 to 6.4%. Famotidine in raw materials and formulations has been quantified using a cyano stationary phase with UV detection (Fl4). The method .was linear from 1.12 to 4.05 pg/mL with an obtainable recision of less than 1%.Monographs that have appearex for ranitidine include quantification using differential pulse polarograpay (F15) and capillary zone electrophoresis (Fl6). Hypoglycemics and Immunologicals. A colorimetric procedure was published for the determination of glibenclamide and gliclazide (F17).The method was based upon the reaction of cobalt chloride with the drugs in anhydrous ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
129R
PHARMACEUTICALS AND RELATED DRUGS
alkaline media. The blue-violet complex was measured at 570 nm and recoveries were greater than 98.8%. The electrochemical behavior of azathioprine has been reported (F18).Various voltammetric techniques were investigated, and differential pulse polarography was determined to be the technique of choice. Other methods reported include the determination of pyridin-2-amine in piroxicam (F19) and square wave and square wave adsorptive stripping voltammetry for the determination of piroxicam and tenoxicam (F20). Phenothiazines. Various papers have appeared during the current review period for the determination of phenothiazines. The first paper described the determination of 19 phenothiazines usin positive- and negative-ion mass spectrometry (F21)and t i e second paper investigated the anodic oxidation of phenothiazine derivatives at platinum and ruthenium electrodes(F22). Diphenylpicrylhydrazyl has been shown to be a useful spectroscopic reagent for the determination of methotrimeprazine, perazine, chlorpromazine, thioridazine, and promazine (F23). The method was based upon the decrease in absorbance at 520 nm, and the procedure was linear up to 200-300 pg/mL. A variety Of methods have appeared for chlorpromazine and promethazine since the last review. Flow injection analysis has been the primary technique for the determination of chlorpromazine. Reported methods include the spectrofluorometric determination after photochemical derivatization (F24),amperometric detection at a Nafion-coated electrode (F25),and the simultaneous determination of chlorpromazine and promethazine (F26).A turbidometric flow injection method for promethazine after reaction with bromophenol blue has been described (F27). Ammonium vanadate has been shown to be a useful chromogenic flow injection reagent for a variety of phenothiazines (F28). Other methodologies have utilized thermometric titrimetry (F29),unsegmented-flow-photochemical-fluorometric continuous-flow analysis (F30),fluorescence (F32)or UV detection after derivation with 3-methylbenzothiazolin2-one (F32). Miscellaneous. Miscellaneous procedures which appeared during this review period include the determination of acetazolamide (F33), chlorprothixene (F34),clothiapine (F35),clotiazepam (F36),cysteine andcystine (F37),enalapril (F38-F40), furosemide (F41-F43), omeprazole (F44),.pyrithioxin (F45),sulfathiourea (F46),and a variety of thioxanthene derivatives (F47).
VITAMINS Water Soluble. As has been the case for several years, ascorbic acid continues to be one of the most studiedvitamins. The oxidation of Cu(I1) has been the basis of two recent methods ( G I , G2). The first method involved the reduction of Cu(I1) to Cu(1) by ascorbic acid followed by subsequent reaction with neocupriene. The perchlorate ion-pair complex was monitored at 456 nm ( G I ) . The second method was similar and required color formation of Cu(1)with rhodamine (G2). The red complex had a molar absorptivity of 2.6 X lo4 at 473 nm, obeyed Beer's law, and was applied to pharmaceutical preparations. A sim le, rapid, and efficient new proton NMR method appeareffor vitamin C determinations in both bulk drug and pharmaceutical preparations (G3).The method could easily uantify the vitamin in the presence of dehydroascorbic aci8, and results were in agreement with iodometric data. Another method involved reacting ascorbic acid with 2,4,-dinitrobenzene and monitoring the absorbance of the yellow-red solution at 380 nm (G4). The method was linear in the range of 0.12-0.6 mg but mono and disaccharides interfered. Three other spectroscopic procedures were published since the last review. These methods involved reaction with alkalinized Fast Red AL Salt (G5) and direct UV flow injection analysis (G6). Three electrochemical methods appeared for vitamin C ( ( 2 7 4 9 ) . The first method involved a comparison of potentiometric and spectroscopic data obtained by reaction with Ce(II1) and the use of chlorpromazine as a redox indicator (0. The last two methods involved either polarographic detection (G8) or voltammetric detection at a raphite-epoxy electrode (G9). A fixed-time kinetic metho also appeared for ascorbic acid (G10). The method involved reaction with
d
124R
ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
Ce(II1) and results were agreeable with the British Pharmacopeia method. Other methodology for ascorbic acid includes titrimetry (G11) and LC ( G 1 2 4 1 3 )or dual-electrode electroanalytical (G14) methods. Two methods were published for cyanocobalmin. The first required solid-phase extraction and LC analysis (GI5),and the second method involved kinetic analysis whereby the Co in vitamin B12was reacted with 4-(2-pyridylazo)resorcinol (G16). An analytical profile monograph with 60 references discussing the preparation, properties, determination, and metabolism of folic acid was published ((717). A similar monograph with 282 referencesalso appeared for nicotinamide (G18). Four methods were reported for the determination of vitamin Bs (G19-G22) that were based upon spectroscopic detection. The first method for tablets, powder, capsules, syrups, and injectables on volved dilution with 2-propanol and reaction with chlorimide (G19). The absorbance of the final reaction mixture was monitored at 650 nm and found to be linear for concentrations over the range of 0.8-8.0 pgl mL. The second method involved extraction with dichloromethane to remove nonpolar components followed by direct spectrofluorometricdetection at 296 nm (G20). The last two methods involved flow injection analysis whereb pyridoxal was reacted with beryllium (G21)or vitamin B1or 6 6 methods utilized a flow stream with ion-selective electrodes (G22). During the current review period, several methods based upon flow in'ection analysis (G23, G24),HPTLC (G25),and competitive Linding radioassays (G26)have appeared for the determination of thiamin. The flow injection fluorometric method was based upon the oxidation of thiamin with immobilized hexacyanoferrate (G23). The linearity range was acceptable with precisions of less than 1.8%. The sampling rate was 281h. A similar approach was utilized for the chemiluminescent determination of the vitamin (G24). This procedure involved solution reaction with ferricyanide in a continuous flow stream. When a lied to formulations, only ascorbic acid interfered. A H&LC method capable of detecting as little as 3 ng was the basis for another procedure (G25)whereas a competitive protein binding radioassay was found to be acceptable for determining thiamin in multivitamin formulations (G26). Lastly, a spectrophotometric procedure appeared for riboflavin and its analogues (G27). Fat Soluble. Over the course of the current review period, numerous methods have appeared for the selective quantification of fat-soluble vitamins. A recent review with 21 references appeared for the determination of vitamin D (G28). Methods for menadione include reaction with phlorglucinol (G29)or formation of a charge-transfer complex with p-Nmethylbenzoquinonimine (G30). Chromatographic procedures for vitamin A include capillary GC (G31) and LC methodologies ((332435). Spectroscopic procedures for vitamin A include formation of charge-transfer com lexes with 7,7,8,8-tetracyanoquinonedimethane((336) or t i e application of orthogonal functions to determine the vitamin in the presence of degradants ((337). Vitamin A also has been determined after reaction with N-bromosuccinimide (G38) orb third-derivative spectroscopy in the presence of vitamin E ( 8 3 9 ) . Methods for vitamins Dz and D3 include reaction with N-bromosuccinimide (G40)or LC (G41). A variety of methods have appeared for vitamin E which includes oneand two-dimensional NMR analysis (G42), synthesis and quantification of the stereoisomers of tocopherol (G43,G44), and liquid chromatographic methodologies (G45, G46). Multivitamins. A variety of miscellaneous methods for individuals vitamins and multivitamins which have been reported include the determination of cyanocobalmin in multivitamin preparations (G47), the use of cyclodextrin columns to determine water-soluble vitamins (G48), the use of photometric determination for water-soluble vitamins (G49),the employment of reversed-phase chromatography (G50),and the use of micellar electrokinetic chromatography with electrochemical detection to quantify the vitamin Bs complex (G51).
TECHNIQUES AND GENERAL TOPICS Over the course of this review period, a multitude of reviews, monographs, and specialty papers pertaining to the appli-
PHARMACEUTICALS AND RELATED DRUQS
ACKNOWLEDGMENT
Table I. Additional References for N-0 and Miscellaneous Compounds Not Specifically Discussed in Text compound
method
ref
acetaminophen acetyldigoxin alprazolam aspartame and saccharin benzocaine benzodiazepine enantiomers bromhexine hydrochloride clidinium DNA and protein impurties diazepam and imipramine domperidone etoposide lactose m e t h y l nicotinate metoclopramide hydrochloride
EC RPLC RPLC RPLC RPLC RPLC CA RPLC
RPLC CA
D239 D55 D65 I1 D46 D108 D173 D47 13 D50 D49 D174 I2 D48 D175 D183 D56 D206 D66 D177
RPLC EC RPLC
D51 D247 D52
RPLC CA EC RPLC
D67 D176 D240 D53 I4 D178 D54
metronidazole minoxidil and tretinoin orciprenaline sulfate and terbutaline sulfate oxpentifylline phenobarbital phenobarbitone, methylphenobarbitone, and phenytoin pindolol procaine hydrochloride
ramipril sucrose thyroxin sodium zidovudine
Review
RPLC RPLC CA GC RPLC CA FA RPLC
uv
IR
CA RPLC
We acknowledge Chemical Abstracts Service for providing CA Selects to aid in the literature search used in the preparation of this work. LITERATURE CITED ALKALOIDS (Al) Muhtadi, F. J.; Hlfnawy, M. S. Anal. Profiles Drug Subst. 1981, 20, 121171. (A2) Gullbault, G. 0.; SchmM, R. D. Biof&nd. Appl. Bkhem. 1991, 74 (2), 133-1 45. (A3) Wang, J.; Dempsey, E.; Ozsoz, M.; Smyth, M. R. Analyst(London) 1991, 7 76 (lo), 997-999. (A4) Ilango, R.; Subbaiyan, M. 6ull. Electrochem. 1991, 7 (6), 286-286. (A5) Eppelsheim, C.; Aubeck. R.; Hampp, N.; Braeuchle, C. Ana/yst(London) 1991, 776 (lo), 1001-1003. (AB) Shoukry, A. F.; Issa, Y. M.; Ibrahim, H.; Eldashledy, 0. A. Anal. Left. 1991, 24 (lo), 1861-1873. (A7) Wang, J.; Ozsoz, M. Talanta 1890, 3 7 (e), 783-787. (AB) Dergel, E.; Mlelck, J. B. J. Li9. C M m a w . 1990, 73 (20), 3973-3984. (A9) Rau, H. L.; Aroor, A. R.; Rao, P. G. Indlan Drws 1880, 28(31. 157-158. (A10) Sakadori. P.; Pini,D.; Rosini, C.; Bertucci,C.; U&sikearre&, G. Chkalw 1992, 4 (I), 43-49. ( A l l ) Abdulrahman,S.;Harrtson,M.E.;Welhem,K.J.;Baldwln.M.A.;PMlilpson. J. D.; Roberts, M. F. J. Chromafogr. 1981, 562(1-2). 713-721. (A12) Glroud, C.; Van der Leer, T.; Van der Heijden, R.; Verpoorte, R.; Heeremans, C. E. M.; Niessen, W. M. A.; Van der Greef, J. P&nta Med. 1991, 57 (2). . ,. 142-148. (A13) Auriola, S.; Naaranlahti. T.; Lapinjoki, S. P. J. Chromamgr. 1981, 554 (1-2). 227-231. (A14) Oshlma. T.; Sagara. K.; Hkayama, F.; Mizutanl, T.; He, L.; Tong, Y.; Chen, Y.; Itokawa, H. J.. Chromatogr. 1991, 547 (1-2), 175-183. (A15) Heidln, E.; Hang Huynh, N.; Pettersson, C. J. Chromafogr. 1992, 592 (1-2), 339-343. (A16) ArvMsson, E.;Jansson, S. 0.; Schill, 0. J. Chromafogr. 1990,506,579591. (A17) 468-47 Mandai. 1. S.; Naqvi, A. A.; Thakur, R. S. J. Chromafogr. 1991,547, (1-2),
cation of instrumental techniques or the resolution of special problems were published. For example, volume 20 of Analytical Profiles of Drug Substances has a peared in print (HI);a review with 96 references on the an&sis of peptides appeared (H2), as well as four books devoted to pharmaceutical analysis ( H 3 4 6 ) . Monographs on artificial intelligence include the use of DSC robotic systems in pharmaceutical analysis (237)and LIMS management systems and integrated data handling systems in the automation of pharmaceutical analysis (H8). A variety of papers on methods validation ( H S H I 3 ) and reports on reference materials (HI4,HI51 also were published. Improvements in chromatography continue to be the dominant force for resolvingspecial analyticalproblems. A variety of monographs have focused on stereoisomer resolution. Reviews which have appeared involve an overview of the analytical importance of chiral separations (HI6),analytical and an overview (HI& and criteria for chiral anal sis (HI7), practical strategies (AI9). Other applications of chromatogra hy involve mobile- hase optimization by molecular modering (H20), use of L e in the pharmaceutical industry (H21), application of diode array detection (H22, H23); prediction of initial LC conditions using expert systems (H24), spectral deconvolution techni ues for validation of LC methods (H25), and robotics ( j 2 6 ) . Spectroscopic techniques introduced as viable practical technology during the current review eriod involve the use of photoacoustic spectroscopy for quahy control (H27),the implementation of Raman spectroscopy (H28-H30) for the anal sis of harmaceuticals and biomaterials, a review on SolidIstate 8IvlR (H31),and mass spectroscopy (H32,H33). A variet of papers applicableto dosage forms appeared.These continuous-flowdissolution (H35), include ?CP analysis(H34), an examination of the pyrogen test (H36), automated dissolution testin (H37), a variety of papers on particle size analysis (H38-81421, and the application of electrochemistry (H43-H46) or CZE (H47-H49).
MISCELLANEOUS Other miscellaneous compounds studied during the time of the review are listed in Table I.
