3
Phase Behavior of a P u r e
Alkyl
Aryl
Sulfonate Surfactant
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
Ε. I. FRANSES, H. T. DAVIS, W. G. MILLER, and L. E. SCRIVEN Departments of Chemical Engineering & Materials Science, and of Chemistry, University of Minnesota, Minneapolis, MN 55455
The phase behavior of surfactants in water and hydrocarbon is the key to understanding the water- and oil-dissolving power of certain surfactant systems and the interfacial tension between the phases that form in these systems (1,2). Ultralow tensions less than ΙΟμΝ/m (0.01 dyn/cm) are required by one of the important mechanisms in various processes for enhancement of petroleum recovery. Much information is now in the literature (3,4,5,6), but most of the data are for commercial surfactants which are complex mixtures of surface-inactive as well as surface -active components (7). Recently a University of Texas group synthesized a number of isomerically pure alkyl aryl sulfonate surfactants (8) which are structurally similar to components of practically important petroleum sulfonate surfactant products (8,9). The Texas group established (9) and we confirmed (10) that ultralow tensions can be achieved with certain of these pure surfactants, provided the right combination of surfactant concentration, sodium chloride concentration, hydrocarbon, temperature and experimental pro cedure is employed. Few studies of pure alkyl aryl sulfonate surfactants have appeared (8,11c,12). The interpretation of phase behavior and interfacial tension data for pure, single surfactants and well -defined surfactant mixtures is expected to be easier than for complex and poorly-defined mixtures. Fundamental studies on pure surfactants will shed light on the behavior of practically important surfactant systems which are impure. Using one of the pure alkyl aryl sulfonates with water, sodium chloride and decane, we are investigating simultaneously the phase behavior, the structure of the phases, and the inter facial tensions between them. Ultralow tensions are observed in this system (10), and i t is important to know why they occur, when they do (13). Our first aim is to establish the equilibrium phase diagram of surfactant-water-decane as a function of 0-8412-0477-2/79/47-091-035$10.00/0 © 1978 American Chemical Society In Chemistry of Oil Recovery; Johansen, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY
36
temperature
and sodium c h l o r i d e c o n c e n t r a t i o n .
O F OIL RECOVERY
In t h i s paper
we
r e p o r t t h e m a i n methods we a r e a p p l y i n g t o p h a s e b e h a v i o r , some o f w h i c h p e r t a i n t o s t r u c t u r e a s w e l l , and o u r r e s u l t s t o d a t e . Interfacial
tension
measurements w i l l
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
The methods a r e t h e f o l l o w i n g 14):
be r e p o r t e d
Spectroturbidimetry i s simply measuring o f a l i g h t beam b y a b s o r p t i o n a n d s c a t t e r i n g a sample. I n terms o f t r a n s m i t t a n c e T, t h e t o i n c i d e n t i n t e n s i t y , and t o t a l a b s o r b a n c e
A , abs
_A le
~
Zc
+
elsewhere (10).
( f o r a d d i t i o n a l d e t a i l s see Ref. the l o s s o f i n t e n s i t y as i t p a s s e s t h r o u g h r a t i o of transmitted Α Ξ -log-j^T,
A scat le
where i s a b s o r b a n c e due t o a b s o r p t i o n , A g i s t h a t due to s c a t t e r i n g (also c a l l e d t u r b i d i t y ) , £ i s t h e p a t h l e n g t h (cm) and c i s the concentration (g/cm^). Since s p e c i f i c absorption, abs/^ ' l i k e the scattering contribution scat/^ ' ^ l 9 ly i n d e p e n d e n t o f t h e s i z e s and c o n c e n t r a t i o n s o f p a r t i c l e s a n d aggregates p r e s e n t ( i n o r d i n a r y s o l u t i o n s i t f o l l o w s Beer's law and i s c o n s t a n t ) , v a r i a t i o n s o f A / £ c w i t h r e s p e c t t o c o n c e n t r a t i o n , t e m p e r a t u r e o r h i s t o r y r e f l e c t changes i n s i z e s and amount o f d i s p e r s e d m a t e r i a l ( 1 5 ) . T h u s t h e method c a n g i v e a 'fingerprint' of a dispersion. I t i s n o t s e n s i t i v e enough, however, t o d e t e c t s m a l l t u r b i d i t i e s a r i s i n g from o r d i n a r y m i c e l l e s o r comparable m o l e c u l a r aggregates, f o r which a l i g h t s c a t t e r i n g method i s r e q u i r e d ( 1 6 J . B u t f o r t h i s r e a s o n spectroturbidimetry can e a s i l y d i s c r i m i n a t e a f i n e , n o n - s e t t l i n g d i s p e r s i o n from an e q u i l i b r i u m m i c e l l a r s o l u t i o n . c a t
A
c
u
n
A
c
s
a
r
e