(A18) MacGregor, R. R.; Fowler, J. S.; Wolf, A. P. J. Chromatogr. 1992, 590. (2), 354-358. (A19) Barnes, A. R. Int. J. Pharm. 1992. 80 (2-3),’267-270. (A20) LauCam, C. A.; Roos, R. W. J. LlquMChromafogr. 1991, 74(10), 19391956. (A21) ECSayed, Y. M.; Islam. S. I. J. Clln. Pharm. Ther. 1969, 74, 127-134. (A22) Gracza, L. PZ Wlss. 1891, 4 (3), 123-126. (A23) Desal, S. D.; Blanchard, J. J. Chromatogr. Sci. 1992, 30(4), 149-152. (A241 Sternitzke, K. D.; Fan, T. Y.; Dunn, D. L. J. Chromatogr. 1992, 589(1-2), 159-1 64. (A25) Relsch, J.; Probst, W.; Groeger. D. Rwmazle 1980, 45 (7), 500-502. (A26) Awlole. S.; Naaranlahti, T.; Kwtialnen, R.; Lapinjoki. S. P. Biomed.Envlwr. Mass Spectrom. 1990, 79 (lo), 609-612. (A27) Chauret. N.; Rho. D.; Archambault, J. J. Chromafogr. 1990, 579 (l), 99-107. (A28) Chauret, N.; Archambault. J. Anal. Chin?.Acta 1891,249(1), 231-234. (A29) Santonl, G.; Fabbrl, L.; Renzi, G.; Mura, P.; Pinzauti, S. &//. Chim. Farm. 1990, 730 (l), 14-16. (A30) Chiba, R.; Ishii, Y. J. Chromatogr. 1991, 588 (1-2), 344-347. (A31) Pramar, Y.; Das Gupta, V. OrUgDev. I d . Pharm. 1991, 77(17), 24012407. (A32) Bob,L.; Nyiredy. S.; Sticher, 0. J. P&narChromafcgr.-M. nC1890, 3. (3-4), 193-195. (A33) Cisowski, W.; Lamer-Zarawska. E. J. Planar Chromafogr.-M. TLC 1990, 3 (1-2), 47-50. (A34) Fanail, S.; Flieger,M.: Steinerova, N.; Nardi, A. €&frophwesb( W e M m , Fed. Repub. Gw.)1992, 73 (1-2). 39-43. (A35) Salama. 0. M.; Walash, M. I . Anal. Left,1991, 24 (l), 69-82. (A36) Ayyangr. N. R.; Biswas, S. S.; Tambe, A. S. J. Chromafogr. 1991, 547 (1-2). 538-543. (A37) Banno, K.; Matsuoka, M.; Takahashi, R. Chromatograph& 1891,32(34), 179-181. (A38) Gabor, F.; Plttner, F. Fresenlus’ J. Anal. Chem. 1990, 337 (l), 98. (A39) Matysik. G.; Juslak, L. J. Chromafogr. 1890, 518 (I), 273-276. (A401 Sakal, T. Analyst (London) 1991, 776 (2). 187-190. (A41) Zhebentyaev, A. 1.; Talut, I . E. Chem. Net. Compd. (.Erg/. Tr8nsl.)1889, 25 (2), 203-204. (A42) Sakai, T.; Ohno, N.; Sasaki, H.; Hyuga, T. Anal. Scl. 1981, 7(1), 39-43. (A43) Zhong, H.; Feng, H. Yeowu Fenxi Zazhl1089, 9 (5), 313-314. (A44) El-Shabourie. S. R.; Hussein, S. A.; Emara, S. E. Talanta 1888,36(12), 1288-1 290. (A45) Perry, L. M.; Winefordner, J. D. Talanta 1890. 3 7 (lo), 965-969. Calokerinos. A. C. Anal. Chlm. Acta 1990,236(2), 463-468. (A46) Koukli, I.; (A471 Tsurubou, S.; Sakai, T. Anal. Chlm. Acta 1991, 248 (2), 501-506.
ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
12SR
PHARMACEUTICALS AND RELATED DRUGS (A48) Nerin, C.; Cacho, J.; Garnica, A. Anal. Lett. 1989, 22(15).3041-3055.
ANTIBIOTICS General
(81)Yeo, S. K.; Lee, H. K.; Li, S. F. Y. J. Chromatogr. 1991, 585(1),133-137. (82)Kreuzig, F. Chromatogr. Sci. 1991, 55, 407-437. Cephalosporlns
183) . . Murillo. J. A.; Rodriauez, J.; Lemus, J. M.; Alanon, A. Analyst (London) 1990, 175 (8).1 1 17-7 119. (84)Grekas, N.; Calokerinos,A. C. Analyst(London)1990, 775(5),613-616. (85) Abdalla, M. A. Anal. Lett. 1991, 24 (l),55-67. (86)Corti, P.; Dreassi, E.; Ceramelli, G.; Lonardi, S.; Viviani, R.; Gravina, S. Analusis 1991, 79 (7),198-204. (87)Holzhauer-Rleger, K.; Zhou, W.; Schugerl. K. J. Chromatogr. 1990, 499, 609-615. (88) Moore, C. M.; Sato, K.; Katsumata, Y. J. Chromatogr. 1991, 539 (l), 215-220. (89)Martin-Villacorta,J.; Mendez, R. J. Liq. Chromatogr.1990, 13(16).32693288. (810)McClintock, S.A.; Cotton, M. L. J. Liq. Chromatogr.1989, 72(15),29612969. (811)Rosen, J. M.; O'Leary, M.; Fotino, W.; Ryall. R. R.; Gehrlein, L. Adv. Lab Autom. Rob. 1989. 5. 383-379. (812)Dunn, M. J.; Hahn, D. A. J. Chromatogr. 1992, 595 (1-2),165-192. (813)Altlnoz, S.;Temizer, A. J. Pharm. Sci. 1990, 79 (4),351-353. (814)Woznlak. T. J.; Hicks, J. R. Anal. Profiles Drug Subst. 1991, 20,209236. (815)Alwarthan, A. A. Orient. J. Chem. 1991, 7(3),158-163. (816)Devani, M. 8.;Patel, I. T.; Patel, T. M. Anal. Lett. 1991, 24(6),971-978. (817)Tsikas, D.; Hofrichter, A,; Brunner, G. Chromatographia 1990, 30 (1112),657-662. (818)Kovacs-Hadady,K.; Szilagyi, J. J. PlanarChromatogr.-Mod. TLC 1991, 4 (5-6),194-198. (819)Koranv. M. A,: Abdel-Hay. M. H.: Bedair. M. M.; Gazy, A. A. Talanta 1989, 36 (12).i253-1257. (820)Kelly, J. W.; Stewart, J. T. J. Liq. Chromatogr.1991, 14(12),2235-2250. ~
Chloramphenicol and Isonlazld
(821)Shukla, I.C.; Rai, 0. P.; Ahmad, S. Natl. Acad. Scl. Lett. (India) 1990, 73 (10).373-374. (822)Korfmacher, W. A.; Getek, T. A.; Hansen, E. B., Jr.; Cerniglia, C. E.; Abou-Khalil, S.;Yunis, A. A. J. Chromatogr. Sci. 1990, 28 (5).236-238. (823) Issopoulos, P. 8. Int. J. Pharm. 1991, 70 (1-2),201-204. (824)Ahmed, A. H.N.; El Gizawy, S. M.; El Subbagh, H. I. Anal. Lett. 1992, 25 (1).73-80. (825)Subhashini, M.; Subramanian, M. S.; Rao, V. R. S.J. Pharm. Biomed, Anal. 1989, 7 (12),1473-1477. '
Qulnolones
(826)O'Dea, P.; Costa Gracia, A.; Miranda Ordieres, A. J.; Tunon Blanco, P.; Smyth, M. R. Electroanalysis (N.V . ) 1990, 2 (E),637-641. (827)Sane, R. T.; Patel, D. V.; Dhumal, S.N.; Nerurkar. V. R.; Mainkar, P. S.; Gangal, D. P. Indian Drugs 1990, 27 (4),248-250. (828)Bilgic, 2.; Tosunoglu, S.;Buyuktimkin, N. Acta Pharm. Turc. 1991, 33 (l),19-22. (829)Shanbag, S.G.; Thampi, P. P.; Thampi, C. S.Indian Drugs 1991, 28(6), 279-280. (830)Ramana Rao, G.;Avadhanulu, A. 8.; Vatsa, D. K. Indian Drugs 1990, ' 27 (lo),532-535. (831)Belal, F.; El-Din, M. S. Microchem. J. 1990, 42 (3),300-305. (832)Sharaf El-Din, M. K. Acta Pharm. fenn. 1991, 100 (4),265-268. (833)Budvarl-Barany, Z.;Szasz, G.;Takacs-Novak. K.; Hermecz, I.; Lore, A. J. Liq. Chromatogr. 1991, 74 (le),3411-3424. (834)Mazuel, C. Anal. Profiles Drug Subst. 1991, 20, 557-600. 1835) Tamer. A. Anal. Cbim. Acta 1990, 237 (1). 129-131. (836)Shakya, A. K.; Slnghai, A.; Talwar, N.; Mishra, P.; Jain, N. K. Indian Drugs 1991, 28 (B), 277-279. (837)Jelikic-Stankov,M.; Veselinovic, D.; Malesev, D.; Radovic, Z. J. Pharm. Biomed. Anal. 1989, 7(12),1571-1577. (838)Sane, R. T.; Dlghe, V.; Bapat, V. V.; Gangrade, M. G. Indian J. Pharm. Sci. 1991, 53 (2).64-66. (839)Ouaglia, M. G.;Farina, A.; Melchiorre,P.; Bossu, E.; Pagella, P. J. Pharm. Biomed. Anal. 1990, 8 (8-12),1075-1078. (840)Quaalia,M. G.;Bossu,E.; Melchiorre,P.; Farina, A,; Salvatori,A. farmaco 1991, 4% ( 7 4 979-985. (841)Farina, A. J. Pharm. Blomed, Anal. 1989, 7(12),1579-1583. (842)Farina, A.; Abballe, F.; Doldo, A.; Ouaglia, M. G. Spectrosc. Lett. 1991, 24 (9).1219-1228. 1843) El&l. L.. Jr.: Linton. C. L.: Shelat. 8. P.; Wona, C. F. J. Chromatogr. ' 1990, 579 (l),125-138. (844)Bauer, J. F.; Elrod, L., Jr.; Fornnarino, J. R.; Heathcote, D. E.; Krogh, S. K.; Linton. C. L.; Norris, 8. J.; Quick, J. E. Pharm. Res. 1990, 7(11).11771180. > - - ~ ,
~
Penlcllllns
(845)El Walllv. A. F.; El-Anwar, F.;Eid, M. A. Alexandria J. Pharm. Sci. 1991, ' 5'(1),86-90. (846)Akanni. A. 0.; Ayim. J. S. K. J. Pharm. Biomed. Anal. 1992, 10 (l), 43-47. 126R
ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
(847) Yesilada. A.; Ertan, M. Anal. Lett. 1991, 24 (ll),2033-2041. (848) Hsu, M. C.; Hsu, P. W. Antimicrob. Agents Chemother. 1992, 36 (6), 1276-1279. (849)Abounassif, M. A.; Abdel-Moety, E. M.; Mohamed. M. E.; Gad-Kariem, E. R. A. J. Pharm. Biomed. Anal. 1991, 9(9),731-735. (850)El Walily. A. F. M.; El-Anwar, F.; Eid, M. A.; Awaad, H. Analyst(London) 1992, 177 (6).981-984. (851)Pujol, M.; Girona, V.; Prat, J.; Cots, J. Int. J. Pharm. 1990, 58(2),103106. (852)Amer, M. M.; Ruecker, G.; ECBardicy, M. G. Egypt. J. Pharm. Sci. 1989, 30(1-4),111-123. (853)Morgii, F. I.; Kestek, A. J. Fac. Pharm. GaziUniv. 1990, 7(1),33-42. (654)Wolters, R.; Van Opstal, M. A. J.; Kateman, G. Anal. Chlm. Acta 1990, 233 (l),65-76. (855)Xie, X.; Suleiman, A. A.; Guilbault, G. G. Biotechnol. Bioeng. 1992, 39 (11).1147-1150. (B56)Van Opstal, M. A. J.; Wokers, R.; Blauw, J. S.; Van Krimpen, P. C.; Van Bennekom, W. P.; BUR, A. J. Pharm. Biomed Anal. 1990, 8 (l),49-60. (B57) AbdeCMoety, E. M.; Khattab, N. A. fresenius' J. Anal. Chem. 1991,340 (12).777-780. (858)Gonzaiez Perez, C.; Gonzalez Martin, I.; Rodriguez Vazquez de Aldana, B. J. Pharm. Biomed. Anal. 1991, 9 (5),383-386. (859)Hsu, M.-C.; Cheng, M.-C. J. Chromatogr. 1991, 549 (1-2),410-415. (860)Corti, P.; Dreassi,E.; Corbini, G.; Montecchi, L.; Paggi. J. Analusis 1990, 78(2),117-121. 1861) Hsu. M. C.: Fann. Y. J. J. AOAC Int 1992, 75(1).26-29. (862j Belal, F.; El-Brashy, A.; Ibrahim, F. J.-Assoc. Of;. Anal. Chem. 1990, 73 (6),896-901. (863)Fletouris, D. J.; Psomas, J. E.; Mantis, A. J. Chromatographia 1991, 32 (9-lo),436-440. Streptomyces and Related Analogues
(864)Demchak. R. J; MacConnell, J. G. J. Chromatogr.1990, 577, 353-358. (865)Caturla, M. C.; Cusido, E.; Westerlund, D. J. Chromatogr. 1992, 593 (1-2),69-72. (866)Fiedier, H.-P.; Wachter, J. J. Chromatogr. 1991, 536 (1-2),343-347. (867)Morgan, D. K.; Brown, D. M.; Rotsch. T. D.; Plasz, A. C. J. Pharm. Biomed. Anal. 1991, 9 (3),261-269. (868)Rotsch, T. D.; Spanton, M.; Cugier, P.; Plasz, A. C. Pharm. Res. 1991, 8 (E),989-991. (869)Gorski, R. J.; Morgan, D. K.; Sarocka, C.; Plasz, A. C. J. Chromatogr. 1991, 540 (1-2),422-429. (870)Hornedo-Nunez, A.; Getek, T. A.; Korfmacher- W. A,; Simenthal, F. J. Chromatogr. 1990, 503 (l),217-225. (871)Targove, M. A.; Danielson, N. D. J. Chromatogr. Sci. 1990, 28 (lo), 505-509. (872)Djedaini, F.; Lechat, F.; Wouessidjewe, D.; Perly, 8. Minutes Int. Symp. Cyclodextrins, 5th 1990, 130-133. (873)Farina, A.; Quagiia, M. G.; Bossu, E.; Melchiorre, P. J. Pharm. Blomed. Anal. 1991, 9(10-12).1165-1168. (874)Oisen, 8. A.; Stafford, J. D.; Reed, D. E. J. Chromatogr.1992, 594(1-2), 203-208. (875)Dabrowska, D.; Regosz, A.; Piekos. R.; Mierzwa. M.; Paruch, 8. Microchem. J. 1990, 47 (2),210-218. (876)Cachet, T.; De Turck, K.; Roets, E.; Hoogmartens, J. J. Pharm. Blamed. Anal. 1991, 9 (7),547-555. (877)Cachet, T.; Quintens, I.; Paesen, J.; Roets, E.; Hoogmartens. J. J. Llq. Chromatogr. 1991, 14 (6),1203-1218. (878)Paesen,J.; Roets, E.; Hoogmartens,J. Chromatographia 1991,32(3-4), 162-166. (879)Stubbs, C.; Kanfer, I. Int. J. Pharm. 1990, 63 (2),113-119. (880) Cachet, T.; Lannoo, P.; Paesen, J.; Janssen, G.; Hoogmartens, J. J. Chromatogr. 1992, 600 (l),99-108. (881)Getek, T. A.; Vestal, M. L.;Alexander, T. G. J. Chfomatogr. 1991, 554
(1-2),191-203. (882)Curran, J. R. Adv. Lab. Autom. Rob. 1989, 5, 381-395. (883)Miller. 0.S.:Grosso. S. L. Adv. Lab. Autom. Rob. 1991. 7. 491-499. (884j Abu-ECWafa, S . M.; El-Ries. M. A,; Abou-Attai, F. M.; ISM, R. M. Anal. Lett. ~. 1989. ~. 22 113-14).2703-2716. (885)Marques, M. R. C.; Hackmann, E. R. M.; Saito, T. Anal. Lett 1990, 23 (6),1005-1016. (B86)Pope, J. A.. Jr.; Nelson, R. A.; Schaffner, C. P.; Rosen, R. T.; Pandey, R. C. J. Ind. Microbiol. 1990, 6 (l),61-69. (887)Corti, P.; Corbini, G.; Dreassi. E.; Politi, N.; Montecchi, L. Analusis 1991, 79 (E),257-261. (888) Arrowood, S.; Hoyt, A. M., Jr.; Woods. M. W. J. High Resolut. Chromatog. 1991, 74 (12).808-810. (889)Dash, A. K.; Suryanarayanan, R. J. Pharm. Biomed. Anal. 1991, 9 (3), 237-245. (890)Simmonds, R. J.; Wood, S. A.; Ackland. M. J. J. Liq. Chromatogr, 1990, 73 (E), 1125-1142. (891)Corti. P.; Savini. L.; Dreassi, E.; Petriconi. S.;Genga, R.; Montecchi, L.; Lonardi, S.Process Control Qual. 1992, 2 (2),131-142. (892)Confino. M.; Bontchev, P. Mikrochim. Acta 1090, 3 (4-6),305-309. (893) Zakhari, N. A. Anal. Lett. 1990, 23 (lo),1843-1856. (894)Sampath, S.S.;Robinson, D. H. J. Pharm. Sci. 1990, 79(5),428-431. (895)Eneva, G.; Nikoiova-Damyanova. 8.; Spassov, S.;Haimova, M. J. Planar Chromatogr.-Mod. TLC 1990, 3, 232-235. (896)Leech, D.: Wang. J.; Smyth. M. R. Analyst (London) 1990, 175 (11). 1447-1450. ~
~
PHARMACEUTICALS AND RELATED DRUGS
(897) Inman, E. L.; L a n k M. D.; Strohl, M. M. J. Chromatogr, Scl. 1990. 28 (1 l), 578-583. Sulonamldrr
(898)Wlellng, J.; Coenegracht, P. M. J.; Mensink, C. K.; Jonkman, J. H. G.; Doornboe, D. A. J. Chromatogr. 1992. 594(1-2), 45-64. (899) Mulcahey. L. J.; Taylor, L. T. Anal. Chem. 1002, 64 (9).981-984. (8100) Bergh, J. J.; Breytenbach, J. C.;Du Preez. J. L. J. Chromatogr. 1990. 513, 392-396. (8101)El Anwar, F. M.; El Walliy, A. M.; AWel H. M. H.; El Swify, M. Anal. Lett. 1991, 24 (5), 767-779. (8102)Mohamed, A. M. I.; Askal. H. F.; Saleh, G. A. J. fharm. B b d . Anal. 1991, 9 (7),531- 538. (8103) Berzas Nevado, J. J.; Rodriguez Flores, J.; De la Morena Pardo, M. L. Talanta 1991, 38 (11), 1261-1284. (8104)Subramanyam, C. V. S.; Chowdary, C. L.; Reddy, M. S.; Rao, J. V. Indlan Drugs 1991, 28 (9),438-440. (8105) Abounasslf, M. A.; Hagga, M. E. M.; Qad-Karlem. E. A.; AI-Awady, M. A. Acta fharm. Jugosl. 1991, 41 (3),223-231. (8106) Berzas Nevado, J. J.; Lemus Qallego, J. M.; Castaneda Penahto, G. Fresenlw’ J. Anal. Chem. 1992. 342 (9).723-728. (8107)Berzas Nevado, J. J.; Salinas, F.; De Orbe Paya, I.; Capitan-Valhtey, L. F. J. fhann. B b d . Anal. 1991, 9 (2).117-122. (8108) Punta Cordero, A.; Barragan de la Rosa, F. J.; Guiraum, A. Can. J. Chem. 1989. 67 (lo),1599-1605. (8109)PlngarronCarrazon, J. M.; Dominguez Reclo, A.; PoloDlez, L. M. Taianta 1992. 39(8). 831-635. Tetracycllner
(8110)Kovacs-Hadday,K. J. flanarChromatogr.-h.fud, TLClBOl, 4(11-12), 456-459. (8111)Saha, U.; Sen, A. K.; Das, T. K.; Bhowal, S. K. Talanta 1900, 37(12), 1193-1 196. (8112)Clarlone, A. E.; Fry, 8. W.; Zkmer, D. M. M l m h e m . J. 1990, 42(2), 250-255. (8113) Naidong, W.; Cachet, T.; Roets, E.; Hoogmartens, J. J. Planar ChfOtt?atW.-Md. nC 1989, 2 (6),424-429. (8114) Khan, N. H.;Hendrlx, C.;Hoebus, J.; Roets, E.; Hoogmartens,J. Janssen Chlm. Acta 1990, 8 (3),28-30. (8115) Kang, J. S.;Ebel, S. J. Planar Chromatogr.-M. TLC 1989, 2 (6), 434-437. (8118)Syropoulos, A. 8.;Caiokerlnos, A. C. Anal. chlm. Acta 1991, 255(2), 403-41 1. (8117)Hon, P. K.; Fung, W. K. Analyst(London) 1991, 116(7),751-752. (8118)Duggan, J. X. J. Llq. Chromatogr. 1091, 14 (13).2499-2525. (8119)Naidong, W.; Roets, E.; Hoogmartens. J. Chromatographla 1990, 30 (1-2),105-109. (8120)hidong, W.; Hauglustaine. C.;Roets, E.; Hoogmartens. J. J. fianar mromatogr.-w. nc 1901, 4 (I),63-68. (8121) Weng. N.; Roets, E.; Busson, R.; Hoogmartens, J. J. fh8rm. B / o d . Anal. 1990, 8 (8-12),881-889. (8122)Jellklc-Stankov, M.: Stankov. D.; Malesev, D.; Radovlc, 2. Mlkrochlm. Acta 1991, 1(1-2),65-70. (8123)Weng, N.; Roets. E.; Hoogmartens, J. J. fharm. B b W . Anal. 1989, 71121. .~ . - , .1691-1703 .__. (8124)Weng. N.; Sun, H.;Verresen, K.; Roets, E.; Hoogmartens, J. J. fharm. B l o d . Anal. 1991, 9 (9),717-723. (8125)Weng, N.; Geelen, S.; Roets, E.; Hoogmartens. J. J. fharm. B b d . Anal. 1990, 8 (8-12),891-898. (8126)Alwarthan, A. A.; AI-Tamrah, S. A.; Sultan, S. M. Ancrlyst (London) 1991, 116 (2),183-186. (8127)Jelikic-Stankov, M.; Vesellnovlc, D.; Malesev, D.; Radovic, 2. J. fharm. Bhnmd. Anal. 1980, 7(12). 1565-1570. (8128)Raghuveer, S.; Srlvastava. C. M. R.; Vatsa, D.K. Indian Dvugs 1092, 29 f6I. -281-283. -. - - ~ (8129)Weng, N.;Sun, H.; Roets, E.; Hoogmartens, J. J. fianar Chromafogr.w.nc i992,5(2)92-98. (8130)Khan, N. H.; Wera. P.; Roets, E.; Hoogmartens, J. J. Llq. Chromatogr. 1090, 13 (7),1351-1374. (8131) Emara, K. M.; Askal, H. F.; Saleh, G. A. Talent8 1991, 38(11). 12191221.
.-,.
M*c.#anww
(8132)Huang, X.; Kok, W. T.; Fabre, H. J. Liq. Chromatogr. 1991, 14 (14), 2721-2733. (8133)Morelll, 8. J. fharm. Scl. 1900, 79 (3).261-285. (8134)Bell, R. G. J. ChrOt?I&OQr. 1992, 590 (l),163-168. (8135)&a, H.; Harada. K.4.; Suruki, M.; Nakazawa, H.; Ito, Y. J. Chmmatogr. 1989, 482 (7),197-205. (8136)Moreira, J. C.;Miller, R. D.; Fogg, A. 0.Anal. Roc. (London)1991, 28 (1). .,, 16-18 .- .-. (8137)Sakal, T.; Ohno, N. Anal. Scl. 1901, 7,297-300. (8138)%ad, 8.;Kanapathy. K.; Ahmad. M. N.; Hussln, A. H.; Ismall, 2. Talanta 1991. 38 (12).1399-1402. (8139)lias&n.‘S. S.M.; Ahmed, M. A. J.-Assoc. Off. Anal. Chem. 1991, . 74.(6),900-905. (B140)Gebrlel, J.; Vacek, 0.; Kubatova. E.;VoIc, J. J. Cbrwnatogr.1991,542 fl1., .200-203. --- --(8141)Mahrous. E. S.Anal. Lett. 1902, 25 (2).289-280. (8142)Devanl. M. 8.: Shah, S. A.: Pandva, S. S. Indlan J. fharm. Scl. 1990. . 52.(2),121-122. (8143)Blesslngton. 8.; Belraghl, A. ChiraUty 1991, 3 (2). 139-144. (8144) Blessington, 8.; Beiraghl, A. J. Chromatogr. 1990. 522,195-203. I
.