P o l a r i z i n g microscopy i d e n t i f i e s biréfringent phases, f o r example l i q u i d c r y s t a l l i n e p h a s e s (17,18), and r e v e a l s d i s p e r s e d p a r t i c l e s , p r o v i d e d they a r e l a r g e r than about l y ( u l t i m a t e s e n s i t i v i t y i s about 0.3μ). Vapor s o r p t i o n measurements y i e l d e q u i l i b r i u m c o m p o s i t i o n and f u g a c i t y o r c h e m i c a l p o t e n t i a l ; t h e i s o p i e s t i c v e r s i o n (19) i s used t o determine t h e uptake o f a pure vapor by a n o n v o l a t i l e material. This technique determines e q u i l i b r i u m composition o f a p h a s e w h i c h c a n n o t be s e p a r a t e d q u a n t i t a t i v e l y f r o m t h e l i q u i d phase i n e q u i l i b r i u m w i t h i t . I n o u r a p p l i c a t i o n , a n o n v o l a t i l e c r y s t a l l i n e s u r f a c t a n t specimen S i s e q u i l i b r a t e d with vapor of V, w h i c h i s , i n t u r n , a t e q u i l i b r i u m w i t h a s y s t e m o f S a n d V c o n s i s t i n g o f two p h a s e s , o n e r i c h i n S, a n d o n e r i c h i n V. A t e q u i l i b r i u m , t h e Gibbs-Duhem r e l a t i o n g u a r a n t e e s .that t h e i n i t i a l specimen o f S t a k e s up enough V from t h e vapor phase t h a t t h e c h e m i c a l p o t e n t i a l o f S, a s w e l l a s o f V, i s t h e same as i n t h e b i p h a s i c system, and so t h e c o m p o s i t i o n o f t h e phase f o r m e d b y v a p o r s o r p t i o n i s t h e same a s t h a t o f t h e S - r i c h p h a s e . T h i s c o m p o s i t i o n i s e a s i l y d e t e r m i n e d by w e i g h t measurement. I f t h e t e m p e r a t u r e were a t r i p l e p o i n t , i . e . t h r e e p h a s e s a t
In Chemistry of Oil Recovery; Johansen, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
3.
FRANSES E T A L .
Alkyl
equilibrium,
a
Si
with
and
solid
saturated
surfactant
the
l e
Thus i t h a s
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
s o r p t i o n i s the
Sulfonate
37
Surfactant
s o l u t i o n and
two
s u r f a c t a n t - r i c h phases,
same c h e m i c a l p o t e n t i a l o f
would
r e a c h e d , whereas the S
Aryl
absorb
V
until
d i s p e r s i o n would
t o be same as
verified that
that
i n the
V,
composition
then S2
c o n s i s t o f phases the
V
p h a s e p r o d u c e d by
biphasic
the
is and vapor
dispersion.
C a r b o n - 1 3 N u c l e a r M a g n e t i c R e s o n a n c e S p e c t r o s c o p y (20) gives i n f o r m a t i o n about motion — whether f a s t o r slow, i s o t r o p i c o r anisotropic — o f s p e c i f i c carbons i n the m o l e c u l a r s p e c i e s t h a t make up a s a m p l e . P r o v i d e d a phase has a d i s t i n g u i s h i n g spectrum, i t s p r e s e n c e (above a l i m i t i n g mass f r a c t i o n ) c a n be e s t a b l i s h e d , whether or not i t i s f i n e l y d i s p e r s e d i n a second phase. Thus t h i s i s a p o w e r f u l t o o l f o r l o c a t i n g p h a s e t r a n s i t i o n s and p r o b i n g the phase diagram. I t c a n a l s o be u s e d t o h e l p e l u c i d a t e t h e m i c r o s t r u c t u r e o f l i q u i d c r y s t a l l i n e p h a s e s and m i c e l l a r aggregates (21). Conductimetry of s u r f a c t a n t s which are
a q u e o u s s o l u t i o n s and d i s p e r s i o n s o f i o n i c s t r o n g e l e c t r o l y t e s i n monomer f o r m i s a
s e n s i t i v e i n d i c a t o r o f t h e i r s t a t e o f a g g r e g a t i o n , because the e q u i v a l e n t c o n d u c t i v i t y o f e v e n an e x t r e m e l y f i n e d i s p e r s i o n i s much s m a l l e r t h a n t h a t o f e q u i l i b r i u m m i c e l l e s w h i c h , i n t u r n , i s smaller than that of m o l e c u l a r l y d i s p e r s e d ions i n water ( l i b ) . The c o n d u c t i v i t y o f a m i c e l l a r s o l u t i o n i s due p a r t l y t o t h e s u b s t a n t i a l p e r c e n t a g e o f the g e g e n i o n s w h i c h a r e n o t bound t o the m i c e l l e s , w h e r e a s a d i s p e r s e d p h a s e must r e t a i n so much l a r g e r a p e r c e n t a g e as t o l e a v e f a r f e w e r g e g e n i o n s . The p e r c e n t a g e o f f r e e g e g e n i o n s i n m i c e l l a r s o l u t i o n s d e p e n d s on t h e s u r f a c t a n t head group, m i c e l l e s i z e , and c o n c e n t r a t i o n . T y p i c a l values are 10 t o 40% (lib,22). Furthermore, m i c e l l e s contribute signific a n t l y to the c o n d u c t i v i t y (23), whereas the l a r g e p a r t i c l e s o f d i s p e r s e d p h a s e do n o t . Ultracentrifugation
and
ultrafiltration
are
means
a
of
s e p a r a t i n g d i s p e r s e d p a r t i c l e s o f one p h a s e f r o m a n o t h e r and estimating p a r t i c l e size. O r d i n a r y s m a l l m i c e l l e s do n o t sediment q u i c k l y ; moreover they r e - e q u i l i b r a t e c o m p a r a t i v e l y r a p i d l y a f t e r u l t r a c e n t r i f u g a t i o n . The n a t u r e o f u l t r a f i l t r a t i o n membranes u s e d i n o u r a p p l i c a t i o n i s d e s c r i b e d i n R e f . 24. APPARATUS AND
used.