(8145)Andharl, S.;Khanna, S.; Dlghe, V. S.; Jlndal, K. C. Indlan L%t@ 1990, 27 (6),365-366. (8146)Mender. R.; Alemany, T.; Negro, A.; Martin-Vlilacorta, J. Anal. Lett. 1990, 23 (7). 1335-1344. (8147)Farina, M.; Flnetti, G.; Busnelll, V. J. Cbromatopr. 1090, 507,171-176. (8148)Pramar, Y.; Des Gupta, V.; Bethea, C.&I@ Dev. Ind. Rwm. 1991, 17(2), 193-199. (8149)Cavrlnl, V.; Bonaul, D.; DI Pletra. A. M. J. fharm. Bhnmd. Anal. 1991. 9 (5).401-407. (8150) Sastry, 8. S.;Rao, J. V.; Sastry, C. S. P. Indian Drugs 1990, 28 (1). 42-44. (8151)Zarapkar, S. S.;Halkar, U. P. Indlan Drugs 1991. 28 (6),265-269. (8152)Abounassif. M. A.; ECShazly, 8.4.4.-M. Anal. Lett. 1990, 22 (IO). 2233-2247. (8153)Chowdary, K. P. R.; Rao. P. V. IndlanDnrgs 1991, 28(12),569-570. (8154)Sandhyavall. M. S.;Thampl. P. P.; Thampl, C. S. East. fhann. 1991, 34 (403),123-124. (8155)ECRabbat. N. A.; Farag, H. H.; ECKommos, M. E.; Refaat, I. M. Talanta 1990, 37 (9,481-483. (8156)Sridevl, C.;Reddy, S. J. Electraenalysls(N.Y.) 1991, 3(4-5). 435-438. (8157) Ahmad, I.; Ahmad,T.; Usmanghanl, K. Anal. Ro1YlesDVcrgSu6st.1991,
20. 601-825. (8158)Zkolova, T.; Budevskl, 0.; Zikolov, P.; Nlnova, E. fhamzks 1092, 47 (2),111-113. (8159)Ei-Khateeb. S.2.; El Ragehy, N. A.; Khattab, F. I.; Ahmad. A. K. S. SpectraPC. Lett. 1990. 23 (4).505-514. (8160)Sastry,8. S.;Rao, E. V.; Suryanarayana, M. V.; Sastry, C.S. P. Indlan DII@1900, 27 (4),260-261. (8161)Talwar, N.; Shakya, A. K.; Gcgoi. P. J.; Vyas, S. P.; Jain, N. K. Indian Drugs 1991, 28 (9),437-438. (8162)Vlshwavldyalaya, H. S.0.; Talwar. N.; Gcgol, P. J.; Vyas, S. P.; Jaln. N. K. Indian Drugs 1990, 28 (3),156-157. (8163)ECBardlcy, M. G.; Mohamed, M. Y.; Tawakkol, M. S. Anal. Lett. 1990, 23 (8)- 1385-1416. (8164) Parkln, J. E. J. Chromatogr. 1991, 587(2), 329-332. (8165)B u s h , D. S.;Moody, J. R.; May, J. C. J. Anal. At. Specbom. 1989, 4 (E), 773-775. (8166)Thompson, R. D.; Carlson, M. J.-Assoc. Off. Anal. Chem. 1091, 74 (4),603-607. (8167)Hassan, S.M.; Ibrahlm, F. A.; Hefnawy, M. M. Anal. Lett. 1990, 23(4), 599-606. (8168)Hassan, S. M.; Ibrahim, F. A.; EIDln, M. S.; Hefnawy. M. M. ChfomafGgraphfa 1990. 30 (3-4),176-180. (8189)Ajlboye, S. I.; Bark, L. S. J. 77”.Anal. 1989, 35(6), 1739-1750. (8170)Bersler, P. M.; Bersbr, J.; Sedeimeler. 0.;Hungerbuehler, E. EksctraanalySk (N.Y.) 1990, 2 (5), 373-381. (8171)Askal, H. F.; Saleh, G. A.; Omar, N. M. Analyst(London)1991, 116(4). 387-390. (8172)Geltonde, C. D.; Pathak. P. V. Drug Dev. Ind. fhann. 1991, 17 (g), 1201-1214. (8173)Yarnwy, C.;Smyth, W. F. Int. J. fhann. 1901, 75(2-3),181-189. (8174) Issa,A.S.;AWelSalam,M.A.;Daabees.H.M.G.;Bonl,N.S.Alexa~la J. fham, Scl. 1000. 4 (I), 7-11. (8175)Abounasslf, M. A.; AWeCMoody, E. M.; Mohamed, M. E.; Gad-Karlem, E. R. A. J. fharm. Blamed. Anal. 1991, 9(9), 731-735. (8176)Nlshlrawa, M.; Matsue,T.; Uchida, I.Anal. Chem. 1902,64(21), 25422644. I NORQANIC Slngle and Multlplr Element Analyrk
(Cl)Reust. J. 8.;Seltner. H. D. Colkq. Atomspew”. Spurenanal., 5th 1989, 657-865. (C2) Sundaramurthl, N. M.; Shinde, V. M. Analyst (London) 1991, 116 (9, 541-544. (C3)Nobile, L.; Raggl, M. A. fharmazks 1991, 46 (2),138-139. (C4) Issopoulos, P. 8.;Economou. P. T. Fresenlus’ J. Anal. Chem. 1992, 342 (4-9,439-443. (C5)Raggl, M. A.; Nobile, L.; Perbonl, I.; Ramlnl, M. Int. J. fharm. 1900, 61 (3),199-203. (C6)Raggl, M. A.; Nobile, L.; Ramlni. M.; Perboni, I . J. fharm. Bbmed. Anal. 1989. 7(12), 1545-1550. (C7)Raggl. M. A. Arch. fharm. (WelnMm, Oer.) 1901, 324 (3),195-196. (C8) Abramovlc, 8. F.; &el, F. F.; Cvetkovic, S. D. Talanta 1992, 39 (9, 511-515. (C9)Bouyguede Ferran, A. M.; Pham-Huy, C.; Postaire, M.;Hamon, M. J. “arm. 1991,585 (2),2~9-295. (C10) Xle, P.; Yan, Y.; Yu, C.;Shen, M. J. flanar Chromatogr.--Mod. nC 1990, 3. 141-143. (C11)Kurosaka, K.; Kuchlkl, A.; Nakagawa, H. Chem. fharm. Bull. 1091, 39 (8). 2138-2139. (C12) Moore, D. E. J. fhann. Bhn?md. Anal. 1090, 8(7), 547-553. (C13)Cosofret, V. V. TrAC, Trends Anal. Chem. (Pws. Ed.) 1991, 10 (a), 281-265. (C14) Kelkar, V. D.; Pokharkar, S. R. Indlan J. fhann. Educ. 1080, 23(2), 63-68. (C15) ACRlkabl, A. M. K.; AMarbrl, F. A.; Hasoon. S. J. Anal. Lett. 1089, 22 (15),3003-3009. (C16) Garcia, M. S.;Sanchez-Pedreno, C.; Albero, I.; Sanchez, C. Anawst (London) 1091, 116 (a),853-856. (C17) Zhou, W.; Liu, W.; An, D. J. Chromatop. 1992, 589(1-2), 358-361. (C18)Wekx, J. P. H.; De KlelJn,J. P. mug Dev. I&. fharm. 1000, 16(9). 1465-1 472. ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1093
127R
PHARMACEUTICALS AND RELATED DRUGS (C19) Georgiades, C. A. J.-Assoc.
Off. Anal. Chem. 1990, 73(3), 385-388.
Labeled Compound Analysls (C20) Kronrad, L.; Hradllek, P.; Kopicka, K. J. Radloanal. Nucl. Chem. 1990, 139 (l), 89-97. (C21) Blower, P. J.; Slngh, J.; Clarke, S. E. M. J. Nucl. Med. 1991, 32 (5), 845-849. (C22) Vora, M. M. Appl. Radiat. Isot. 1991, 4 2 ( 1 ) , 19-21, 23-24. (C23) Gelsema, W. J.; De Ligny, C. L.; Huigen,Y. M.; Schuring,J. J. Chromatogr. 1992, 594 (1-2), 217-223. NITROGEN- AND OXYGEN-CONTAINING COMPOUNDS General (DI) Foster, R . T.; Carr, R. A. Anal. Profiles Drug Subst. 1990, 19,1-26. (D2) Plomp, T. A. Anal. Proflles Drug Subst. 1991, 20, 1-120. (D3) Mazzo, D. J.; Obetz, C. L.; Shuster,J. E. Anal. Proflles Drug. Subst. 1991, 20,237-301. (D4) Risley, D. S.; Bopp, R. J. Anal. Profiles Drug Subst. 1990, 19, 193-219. (D5) Muhtadi, F. J. Anal. Profiles Drug Subst. 1990, 19, 261-313. (DE) AI-Shammary, F. J. Anal. Proflles Drug Subst. 1990, 19, 315-340. (D7) Abounassif, M. A.; Mian, M. S.;Mian, N. A. A. Anal. Profiles Drug Subsf. 1991, 20,433-474. (D8) Negendra Vara, P. T.; Venkata, R. E.; Sarveswara, S.6.; Sastry, C. S. P.: Kostek, L. J. Anal. Proflkw Drug Subst. 1991, 20,665-692. (D9) Badwan, A. A.; Abu-Malooh, A.; Owais, L.; Salem, M. S.;AI-Kaysi, H. Anal. Lett. 1991, 24 (2), 217-232. Gas Chromatography (D10) Rolimann, 6.; Lefebure, 6.; Goetemans, A,; Tilquin, B. J. Pharm. Selg. 1990. 45 14). 245-251. (D11) Gyllenhaal, 0.; Goenberg, L.; Vessman, J. J. Chromatogr. 1990, 511, 303-315. (D12) Rau, H. L.; Rao, P. G. Indian Drugs 1991, 28 (4), 200-201. (D13) Pant, S.K.; Thomas, K. M.; Gupta, P. N.; Maitin, 9. K.; Jain, C. L. Indian Drugs 1990, 27 (4), 244-247. (D14) Pant, S. K.; Jain, C. L. Indian Drugs 1991, 28 (6), 262-265. (D15) Plata, J.; Orte, J. C.; Martinez, F.; Thomas, J. Analusis 1990, 18 (2), 146-1 47. (D16) Sadana. G. S.;Potdar, A. J. Indian Drugs 1991, 28 (8),382-384. (017) Sadana, G. S.; Ghogare, A. 8. Indian Drugs 1990, 28 (3), 142-145. (D18) Sadana, G. S.;Ghogare, A. 9. Indian J. Pharm. Sci. 1991, 53(4), 159161. (D19) Ramana Rao, G.; Avadhanuiu, A. 6.; Pantulu. A. R. R.; Vatsa, D. K. Indian Drugs 1990, 27 (1I), 582-585. Llquld Chromatography
(D20) Wang, E.; Zhou, J. Microchem. J. 1990, 42 (3), 259-266. (D21) Rau, H. L.; Aroor, A. R.; GunduRao, P. IndianDrugs 1991,29(2),94-96. (D22) Mannucci, C.; Bertini, J.; Cocchini, A.; Perico, A,; Salvagnini, F.; Triolo, A. J. Li9. Chromarogr. 1992, 15 (2), 327-335. (D23) Jain, R.; Jain, C. L. Indian Drugs 1991, 28 (7), 325-329. (D24) Chi, S.-C.; Jun, H. W. J. Liq. Chromatogr. 1989, 12(15),2931-2945. (D25) Maron. N.; Wright, G. J. Pharm. Slomed. Anal. 1990, 8 ( I ) , 101-105. (D28) Moir, D. 6.; Beaulieu, N.: Curran, N. M.; Lovering, E. G.J.-Assoc. Off. Anal. Chem. 1990, 73 (E), 902-904 (D27) Moir, D. 8.; Beaulieu, N.; Curran, N. M.; Lovering, E. G. J.-Assoc. Off. Anal. Chem. 1990, 73 (6), 902-904. (D28) Rau, H. L.; Aroor, A. R.; Rao, P. G. Indian Drugs 1991, 29 (I), 48-50. (D29) Rau, H. L.; Aroor, A. R.; Rao, P. G. Indian Drugs 1991,28(12),563-565. (D30) Jain, R.; Jain, C. L.; Bansai, Y. K. IndianDrugs 1990, 27(12), 815-617. (D31) Rau, H. L.; Aroor, A. R.; Rao, P. G. Indian Drugs 1991, 28(6), 285-286. (D32) McCormick, C. P.; Shihabi, 2. K. J. Ll9. Chromatogr. 1990, 13(6), 11591171. (D33) Papadoyannis, 1.; Georgarakis, M.; Samanidou, V.; Zotou, A. J. Li9. Chromatogr. 1991, 14 (15), 2951-2987. (D34) Papadoyannis, I . ; Georgarakis, M.; Samanidou, V.; Zotou, A. J. Li9. Chromatogr. 1991, 14 ( E ) , 2951-2967. (D35) Kountourellis,J. E.; Markopoulou,C.; Georgakopoulos,P. P. J. Chromatogr. 1990, 502 (l), 189-192. (D36) Kountourellis,J. E.; Markopoulou, C. J. Ll9. Chromatogr. 1989, 12(16), 3279-3286. (D37) Zarapkar, S.S.;Bhounsule. N. J.; Halkar. U. P. Indian Drugs 1991, 29 (I), 52-54. (D38) Modak, M. M.; Bhide, A. D.; Tipnis, H. P. Indian Drugs 1991, 28 (4), 194-1 95. (D39) Mike, J. H.; Ramos, B. L.; Zupp, T. A. J. Chromatogr. 1990, 518 (I), 167- 177. (D40) Gandini, C.; Caccialanza. G.; Kltsos, M.; Massolini, G.; DeLorenzi, E. J. Chromatogr. 1991, 540 (I-2), 418-421. (D41) Budv Arl-Barany, Z.; Szasz, G.; Radeczky, G.; Slmonyi, I.; Shalaby. A. J. Li9. Chromatogr. 1990, 13 (17), 3541-3551. (D42) Beaulieu, N.; Curran, N. M.; Graham, S. J.; Sears, R. W.; Lovering. E.G. J. Liq. Chromarogr. 1991, 14(6), 1173-1183. (D43) Bammi, R. K.; Nayak, V. G.; Bhate, V. R.; Dhumai, S.N.; Purandare, S. M.; Dikshit, P. M.; Gaitonde, C. D. Drug Dev. Ind. Pbarm. 1991, 17 (16), 2239-2244. (D44) Rau. H. L.; Aroor, A. R.; Rao, P. G. Indian Drugs 1991,28(6), 283-284. (045) Jain, R.; Jain, C. L. Microchem. J. 1991, 44 (2), 187-192. (D48) Gigante, 6.; Barros. A. M. V.; Teixeira. A,; Marcelo-Curto. M. J. J. Chromatogr. 1991, 549 ( 1 4 , 217-220.
128R
ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
(D47) 464.Yuen, S. M.; Lehr. G. J.-Assoc.
Off. Anal. Chem. 1991. 74(3), 461-
(048) Abounassif, M. A.: Abdel-Moety, E. M.; Gad-Kariem, R. A. J. Li9. Chromatoor. 1992, 15 14). 625-836. (D49) Shah, k.; Khanna, S./Jindal, K. C.; Dighe, V. S.Indian J. Pharm. Scl. 1990, 52(2), 100-101. (D50) Rau, H. L.; Aroor, A. R.; Rao, P. G. IndianDrugsI991, 28(6), 281-282. (D51) Sadana. G. S.:Ghogare, A. B. Indian Drugs 1990, 27 (7), 395-397. (D52) Wahbi, A. M.; El Walily, A. M.; Korany, M. A.; Redair, M. M.; El Gindy, A. Drug Dev. Ind. Pharm. 1991, 17(16), 2215-2228. (D53) AbouCEnein, H. Y.; Thiffault, C. Anal. Lett. 1991, 24 (12), 2217-2224. (D54) Tomankova, H.; Sabartova, J. Chromatographia1990,29(I-2), 44-50. (D55) Ikeda, Y.; Fujii, Y.; Yamazaki, M. Anal. Siochem. 1991, 196(2), 451455. (D56) Talwar, N.; Jain, N. K. Indian Drugs 1991, 29 (2), 78-81. (D57) Santoni, G.: Fabbri, L.; Gratteri, P.; Renzi, G.; Pinzauti, S.Int. J. Pharm. 1992, 80 (2-3), 263-266. (D58) El Sadek. M.; El Shanawany, A.; Aboul Khier, A.; Ruecker, G. J. Pharm. Slomed. Anal. 1991, 9 (I), 87-89. (D59) Shakya, A. K.; Talwar, N.; Singhai, A. Indian Drugs 1991, 28(4), 192193. (D60) Sa'Sa'. S.; Ai-Momani, I. F.; Jaial, I . M. Anal. Lett. 1990, 23(6), 953971. (D61) Fernandez, C. V.; Mira, D. F.; Luque, G. I. J. High Resolut. Chromatogr. 1990, 13 (12), 846-849. (D62) Deleted in proof. (D63) Budvari-Barany, 2.; Szasz, G.; Radeczky, G.; Simonyi, I.; Shaiaby, A. J. ~ i qchromatogr. . 1990, 13 ( q , 3541-3551. (D64) Nonzioli, A.; Luque, G.; Fernandez,C. J. HighResolut.Chromatogr.1990, 13 (E),589-591. (D65) Acikkol, M.; Barlas, B. D.; Rollas, S.Pharmazle 1991, 4 6 ( 8 ) ,481-482. (D66) Gagiiardi, L.; Amato, A.; Turchetto, L.; Tonelli, D. Anal. Le??.1991, 24 (lo), 1825-1835. (D67) Lacrolx, P. M.; Moir, D.; Lovering. E. G. J.-Assoc. Off. Anal. Chem. 1990, 73 (4). 521-525. (D68) Nayak, V. G.; Bhate, V. R.; Purandare, S. M.; Dikshit, P. M.; Dhumal, S. N.; Gaitonde, C. D. Drug Dev. Ind. Pharm. 1992, 18(3), 369-374. (D69) Beaulieu, N.; Cyr, T. D.; Lovering, E. G. Drug Dev. Ind. Pharm. 1991, 17(13), 1843-1855. (D70) Radulovic, D.; Zivanovic, L.; Velimirovic. G.; Stevanovic, D. Anal. Left. 1991, 24 (IO),1813-1823. (D71) Lampert, B. M.; Stewart, J. T. J. Chromatogr. 1990, 504(2), 381-389. (D72) Williams, H. L.; Johnson, D. J.; Collins, H. H.; Martin, S.K.; Ramuz, H. Anal. Chlm. Acta 1990, 228 (I), 155-157. (D73) Pant, S.K.; Maitin, B. K.; Jain, C. L. Indian Drugs 1990,28(2), 105-107. (D74) Fleming, R. A.; Stewart, C. F. J. ChrOmatogf., Blomed. Appl. 1990, 93, 517-525 (J. chromatogr. 1990, 528 (2)). (D75) Pierron, C.; Panas,J. M.; Etcheverty, M. F.; Ledouble, G. J. Chromarogr. 1990, 51 1, 367-372. (D76) Cendrowska, I . ; Drewnowska, M.; Grzeszkiewicz, A,; Butkiewicz, K. J. chromatogr. iggo, 509 (I), 195-199. (D77) Kersten, B. S.;Catalano, T.; Rozenman, Y. J. Chromatogr. 1991, 588 (1-2), 187-193. (D78) Smela, M. J.. Jr.: Stromberg, R. J.-Assoc. Off. Anal. Chem. 1991, 74 (2), 289-291. (D79) Hoang, M.; Moellmer, J. F.; Khan, M. A. J. Ll9. Chromatogr. 1990, 13 (13), 2677-2687. (D80) Sane, R. T.; Tendolkar, R. V.; Gangal, D. P.; Dhumal, S. N.; Nerurkar, V. R.; Mainkar, P. S. Indian Drugs 1990, 2 7 (4), 254-256. (D81) Sane, R. T.; Bhate, V. R.; Nayak, V. G.; Ladge, K. D. Indian Drugs 1991, 28 (7), 322-325. (D82) Gennaro, M. C.; Abrigo, C. J. h r m . Slomed. Anal. 1992, 10(1), 61-85. (D83) Sane. R. T.; Nerurkar, V. R.; Tendolkar, R. V.; Gangal, D. P.; Mainkar, P. S.; Dhumal, S. N. Indian Drugs 1990, 27(4), 251-254. (D84) Oshima, T.; Hirayama, F.; Masuda, M.; Maruta, T.; Sagara, K.; Mizutani, T.; He, L.; Tong, Y.; Chen, Y. J. Chromatogr. 1991, 585(2), 255-258. (D85) Patel, C. P. LC-GC Int. 1990, 3 (1 I), 40-43. (D86) Perry, J. A.; Chang, M. J. Pharm. Sci. 1990, 7 9 ( 5 ) ,437-439. (D87) Yuan, H. P.; Locke, D. C. Drug Dev. Ind. Pharm. 1991, 17(17), 23192331. (D88) El-Sayed Metwally, M. J. Chromatogr. 1991, 549 (1-2), 221-228. (D89) Fong, G. W.; Eickhoff, W. M. Int. J. Pharm. 1989, 53 (2). 91-97, (D90) El Waiily, A. M.; Korany, M. A.; Bedair, M.; El Gindy, A. Anal. Left.1991, 24 (5),781-795. (D91) Fischer, L.; Mueller, R.; Ekberg, 6.; Mosbach, K. J. Am. Chem. SOC. 1991, 113 (24), 9358-9360. (D92) Kingston, G. A.; Steven-, D. RecentAd.. ChkalSep. [ h c .Ctvmtogr. SOC.Int. Symp. Chlral Sep.],2no: University of Surrey, Guilford, UK, Sept 12-15, 1989; 1990; pp 67-76. (D93) Dyas, A. M.; Robinson, M. L. Fell, A. F. J. Chromatogr. 1991, 586(2), 351-355. (D94) Armstrong, D. W.: Chen, S.;Chang, C.; Chang, S.J. Ll9. Chromafogr. 1992, 15 (3), 545-556. (D95) Enquist, M.; Hermansson, J. J. Chromatogr'.1990, 519 (2), 285-298. (D96) Enquist. M.; Hermansson, J. J. Chromatogr. 1990, 519 (2). 271-283. (D97) Rouchouse, A.; Manoha. M.; Durand. A.; Thenot, J.-P. J. Chromatogr. 1990, 506, 601-610. (D98) Herenyi, 6.; Gorog, S.J. Chromatogr. 1992, 592 (1-2). 297-299. (D99) Camilleri, P.; Dyke, C. J. Chromatogr. 1990, 518 (I), 277-281. (D100) Perrone, G.; Farina, M. J. Chromatogr. 1990. 520, 373-378. (D101) Lee, T. B. K.; Wong, G. S. K. J. Chromatogr. 1990, 523, 317-320. (D102) Aboul-Enein, H. Y.; Islam, M. R. Anal. Left. 1990, 23 (E), 973-980. (D103) Ohkubo, 1.;Uno, T.: Sugawara, K. Chromatographia 1992, 33 (5-E), 287-288. (D104) Okamoto, Y.; Aburatani, R.; Hatada,K.; Honda, M.; Inotsume,N.; Nakano, M. J. Chromatogr. 1990, 513, 375-378.
PHARMACEUTICALS AND RELATED DRUGS
(D105) Kustws, E.; Dosenbach, C.; Gerber. G. J. High Resolut. chrometop. 1991. 14 (11). 769-771. (D106) Abouiikln, H. Y.; Bakr, S. A. Dwg Dev. Ind. Pharm. 1992, 18(9), 1013- 1022. (D107)Okamoto,Y.;Abuatanl,R.;Kaida,Y.;Hatada,K.; Inotwme,N.;Nakano, M. W a M y 1989, 1 (3),239-242. (DIO8) Auollne, 0.;ohlslandl, V.; Vercesl, D. f a m c o 1990, 45 (6),603-
615. (DlO9)Nlshl, H.; Fujlmura. N.; Yamaguchl, H.; Jyomorl. W.; Fukuyama. T. chrometographla 1990,30 (3-4),186-190. (D110) Klrschbaum, J.; Noroskl, J.; Cosey, A.; Mayo, D.; Adamovlcs, J. J. Chmmatogr. 1990, 507, 165-170. (DI 1I)Jka, T.; Toil, C.; Vogt, C.; Beyrich, T. Phafmazie 1991,48(6).432-434. (0112) Rudy, A. C.; Anllker, K. S.; Hall, S. D. J. chrometogr., Ebmed. Appl. 1990,93,395-405 (J. C b n ~ t 1990, ~ . 528 (2)). (D113) Duddu, S. P.; Mehvar, R.; Grant, D. J. W. Pharm. Res. 1991,8(11),
1430-1433. (D114) Pack, E. J., Jr.; Blelberg, 6.; Rosenberg, I. E. Chkalm 1990,2 (4), 275-279. (Dll5) Wu, 2.; ooodall, D. M.; Lloyd, D. K. J. Pharm. Eiomed. Anal. 1990,8 (4),357-364. (D116) SalaKIOun. J.; Slals, K. J. C k ~ m a t 1990, ~ . 522,205-211. (D117)Wolf,C.; Schmld,R. W. J. Llq. chrometop. 1990, 13(11), 2207-2216. (Dll6) Salemun, J.; Macka, M.; Nechvatal, M.; Matousek, M.; Knesel, L. J. ChrometOg: 1990,514 (2),179-187. (Dll9) Aurkle, S. 0.K.; Leplsto, A. M.; Naaranlahtl, T.; Laplnjoki, S. P. J. C h f O m t W . 1992,594 (I-2),153-156. (0120)NagleI-Dstaszewskl. I.; Vavrek, M. T.; Welsburgsr, J. H. Xenobiotlca 1991,21 (B), 751-754. (D121)Csrllsle, M. R.; Chlcolne, M. L.; Wygant, M. 8. Int. J. Pharm. 1992,80 (2-3),227-242. (D122)Logan, B. K.; Patrick, K. S. J. Chromatop., Ebmed. Appl. 1990,94, 175-181 (J. Chmmtogr. 1990, 529 (I)). (D123)Cheung, A. P.; Mavar, R.; Carlson, C.; Chlang. W. K. J. Pharm. Ebmed. - A&/. 1991,-9(l),41-45. (0124)Beeulleu, N.; Cyr, T. D.; Graham, S. J.; Loverlng, E. G. J.-Assoc. Off. Anal. Chem. 1991, 74 (3).453-455. Thln-Layer Chromatography
(D125)Valko, K.; Olajos, S.; Cserhatl, T. J. Chromatogr. 1990,499,361-371. (D126) Dam, K.; Roy, S. K.; Das, S. K. J. Llq. Chromatop. 1990, 13(10), 1933-1941. (D127)Whlte,D.J.; Stewart, J.T.;HonIgberg, I.L. J. PlanarCh”togr.-M. n C 1991, 4 (9-lo),413-415. (D128) Azcona, T.; MartlnOonzalez, A.; Zamorano, P.; Pascual. C.; Grau, C.; Garcla de Mlraslerra, M. J. Pharm. E M . Anal. 1991, 9 (9),725-729. (Di29) Whke,D.J.; Stewart,J.T.;Honlgberg, I. L.J. PlanarC/womatop.-Mcd. nc 1991,4 (4),330-332. (D130)Ahmed, H. D.; Poole, C. F. J. plenar Chromatogr.-M. n C 1991, 4 (5-6),218-222. (D131)Kovacs-Hadady, K.; Szllagyl, J. J. Chromatop. 1991,553(1-2). 459-
466. (D132) Kovacs-Hadady, K. J. Chfomatogr. 1992, 589 (I-2),301-306. Other Separation Methoda
(0133)Lookabaugh, M.; Blswas, M.; Krull, I . S. J. Chromatogr. 1991, 549 (1-2),357-366. (D134) Ackermans, M. T.; Beckers. J. L.; Everaerts, F. M.; Seelen, I.0. J. A. J. chrome-. 1992, 590 (2),341-353. (D135)Fenall, S. J. Chromatop. 1991, 545 (2),437-444. (D136)Walnrlght, A. J. M l m d u m n Sep. 1990,2 (4),166-175. (D137) Salomon, K.; Burgl. D. S.; Helmer, J. C. J. Chromatoy. 1991, 549 (1-2),375-385. (D136)Ong, C. P.; Ng, C. L.; Lee, H. K.; LI, S. F. Y. J. Chromatogr. 1991,588 (I-2),335-339. (D139)De Bruljn, E. A.; Pattyn, G.: David, F.; Sandra, P. J. Hlgh Resolut. C&oma-. 1991, 14 (9),827-629. (D140)Qasparrlnl, F.; Mlsltl, D.; Vlllanl, C. J. H@ Resolut. Chromatogr. 1990, 13 (3),162-184. (D141)Ruane, R. J.; Tomklnson, G. P.; Wilson, I.D. J. Pharm. Eiomed. Anal. 1990, 8 (6-12),1091-1093. (D142)Roston, D. A. Dwg Dev. Ind. Pharm. 1992, 18 (2),245-255. (D143) Mulcahey. L. J.; Taylor, L. T. J. H/gh Resolut. Chromatog 1990, 13 (6),393-396. Spectroscopy (Colorhetrlc)
(D144) Issopoulos, P. B. Anal. Lett. 1990,23 (6), 1057-1068. (D145)Bhowal. S.K.; Das, T. K. Indlan Drugs 1990, 27 (9),475-480. (D146)Emara, K. M.; ECKommos, M. E. AlexandrleJ. Pharm. Scl. 1990,4(1). 69-72. (D147)Lavanya, K.; Baggl, T. R. Mlffochem. J. 1990, 41(2), 236-245. (D148)Slnghal, A. K.; Khapra, P.; Jaln, N. K. J. Inst. chem. (Indla) 1991,83 (21,71. 0149) AgatonovicXustrln,S.;Zlvanovlc. L.; Radulovlc, D.; Vasiljevlc. M.A n a h t (London) 1991, 118 (7),753-756. (D150) Agrawal, Y. K.; Shivramchandra, K. J. Pharm. E/omed. Anal. 1991,9 (2),97-100. (0151)AgatonovlcXusMn, S.;Zlvanovlc, L.; Radulovlc,D.;Vaslljevic, M. Talanta 1347-1352. 1991,38 (Il), (D152) Sankar, D. 0.;Sastry, C. S. P.; Reddy, M. N. Indlan Drugs 1991,28 (6), 272-274. (D153) Fujb, Y.; Morl, I.; Toyode, M. Anal. Scl. 1990,8(6). 807-811. (D154) Issopoulos, P. B. Int. J. Pharm. I W O . 61 (3),261-264.
(D155) Ganescu, I.; Preda. M.; Papa, I. Arch. Pharm. (Welnhelm, Ger.) 1991, 324 (5). 321-323. (D156) Zlvanovlc. L.; Vaslljevlc, M.; Radulovlc, D.; Agatonovic-KusMn, S. J. Warm. Ebtn~d.Anal. 1991,9(10-12), 1157-1160. (0157) Issopoulos, P. 0. fremlus’ J. Anal. Chem. 1990,338(2), 124-128. (D158) Zlvanovlc. L.; Vaslljevlc, M.; Agatonovlc. S.; Radulovlc, D. Boll. Chlm. farm. 1991. 130 (5). 162-165. (D159) Devanl, M. 6.; Pandya, S. S.; Shah, S. A. Indlan Drugs 1991,28(4).
197-196. (D160) Sastry. C. S. P.; Sallaja, A. ;Rao, T. T.; Suryanarayana. M. V. Mkmchem. J. 1991. 44 (3),268-271. (D161) ECSayed Mahrous, M. Anal. Lett. 1991, 24 (ll), 2017-2032. (0162)Reddy, M. N.; Sankar. D. G.; Sekhar, V. V.; Ravlndra, N.; Reo, G. D. Indlan Drugs 1991,28 (7),331-333. (D163) Sastry. C. S.P.; Krlshna, D. M.; Sallaja, A. IndlanDrugs 1992,29(6).
275-277. (D164) Rethore, Y. K. S.; Kumar, Y.; Mathur, S. C.; Murugesan, N.; Mohan, M. K.;Sethi, P. D. Indian Drugs 1992,29 (4),165-186. (D165) Dutt, K. R.; Prased, T. N. V.; Murthy. M. S. R.; Rao, E. V. IndlanDrugs 1992,29 (4),181-183. (D 166) ECKommos, M. E.; Mohamed, F. A.; Khedr, A. S. J.-Assoc. Off. Anal. Chem. 1990, 73 (4),516-520. (D167) Narayana Babu, M.; Sastry,B. S.; Sastry, C. S. P. IndlanorugJ 1990, 27(12), 617-619. (D168) Barary, M. H.; Wahbl. A. M. DmgDev. Ind. Pharm. 1991. 17(3).457461. (D169) Om, S.P.; Dave, M. P.; Vakil, H. N. IndlanDrugs 1991,28(4), 198200. (D170) Ersoy, L.; Kocaman, S. Arch. Pharm. (Welnhelm, Ger.) 1991,324 (4), 259-260. (D171) Sastry, C. S.P.; Reo, T. T.; Sallaja,A.; Suryanarayana, M. V. Anal. Lett. 1991,24 (6), 947-959. (D172) Sastry, C. S.P.; Rao, T. T.; Sallaja, A.; Rao, J. V. Talanta 1991,38 (IO), 1107-1109. (D173) Sanghavl, N. M.; Samarth, M. M.; Singh, R.; Matharu, P. S. IndlanDrugs 1990,27 (9),486-486. (0174) Hamled, Y. K.; Nayak, V. 0.;Dhumal, S. N.; Qaltonde, C. D.; Bhate, V. R. Indlan Drugs 1991,28 (IO), 487-486. (0175) Zarapkar, S. S.;Deshmukh,A. K. IndlanDrugs 1990,28(2),108-109. (D176) Banerjee, S.K.; Mashru, R. IndlanJ. Pharm. Sci. 1991,53(2),70-71. (D177) Sankar, D. G.;Sastry, C. S. P.; Reddy, M. N. Indian h u g s 1991,28 (6), 269-271. (D178) EMhateeb. S. 2. Anal. Lett. 1990,22 (IO), 2223-2232. Spedrorcopy (Fluorometric)
(0179) Frlcoteaux, R.; Aaron, J. J.; Quaglla, M. G. J. Pharm. 8 M . Anal. 198gs7 (12),1565-1590. (D160) Qlmenez-Izqulerdo, J.; Gulteras, J.; Izqulerdo,A.; Prat, M. D. fresenlup’ J. Anal. Chem. 1991, 341 (IO), 638-640. (D161) Baraw. M. H. J. Pharm. Eeh. 1991. 48(4).247-251. (Dl62) Munoide la Pena, A.; Salina;, F.; Duran, M.’S. Anal. Chlm. Acta 1991, 255 (2).317-323. (D163)kao. H. L.; A r m , A. R.; Reo, P. G. IndianDwgs 1991.28(4). 195-196. Swctrorcopy (UW
(D164) Sharma, S.C.; Sharma, S. C.; Saxena, R. C.; Talwar, S. K. Indian J. Pharm. Scl. 1990,52(2), 103-107. (D165) Yesllada, A.; Erdogan, H.; Ertan, M. Anal. Lett. 1991,24(1),129-138. (Dl66) Elsayed, M. A. H.; Korany, M. A.; Bedair, M. M.; Mahgoub, H.; Korany, E. A. Dev. I d . Pham. 1990, 16 (6),1011-1024. (D167) Klr, S.; Safak, C.; Turell, A.; Temlzer, A. fresenlus’ J. Anal. Chem. 1991,339 (4),264. (D168) Onur, F.; Acar, N. Analusls 1990, 18 (9),560-561. (D189) Deleted In proof. (D190) Mahalanobls. K. K.; Basu. D.; Roy. B. IndlanJ. Pharm. Scl. 1990,52 (2).96-99. (D191) ECAnwar, F. M.; El-Wallly, A. F. M.; Abbass, S. H. Aiexandnb,J. Pharm. SCl. 1991. 5 (I), 51-54. (Dl92) Korany, M. A.; Bedalr, M. M.; Effilndy, A. J. Pharm. Eelg. 1990,45(4), 252-258. (D193) Salem, H.; AbdelLatef, H. E.; Elsadek. M. A.; AbouCKhelr, A. Spectrmc. Lett. 1990,23 (8). 1065-1080. (D194) Shoukrallah, I.Anal. Lett. 1991,24 (ll),2043-2058. (D195)ECYazbl, F. A.; Korany. M. A.; AWlne, H. H.; Elsayed, M. A. Spectrosc. Lett. 1991. 24 (3),437-449. (D196) Baraj, M.‘H:i Elsayed, M. A.; Mohamed, S. M. Drug Dev. Ind, Pharm. 1990. 16 (9).1539-1554. (Dl97) Panzova, 6.; Illevska. M.; Trendovska, 0.;Bogdanov, B. Int. J. Pharm. 1991, 70 (1-2),187-190. (D198) Richter, P. Int. J. Pharm. 1991, 72 (3),207-210. (D199) Abounasslf, M. A. J. Pharm. Ee/g. 1989,44 (9,329-333. (D200) AWOS,J.; Garcla, 6.; Mungula, A.; Lopez Palaclos, J.; Kauffmann, J. M.; Partlarche, 0. J. Anal. Lett. 1991,24 (3),357-376. (D201) El Wallly, A. M.; Korany, M. A.; ECAnwar, F. M.; Zamel, S. M. Anal. Lett. 1992,25 (I), 81-98. (D202) El Wallly. A. F. M. Eull. f a c . Pharm. (CakoUnlv.) 1991.29(2). 13-17. (D203) Hackmann, E. R. M.; Benetton, S. A.; Santoro, M. I.R. M. J. Pharm. Phaf~MCol.1991, 43 (4),285-287. (D204) Mukherjl, G.;Aggerwal, N. Int. J. Pharm. 1991, 71 (3),167-191. (D205) Seth, R. K.; Sarln, J. P. S. IndlanJ. Pharm. Scl. lS89,51(6),244-247. ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
120R
PHARMACEUTICALS AND RELATED DRUGS (D206) Das, T. K.; Halder, D. Indian Drugs 1992,29 (4), 165-170 Spectroscopy (Other)
(D258) Sultan, S. M. Analyst (London) 1992, 7 17 (4), 773-776. (D259) Sultan, S.M. Anal. Len. 1991,24 (lo), 1785-1795. (D260) Carmona, M.; Silva, M.; Perez-Bendito, D. Analyst(London)1991, 116 (101. . -,, 1075-1079 . - . - .- . - . (0261) Martinezlozano, C.; Perez-Ruiz, T.; Tomas, V.; Val, 0. Analyst(London) 1991. 116 (81. 857-859. (D262) Owino,' E:; Clark, ~ BJ.; . Fell, A. F. J. Chromatogr. Sci. 1991,29 (lo), 450-456. (D263) Braun, V.; Woiimann, H. Pharmazie 1990, 45 (7). 502-506. (D264) Ganescu, I.; Preda, M.; Papa, I.Arch. Pharm. (Weinheim, Ger.) 1991, 324 (5),321-323. (D265) Geeta, N.; Baggi, T. R. Mikrochim. Acta 1990, 1 (1-2), 95-99. (D266) Nikolic, K.; Velasevlc, K. Mikrochim. Acta 1990, 1(1-2), 69-73. (D267) Zarapkar, S. S.; Athaiye, K. Indlan Drugs 1989. 27(3), 195-197 ~
(D207) Ei Kousy, N.; El Ries, M. A. J. Drug Res. 1990, 19 (1-2), 309-315. (D208) Marlet, F.; Brossier P.; Dicaire, F.; Ismail, A. A. J. Pharm. Biomed. Anal. 1990,8 (8-12), 979-982. (0209) Louden, J. D.; Rowe, R. C. Anal. Appi. Spectrosc.2, [Proc. Int. Conf. Spectfosc.spectrum],2nd, Hatfield, UK, July9-12, 1990; 1991; pp 72-78. (D210) Drennen, J. K.; Lodder, R. A. J. Pharm. Sci. 1990, 79(7), 622-627. (D211) Eiceman, G. A.; Blyth, D. A.; Shoff, D. 6.; Snyder, A. P. Anal. Chem. 1990,62 (14), 1374-1379. (D212) El Ragehy, N. A. Buii. Fac. Pharm. (Cairo Univ.) 1991,29 (3), 1-4. (D213) Hanna, G. M.; Lau-Cam, C. A. Analyst (London) 1990, 115(9), 1157-
. ._-.
1iAn
(D214) LaPianche, L. A.; Rothchild, R. Spectrosc. Lett. 1990,23(1), 45-64. (D215) Hanna, G. M.; Lau-Cam. C. A. Drug Dev. Ind. Pharm. 1991, 77(7), 975-984. (D216) Sadana, G. S.;Ghogare, A. B. J. Pharm. Sci. 1991,80(9), 895-898. (D217) Truong, T. T.; Sainz, C.; Guinchard,C.;Calatroni, J.;Tribillon, G. Analusis 1991, 19 (5),145-148. (D218) Suryanarayanan, R. Pharm. Res. 1989, 6 (12), 1017-1024. (D219) Suryanarayanan, R.; Herman, C. S.Pharm. Res. 1991,8(3), 393-399. (D220) Tanninen. V. P.; Yliruusi, J. Int. J. Pharm. 1992,87 (2-3, 169-177. (D221) Raggi, M. A.; Da Re, P.; Lucchinl, F.; Parlsi, F.; Salvi, A. J. Pharm. Biomed. Anal. 1990,8 (8-12). 975-978. Electrochemlcal Analyele (D222) Li, Q.; Ji, G. Talanta 1990, 37 (lo), 937-940. (D223) Lopez Ruiz, B.; Quarin, G.; Vlre. J. C.; Patriarche, G. J. Analusis 1990, 18 (7), 403-41 1. (D224) Belal, F. Microchem. J. 1991,43 (2), 149-154. (D225) Arenaza, M. J.; Gallo, 6.; Vicente, F.; Patriarche,G. J. Anal. Lett. 1990, 23 (7), 1303-1317. (D226) Arcos, J.; El Jammal, A,; Vire, J.-C.; Patriarche, G. J.; Christian, G.D. Necfroanalysis (N.Y.) 1990,2 (4), 279-287. (D227) Sankar, P. S.;Reddy, S. J. Contemp. Nectroanal. Chem., [Proc. HectroFinnAnalysis Int. Conf. Nectrmnal. Chem.], Turku, Finland, June 6-9, 1988; 1990; pp 339-345. (D228) Deleted In proof. (D229) Reddy, C. S.;Reddy, S.J. €lectroanalysis(N.Y.)1991,3(7), 699-706. (D230) Tuncel, M.; Yazan, Y.; Dogrukoi, D.; Atkosar, 2. Anal. Lett. 1991,24 (IO), 1837-1846. (D231) Squeila, J. A.; Sturm, J. C.; Lenac, R.; Nunez-Vergara, L. J. Anal. Lett. 1992,25 (2), 281-292. (D232) Squella, J. A.; Borges, Y.; Bobadllla, L.; Nunez-Vergara, L. J. Nectroanalysis (N. Y.) 1990,2 (4), 333-336. (D233) Gratteri, P.; Pinzauti, S.; La Porta, E.; Papeschl, G.; Cavrini, V.; Santoni, G. Analyst (London) 1991, 176 (7), 723-725. (D234) El Jammai, A.; Vire, J. C.; Patriarche, G. J.; Nieto Palmeiro, 0. Nectroanalysis (N.Y.) 1992,4 (l), 57-64. (D235) Kir, S.;Onar, A. N.; Temlzer, A. Anal. Chim. Acta 1990,229(1), 1451,-.. A7
(D236) Khodari, M.; Vire, J.-C.; Patriarche, G. J.; Ghandour, M. A. Anal. Lett. 1990,23 (lo), 1873-1885. (D237) Hagga, M. E. M.; Abounassif, M. A,; Dawoud, A. H. Pak. J. Pharm. Sci. 1881. 4 (11. 1-9. (D238) -Palma; R. J.; Terry, S.Anal. Chim. Acta 1990,241 (l), 115-117. (D239) Garcia, R. M.; Vazquez, M. D.; Tascon, M. L.; Sanchez Batanero, P. Quim. Anal. (Barcelona) 1990,9 (2), 189-195. (D240) Manzo, R. H.; Luna, E.; Allemandi, D. A. J. Pharm. Sci. 1991,80 ( l ) ,
an-aA -..--.
(D241) Bunaciu, A. A,; Ionescu, M. S.;Palivan, C.; Cosofret, V. V. Analyst (London) 1991, 176 (3), 239-243. (D242) Nle, L.; Llu, D.; Yao, S.J. Pharm. Biomed. Anal. 1990,8(4), 379-383. (D243) Aubeck. R.; Braeuchle, C.; Hampp, N. Ana/yst(London) 1991, 7 76(8), 81 1-814. (D244) Shoukry, A. F.; Issa. Y. M.; El-Shiekh, R.; Zareh, M. Anal. Lett. 1991, 24 (91. 1581-1590. (D245j Bouklouze, A. A.; EIJammal. A,; Patriarche, G. J.; Christian, G. D. J. Pharm. Biomed. Anal. 1991,9 (5),393-399. (D246) Martin, G. 6.; Rechnitz, G. A. Anal. Chim. Acta 1990,237(1), 91-98. (D247) Lima, J. L. F. C.; Montenegro, M. C. B. S.M.; Roque da Silva, A. M. J. Pharm. Biomed. Anal. 1990,8 (8-12). 701-704. Miscellaneous (D248) Valcarcel, M.; Gallego, M.; Montero, R. J. Pharm. Biomed. Anal. 1990, 8 (8-12). 655-661. (0249) Maknez Caiatayud. J.; Garcia Mateo, J. V. Analyst(London)1991, 7 76 (3), 327-329. (D250) Caiatayud, J. M.; Gomez Benito. C. Anal. Chim. Acta 1990,237 (2), 259-264. (D251) Alwehaii, A. A. M. Analyst (London) 1990, 775 (ll), 1419-1422. (D252) Lopez Fernandez,J. M.;Luquede Castro. M. D.; Valcarcel, M. J. Autom. Chem. 1990, 72 (6), 263-266. (D253) Martinez Calatayud, J.; Martinez Pastor, C. Anal. Left. 1990,23 (E), 1371-1383. (D254) Martinez Calatayud, J.; Sanchez Sampedro, A,; Navasquillo Sarrion, S . Analyst (London) 1990, 115 (6), 855-858. (D255) Utley, D. Analyst (London) 1990, 715 (9), 1239-1242. (D256) Lima, J. L. F. C.; Montenegro, M. C. B. M.; DaSilva, A. M. R. J. Now Injection Anal. 1990, 7 (l), 19-33. (D257) Halvax, J. J.; Wiese, G.; Arp, J. A.; Vermeer, J. M. P.; Van Bennekom, W . P.; Bun, A. J. Pharm. Biomed. Anal. 1990,B(3). 243-252.
130R
ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
STEROIDS Chromatography (El) Novakovid, J.; Tvrzicka, E.; Pisarikova,A. Anal. Lett. 1991,24(9), 15591569. (E2) Zakhari, N. A.; Walash, M. I.; Rizk, M. S.;Toubar, S. S.;Brooks, C. J. W.; Cole, W. J. J. Pharm. Biomed. Anal. 1991,9 (9), 705-709. (E3) Loran, J. S.; Cromie, K. D. J. Pharm. Biomed. Anal. 1990,8(7),607-61 1. (E4) Chen, S.H.; Wu, S.M.; Wu, H. L. J. Chromarogr. 1992,595(1-2), 203208. (E5) Ahmed, S.;Riaz, M. Chromatographia 1991, 37 (1-2), 67-70. (E6) Shalaby, A.; Shahjahan, M. J. Liq. Chromatogr. 1991, 74(7), 1267-1274. (E7) Scheybal, A.; Ganschow, S.; Heil, W. Adv. SteroidAnal. '90, Proc. Symp Anal. Steroids, 4fh,Pecs, Hungary, Apr 24-26, 1990; 1991; pp 143-148. (E8) Upadrashta, S. M.; Parlkh. B. V.; Nuessie, N. 0. Anal. Lett. 1992,25(3). 535-542. (E9) Wanwimolruk, S. Pharm. Res. 1991, 8 (4), 547-549. (E10) Jiang, L.; Wang, 2.; Matiin, S. A. J. Liq. Chromatogr. 1990, 73 (17), 3473-3479. (El 1) Math, S. A.; Jiang, L.; Roshdy, S.;Zhou. R. J. Liq. Chromatogr. 1990, 73 (17), 3455-3463. (E12) Pramar, Y.; Das Gupta. V.; Zerai, T. Drug. Dev. Ind. Pharm. 1991, 77 (5),747-761. (E13) Edwardson, P. A. D.; Gardner, R. S.J. Pharm. Biomed. Anal. 1990,8 (8-121. -,. 935-938. (E14) Windhorst, G.; Kelder, J.; De Kleijn, J. P. J. Planar Chromatogr,-Mod, 1990.3. 300-306. (E15) Sherma. J.; Whitcomb. B. P.; Brubaker, K. J. Plsnar Chromatogr.-Md. rLc 1990,3, 189-190. (E16) Novakovic.J.; Nemocova, I.; Vasatova, M. J. PlanarChromarogr-Mod. rLc 1990,3,407-409, (E17) Novakovic, J.; Kubes, J.; Nemec, I.J. Planar Chromatogr.-Mod. TLC 1990,3 (11-12), 521-526. (E18) Novakovic, J.; Agbaba, D.; Vladimirov, S.;Zivanov-Staklc, D. J. Pharm. Biomed. Anal. 1990,8 (3), 253-257. (E19) Agbaba. D.; Zivanov-Stakic. D.; Viadlmirov, S.;Zubac, K. Acta Pol. pharm. 1990,47 (1-2), 15-17. ~~~
~~~
rLc
Spectroscopy (E20) Novakovic, J.; Agbaba, D.; Zivanovstakic, D. J. Pharm. Biomed. Anal. 1989, 7(12), 1657-1662. (E21) Corti, P.; Dreassi, E.;Corbini, G.; Lonardi, S.;Gravina, S.Analusis 1990, 78(2), 112-116. (E22) Zivanov-Stakic,D.; Milosevic, L. J.; Agbaba, D. J. Pharm. Biomed. Anal. 1989, 7(12), 1893-1896. (E23) Russell, J. D., Jr.; Mumley, J.; Spring, M.;Kutz, A,; Johnson, R. N. J. Autom. Chem. 1991, 13 (3), 115-117. (E24) Novakovic, J.; Nemcova, I. Pharmazie 1990, 45 (6), 439-440. Miscellaneous (E25) Gorog, S., Ed. SteroaAnalysisinthe Phafmaceuficaihdusby. Hormonal SteroMs. Sterols, Vitamins 0,Cardiac Glycosides; Horwood: Chichester, U.K.. 1991. (E26) AI-Badr. A. A.; Mekkawi, A. G. Anal. Profiles Drug Subst. 1990, 79, 145-192. (E27) Sloedin, L.; Dahlen, H.; Erlandsson-Persson, K.; Henningsson, A. C.; Viitanen, E. J. Pharm. Biomed. Anal. 1990,8 (4), 337-343. (E28) Sanghavi, N. M.; Venkatesh, H.; Vishwanathan. L. Indian Drugs 1991, 28 (7), 334-336. (E29) Gaignage. P.; Lognay. G.; Marlier, M.; Severin, M.; Dreze. P. Chromatographia 1989,28 (11-12), 623-630. (E30) Hu, S.;He, Q.; Zhao, 2. Analyst (London) 1992, 717(2), 181-184. (E31) Gorog, S.;Balogh, G.; Gazdag, M. J. Pharm. Biomed. Anal. 1991, 9 (10-12), 829-833. (E32) Inczeffy, J.; Pap-Sziklay. 2. A&. Steroid Anal. '90, Proc. Symp. Anal. Steroids, 4th Pecs, Hungary, Apr 24-26, 1990; 1991; pp 479-484. (E33) Koukii. I.I.; Calokerinos,A. C. Analyst (London)1990, 115(12). 15531557. (E34) Syropoulos, A. B.; Sarantonis. E. G.; Calorkerinos. A. C. Anal. Chim. Acta 1990,239 (2), 195-202. SULFUR-CONTAINING COMPOUNDS Cardlovascular (Fl) Sastry, C. S. P.; Saiiaja. A.; Rao, T. T. Pharmazie 1991,46(6), 465. (F2) Ashour, F. M.; Salama, F. M.; Aziza, M. A. E. J. DrugRes. 1990, 79(1-2), 323-326.
PHARMACEUTICALS AND RELATED D R W (F3) Mahadlk, K. R.; Rudrawas, D. G.; More, H. N.; Kadam, S. S. IndlenDNgs 1991, 28 ( l l ) , 530-531. (F4) SOQarreGUerrao,R.; Sagrado Vlves, S.; MartinezCalatayud,J. Mkwchem. J. 1991, 49 (3), 178-180. (F5) Sanghavi, N. M.; Samarth, M. M.; Matharu, R. S. P. S. Ind&nGrugs 1991, 28 (4), 189-196. Sanghavl, N. M.; Samarth, M.; Warrler, J. I m n Grugs 1991, 28 (12), 567-568. (F6) Both, D. A.; Jemal, M. J. Chromatog. 1991, 558(1), 257-263. (F7) Jah, R.; Jah. C. L. Indian Grugs 1991, 28 (e), 380-382. (F8) Kamath, B. V.; Shivram, K. Indian LJrugs 1991, 29 (I), 50-52. (F9) Nishl, H.; Fukuyama, T.; Matsuo, M. lulcrocdumn Sep. 1989, 7 (9,234241. (FlO) Wenzel, B.; Blume, H. PZ W/ss. 1990, 3 (9,215-218. (F11) PerezRub,T.; Marthezlozano, C.; Toms, V.; Lambertos, G. Mk". J. 1991, 44 (l), 72-77. H2 Antagonbt8 (F12) Bedah, M. M.; Elsayed, M. A,; Korany, M. A.; Fahmy, 0. T. J. Phann. B b W . Anal., 1981. 9 (4), 291-296. (F13) Anowwood, S.; Hoyt, A. M., Jr. J. (%omatogf. 1991, 586(1), 177-180. (F14) Beeulleu, N.; Graham, S. J.; Sears, R. W.; Loverlng. E. G. J. "t. M. AMI., 1989, 7(12), 1705-1709. (F15) Sankar, P. S.;Reddy, S. J. Indian J. Pharm. Scl. 1989, 57(6). 283-264. (Fl6) Aftrla. K. D.; Rogan. M. M. J. Phann. Bknned. Anal. 1990, 8(8-12), 1005-1008. H y p o g l y c m h and Immundoglcalr (F17) El Kousy, N.; Ashoor, F. J. Bug, Res. 1990, 79 (1-2), 35-43. (F18) SrMevi, C.; Reddy, S. J. Bull. €/ectrochem. 1990, 6 (lo), 847-850. (FlW Carluccl, G.; Colanzi, A.; Mazzeo, P.; Quadla, M. G. Int. J. Phann. 1989, 53 (3). 257-259. (F20) ECMaall, N. A.; Vlre, J.C.; PaMarche, 0. J.; Ghandour, M. A.; Christian, 0. D. AMI. Scl. 1990, 6(2), 245-250. Phonothlazlnos (F21) Ishlkawa, Y.; Suzuki, 0.; Hattori, H. Forensic Scl. Int. 1900. 44 (2-3). 93-105. (F22) Dermls, S.; Blryoi, I . J. Pharm. Bknned. Anal. 1990. 8(8-12)999-1003. (F23) Emara, K. M. Anal. Lett. 1992, 25(1), 99-109. (F24) Martlnez Calatayud, J.; Gomez Benlto, C. Anal. Chlm. Acta 1992. 256 (l), 105-111. (F25) Zhou, J.; Wang, E. Anal. Chlm. Acta 1991, 249 (2), 489-494. (F28) Chen, D.; Rlos, A.; Luque de Castro, M. D.; Valcarcel, M. Talenta WSl, 38(11), 1227-1233. (F27) MartInez Calatayud, J.; Navasqullb Sarrion, S.; Sanchez Sampedro, A.; Gomez Benlto. C. Mlwochem. J. 1992, 45 (2), 129-136. (F28) Subtan, S. M. Ana@~t(London) 1991, 776. (2), 177-181. (F29) Abbasl, U. M.; Slddlqul. M.; Bhangar. M. I. J. Chem. Soc. Pak. 1891, 73 (4). 242-244. (F30) Chen, D.; Rlos, A.; Luquede Castro, M. D.; Valcarcel, M. Ana/yst(London) 1991, 776(2), 171-178. (F31) Sastry, C. S. P.; Tlplrneni, A. S. R. P.; Swyanarayana, M. V.; Rao, T. T.; Satyanarayana, T. Indian J. Pharm. Scl. 1990, 52 (2), 115-117. (F32) Sastry, C. S. P.; Tlpirnenl, A. S. R. P.; Suryanarayana, M. V. J. Pharm. Bbmed. Anal. 1990, 8 (3), 287-292. Mi8collam8 (F33) Haribhaktl, R. P.; Alexander, K. S.; Parker, 0. A. Drug Dev. Ind. h r m . 1991. 77 (e), 805-815. (F34) Rosler, K.4. A.; Wrlght, J.; Fox, K. M.; Waters, R. M.; Callery, P. S. Phann. Res. 1989, 6 (e), 706-708. (F35) Rosler, K.-H. A,; Wrlght, J.; Fox, K. M.; Waters, R. M.; Cailery, P. S. Phann. Res. 1989, 8 (8). 706-708. (F36) LeJeune. R. Anal. Chlm. Acta 1982, 258 (I), 59-63. (F37) Higelmo, F.; Alonso, R. M.; Jlmener, R. M. Ektroanalyss (N.Y.)1991, 3 (l), 63-69. (F38) Perez-Ruiz, T.; MartInez-Lozano, C.; Tomas, V.; Lambertos, G. Talenta 1991, 38(11), 1235-1239. (F39) Salamoun, J.; Slals, K. J. C h m t o g r . lS9l. 537 (1-2), 249-257. (F40) Rau, H. L.; Udupa, N.; A r m . A. R. Indlen Drugs 1991, 2 9 (1). 46-48. (F41) Sane, R. T.; Vaidya, A. J.; Ghadge,J. K.; Janl. A. B.; Kotwal, S. K. Indian Drugs 1992, 2 9 (9,244-245. (F42) Agatonovlc-Kustrh, S.;Zlvanovic, L.; Radulovk, D.; Pecanac, D. J. Pharm. B M . Anal. 1990, 8 (8-12). 983-986. (F43) Zlvanovlc, L.; Agatonovic-Kustrln, S.; Radulovlc, D. Phamzk 1890,45 (12). 935. (F44) Zlvanovlc, L.; Agatonovlc, S.; Radulovlc, D. Mkfochlm. Acta 19S0, 7 (1-2), 49-54. (F45) ArvMsson, T.; Collljn, E.; Tlvert, A. M.; Rosen, L. J. Chfomatogv. 1991, 586 (2). 271-276. (F46) Hassen, S. M.; ECAshry, S.M.; ECKerdewy, M. M. Spectrosc.Lett. 1990, 23 (10). 1273-1284. (F47) Askel. H. F.; Saleh. 0. A. J. Phann. Bbmed. Anal. 1991, 9(4), 297-301. (F48) Belel, F.; Ibrahim, F.; Hassan. S. M.; Aly, F. A. Anal. Chlm. Acta 1991, 255(1), 103-106. VITAMINS Water Soluble (01) Farooqui, M. I.; Anwer, J.; Khan, A.; All, R. M.; Mahmood, R. J. Che" Soc. Pak. 1890, 72 (4), 333-336.
(G2) Tutem, E.; Ukuseven, 8.; Apak, R. Anal. Lett. 1992, 25 (3), 471-483. (03) ACAshmawl, M. I.; Metwaily, M. F.; Saleh, H. M.; Mansour, 0. Anal. Lett. 1992, 25 (e), 1065-1071. (64)Qweshl, S. 2.; Sased, A.; Heque, S.; Rahman, N. Anal. Lett. 1890, 23 (6), 995-1003. (G5) Backheet, E. Y.; Emara, K. M.; Aekal, H. F.; Saleh, G. A. A n a l y s t ( L m ) 1991, 776 (e), 861-865. (a) V m , K. K.; Jain, A.; Verman, A.; Chaurasle, A. Analyst(London)1991, 7 76 (6), 641-645. (G7) Al-Rkabl, A. M. K.; Ahlabrl, F. M.; ACMothefer, T. M. Anal. Lett. 1990, 23 (2), 273-280. (a) Han, S.; Yuan, 2. Chh. chem. Lett. 1991, 2(2), 185-188. (a) Wring, S. A.; Hert, J. P. Anal. chkn.Acta 1990, 229 (I), 63-70. (G10) Sultan, S. M.; Bishop, E. J. Phann. B M . Anal. 1990, 8(4), 345-351. (G11) Kumar, K. G.; Indrasenan, P. Talenta 1890, 3 7 (2), 269-271. ((312) Undner, W.; Way, 0. Chromamphia 1991, 32(5-6), 287-289. (G13) Gennaro, M. C.; Abrigo, C.; Marengo, E. chrometogrephle 1990, 30 (5-6). 311-317. (G14) Hou, W.; Wang, E. Talenta 1990, 3 7 (e), 841-844. (G15) Jansen, C. C.; De Kleljn, J. P. J. Chfomatogr. Scl. 1990, 28(1), 42-45. (G16) Marquez, M.; Sllva, M.; Perez-Bendko,D. J. Phann. B b m d . Anal. 1990, 8 (7), 563-567. (G17) ACShammary. F. J.; ACRashood, K. A.; Mlan, N. A. A.; Mlan, M. S. Anal. Proffles hg Subst. 1990, 79, 221-259. (G18) Abdel Moety, E. M.; Tarlq, M.; ACBadr. A. A. Anal. P r o m hg Subst. 1991, 20, 475-555. (Gl9) Gupta, M. K.; Jaln, C. L. Indian 1991, 28 (e), 275-277. (620) Raragul, I . 8.; Barfow, P. J. J. Micron&. Anal. 1989, 6(2), 119-126. (G21) Chen, D.; Luque de Castro, M. D.; Valcarcel, M. Mcrod". J. 1991, 44 (2), 215-221. (622) Lima, J. L. F. C.; Montenegro, M.; Conceicao, 8. S. M.; Silva, A. M. R. J. B b m d . Anal. 1991. 9 (10-12), 1041-1048. (023) MartInez Calatayud, J.; Gomez Benlto, C.; Qaspar Olmenez, D. J. h n n . Bbmed. Anal. 1990, 8 (8-12). 667-670. (G24) Grekas, N.; Caldterlnos, A. C. Talenta 1990, 3 7 (1 I), 1043-1048. (G25) Funk, W.;Den,P.J.plenarChromatog.--Mod. TLCl990, 3,149-152. (028) Kozik, A.; Wrobei, R.; Turyna, I . J. Phann. Phafmacd. 1991, 49 (5), 303-306. (G27) Ahmad, I.; DavM, H.; Rapson, C. J. Pharm. B b W . Anal. 1990, 8(3), 217-223. Fat Soluble (G28) Shlmada, K.; Kobayashi, N. TrAC, Trends Anal. Chem. (Pers. Ed.) 1991, 70 (3). 103-105. (G29) Reddy, M. N.; Sankar, D. 0.;Reo. G. D.; Jagannath, G. East. Phann. 1991. 34 (403), 125-128. (030) Reddy, M. N.; Sankar, D. 0.; Jagannath, 0.;Rao, 0. D.; Ravindra, N. Indlen J. Phann. Scl. lS91, 53 (9,219-221. (G31) Fun, H. C.; Zeng, S.; Clifford, A. J.; Olson, J. A. J. Chromatog,, Bknned. APPl. 1990, 527 (2), 406-413. (632) Bonhomme, L.; Duleba, B.; Beugre. T.; Fredj, G. Int. J. Phann. 1990, 65 (3). RO-RlO. (033) Reo Gadde. R.; Burton, F. W. J. Chfomtogr. Scl. 1990, 28 (10). 543546. (G34) Doble. A. K.; Yang, K. Y.; De, N. C. J. Llq. Chromatop. 1991, 74(6), 12 19- 1226. (035) Krll, M. 8.; Burke. K. A.; DINunzlo. J. E.; Gadde. R. R. J. Chromtwr. 1990, 522, 227-234. (036) Ibrahlm, F. A.; Hassen, S. M.; Hefnawy, M. M. Mr&m. Acta 1991,
-
-,.
113-4). --209-215 \-
( w 7 ) Barary, M. H. Anal. Lett. 1891, 24 (Q), 1657-1874. (038) Khallfa, F. A.; Turk, 2. M. Arch. PhafmacalRes. 1990, 73(4), 387-370. (G39)El Wailly, A. F.; El Anwar. F.; Zamel, S. Anal. Chlm. Acta 1991,248(2), 583-587. (040) Khallfa, F. A,; Attaby, F. A.; Turk, 2. M. phemzk 1992, 47(2), 110111. (041) Vlllabbos, M. C.; Gregory, N. R.; Bueno, M. P. J. Mlcronutr. Anal. 1990, 8 (2), 79-89. (642) Baker, J. K.; Myers, C. W. Pharm. Res. 1991, 8 ( 6 ) , 783-770. (W) SchmM, R.; Antoulas, S.; Ruettlmann, A.; Schmid, M.; Vecchi, M.; W e b , H. Helv. Chlm. Acta 1990. 73 (5), 1278-1299. (644) Vecchl. M.; Watther, W.; Ollnz, E.; Netscher, T.; SchmM, R.; Lalonde, M.; Vetter, W. Hdv. Chlm. Acta 1990, 73 (4), 782-789. (645) Hachula,U.;Buhi,F.J.plenafChromatop.--Mw. nCl891,4(5),416. (646)Lascombe, D. L.; Bond, A. M. Talent0 1991, 38(1), 85-72. MUltlVnMl(nr
(047) Dalbacke, J.; Dahlquist, I . J. Chromato@ 1991, 547 (1-2), 383-392. (048) EKilzawy, S. M.; Ahmed, A. N.; El-Rabbat, N. A. Anal. Lett. 1991, 24 (7), 1173-1181. (G44) Postalre, E.; Clsse, M.; Le Hoang, M. D.; Pradeau, D. J. Phann. Scl. 1991, 80 (4). 368-370. (G50) Gennaro, M. C. J. Chromatog. Scl. 1991, 29 (9). 410-415. (G51) Ylr, Y. F.; Lee, H. K.; Ll. S. F. Y.; Khoo, S. B. J. Chromatop. 1991, 585 (l), 139-144. TECHNIQUES (Hl) Fiorey, K., Ed. Analybrcel ProHleS of Bug Substances; Academlc Press: San Dlecro. CA. 1091: Vd. 20. (H2) Rand& C. S.; Makfyt, T. R.; Sternson, L. A. A&. Parenter. Scl. 1990. 4, 203-246. (H3) Adamovlcs. J. A., Ed. Chromatographic Analysis of Phafmacoutka& Dekker: New York, 19gO. ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1903
1BlR
PHARMACEUTICALS AND RELATED DRUGS (H4) Macek, K.; Macek, J. J. Chromafogr. Libr. 1992,576, 8393-8445, (H5) Fong, G. W., Ed. Drugsandthe PharmaceuficalSciences. Vol. 47: HPLC in fhe Pharmaceutical 1ndusfr)s Dekker: New York, 1991. (H6) Raglione, T. V.; Hartwick, R. A. Drugs Pharm. Sci. 1991,47, 25-40. (H7) Giron, D. J. Therm. Anal. 1989, 35(6), 1801-1814. (HE) Berrklge, J. C. J. Pharm. Blomed. Anal. 1989, 7(12), 1313-1321. (H9) Dell, D. Methodol. SUN. Biochem. Anal. 1990,20, 9-22. (HlO) Cardone, M. J.; Wiilavize, S. A.; Lacy, M. E. Pharm. Res. 1990, 7(2), 154-160. (H11) Lang, J. R.; Bolton, S. J. Pharm. Blomed. Anal. 1991,9 (5),357-361. (H12) Wolters. R.;Van den Broek, A. C. M.;Kateman, G. Chemom. Infell.Lab. S p f . 1990,9 (2), 143-175. (H13) Berridge, J. C.; Jones, P.; Roberts-McIntosh, A. S . J. Pharm. Blomed. Anal. 199?, 9 (E), 597-604. (H14) Griepink, B. Fesenius' J. Anal. Chem. 1990,338 (4), 360-362. (H15) Marffy, F. Gov. Rep. Announce. Index(U.S.)1991,97 ( l l ) , Abstr. No. 129.019. (HlG Feii, A. F.; Ley, G. W. Biochem. SOC. Trans. 1991, 79 (2), 454-456. (H17) Doyle, T. D. ACS Symp. Ser. 1991,No. 477, 27-42. (H18) Ahuja, S.ACS Symp. Ser. 1991,No. 477, 1-26. (H19) Gaskeli, R. M.; Crooks, B. J. Chromatogr. 1991,553 (1-2), 357-363. (H20) Vaiko, K.; Slegel, P. J. Llq. Chromafogr. 1991, 74(16-17), 3167-3179. (H21) Erni, F. J. Chromafogr. 1990, 507, 141-149. (H22) Huber. L.; Fledler, H. P. Drugs Pharm. Sci. 1991,47, 123-146. (H23) Anderson, N. H.; Gray, M. R.; Hinds. C. J. J. Pharm. Biomed. Anal. 1990, 8 (8-12), 653-857. (H24) Szepesi, G.; Valko, K. J. Chromafogr. 1991,550 (1-2), 87-100. (H25) Fasanmade, A. A.; Feii, A. F. Anal. Len. 1992,25 (2), 363-378. (H26) Chryst, D. 0.; Hong, W. H.; Daiy, R. E. A&. Lab. Aufom. Rob. 1989.5, 397-412. (H27) Piva, F.; Huvenne, J.-P.; Traisnel, M. Ann. Pharm. Fr. 1990,48 (2), 94102. (H28) Davies, M. C.; Binns, J. S.; Melia, C. D.; Bourgeois, D. Specfrochim. Acta, Part A 1990,46A (2), 277-283. (H29) Markovich, R. J.; Pldgeon, C. Pharm. Res. 1991,8 (6), 663-675. (H30) Tudor, A. M.; Melia, C. D.; Blnns, J. S.; Hendra, P. J.; Church, S.;Davies, M. C. J. Pharm. Biomed. Anal. 1990,8(8-12), 717-720.
132R
ANALYTICAL CHEMISTRY, VOL. 65, NO. 12, JUNE 15, 1993
(H31) AbouCEnein, H. Y. Spectroscopy (Eugene, oreg.)1990,5 (3), 32-33, 36-40. (H32) Jansson, S.0.; Vessman, J. Mikrochim. Acta 1991,2(1-6), 103-112. (H33) Monegier, B.; Clerc. F. F.; Van Dorsselaer, A,; Vuilhorgne, M.; Green, B.; Cartwright, T. BloPharm 1990,3 (IO), 26-28, 30-32, 34-35. (H34) Dymott, T. Lab. Pracf. 1991, 40 (6), 79, 82. (H35) Brossard, D. S.T.P. Pharma 1990, 6 (9), 663-666. (H36) Dressei, H. Pharmazie 1991,46 (E),582-586. (H37) Luque de Castro. M. D.; Valcarcel, M. J. Pharm. Biomed. Anal. 1990, 8 (4), 329-336. (H38) Bottiinger, M.; Umhauer, H. Part. Part. Sysf. Charact. 1989,6(3),100109. (H39) Pohi, M. Powder Bulk Eng. 1990, 4 (2), 26-29. (H40) Wank, M. Sci. Compuf. Aufom. 1990, 6 (6), 59-60, 62-64. (H41) ACChaiabi, S.A. M.; Jones, A. R.; Savaloni, H.; Wood, R . Mess. Sci. Techno/. 1990,7 (I), 29-35. (H42) Brown, R. G. W.; Burnett, J. G.; Mansbridge, J.; Moir, C. I.Appl. Opt. 1990,29 (28). 4159-4169. (H43) Mattusch, J.: Mueller, H.; Werner, G. Pharmazle 1991,46(3), 171-179. (H44) Patriarche,G. J.; Zhang, H. E/echaana/ysls(N.V.) 1990,2(8), 573-579. (H45) Cosofret, V. V. Trends Anal. Chem. 1991, 70 (9), 296-301. (H46) Cosofret, V. V. Trends Anal. Chem. 1991, 70 (E),261-265. (H47) Piuym, A,; Van Aei, W.; De Smet. M. Trends Anal. Chem. 1992, 7 7 (1). 27-32. (H48) Tanaka, M.; Asano, S.; Yoshinago, M.; Kawaguchi, Y.; Tetsumi,T.; Shono, T. Fresenlus' J. Anal. Chem. 1991,339 (l), 63-64. (H49) Hurni, W. M.; Miller, W. J. J. Chromafogr. 1991,559 (1-2), 337-343. MISCELLANEOUS
(11) Di Pietra, A. M.; Cavrini, V.; Bonazzi, D.; Benfenati, L. Chromafographie 1990,30 (3-4), 215-219. (12) Dwivedi, S.K.; Mitchell, A. G. J. Pharm. Scl. 1989, 78(12), 1055-1056. (13) Briggs, J.; Panfili, P. R. Anal. Chem. 1991, 63 (9), 850-859. (14) Kamat, M. S . ; Lodder, R. A.; DeLuca, P. P. Pharm. Res. 1989, 6(11), 961-965.