PROCEDURES
A C a r y 15 U V - V i s i b l e (200 t o 800 nm) The c e l l h o l d e r was t h e r m o s t a t t e d
S p e c t r o p h o t o m e t e r was (±0.2°C). Temperatures
up t o 60°C w e r e m e a s u r e d w i t h a B a i l e y s u r f a c e m i c r o p r o b e ( ± 1 ° C ) ; t h o s e b e t w e e n 6 0 ° C and 9 0 ° C were e s t i m a t e d (±2°C) f r o m t h e thermostat temperature. C e l l t e m p e r a t u r e was homogeneous w i t h i n these l i m i t s . T o t a l a b s o r b a n c e s were m e a s u r e d w i t h a n a c c u r a c y o f 0.003 and a s e n s i t i v i t y o f 0.002. They were u s u a l l y t a k e n a t w a v e l e n g t h s b e t w e e n 750 and 350 nm, where s c a t t e r i n g i s d o m i n a n t . However, t o h a v e s e n s i t i v i t y i t was s o m e t i m e s n e c e s s a r y t o work b e t w e e n 350 and 240 nm, where a b s o r p t i o n b y t h e s u r f a c t a n t
In Chemistry of Oil Recovery; Johansen, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY O F OIL RECOVERY
38
becomes s i g n i f i c a n t . T h e l a t t e r was e v a l u a t e d a t c o n c e n t r a t i o n s s o l o w t h a t s c a t t e r i n g was n e g l i g i b l e . A b s o r b a n c e s a t t h e UV a b s o r p t i o n maxima
(271.5,
267, 261, 255 a n d 223 nm) w e r e
also
measured and used f o r a n a l y t i c a l p u r p o s e s a f t e r b e i n g c o r r e c t e d f o r s c a t t e r i n g , as d e t e r m i n e d b y e x t r a p o l a t i o n from t h e nonabsorbing r e g i o n o f t h e spectrum. C o n c e n t r a t i o n s found s h o u l d n e v e r b e more t h a n 1 0 % a b o v e t h e t r u e v a l u e .
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
M e a s u r e m e n t s were r e c o r d e d o n l y a f t e r
total
t h i s way
absorbance
v a l u e s a t s e v e r a l w a v e l e n g t h s w e r e c o n s t a n t f o r a t l e a s t two hours. F o r b i p h a s i c d i s p e r s i o n s t h i s was done a t s e v e r a l temp e r a t u r e s a n d a s o l u b i l i t y p h a s e b o u n d a r y was t a k e n t o b e t h e t e m p e r a t u r e a t w h i c h t h e a b s o r b a n c e due t o s c a t t e r i n g f a l l s s h a r p l y t o 0.02 o r l e s s . This i s the 'synthetic method f o r 1
determining s o l u b i l i t i e s
(_25) .
M i l l i p o r e (M) a n d N u c l e p o r e (N) u l t r a f i l t r a t i o n membranes w i t h p o r e s i z e s 0.05 t o 0.22y w e r e u s e d t o s e p a r a t e d i s p e r s e d particles. A l t e r n a t i v e l y o r i n a l t e r n a t i o n a Beckman L3-50 p r e p a r a t i v e u l t r a c e n t r i f u g e w i t h a n SW-1 s w i n g i n g b u c k e t r o t o r was u s e d . I n i t i a l s o l u t i o n s a n d d i s p e r s i o n s w e r e s t i r r e d magn e t i c a l l y f o r a t l e a s t 12 h o u r s . A L e i t z p o l a r i z i n g microscope equipped with a Nikon photom i c r o g r a p h i c a t t a c h m e n t was e m p l o y e d w i t h e i t h e r a s l i d e c o v e r s l i p arrangement o r a square c a p i l l a r y specimen c o n t a i n e r . Some s p e c i m e n s were t a k e n f r o m e q u i l i b r a t e d b i p h a s i c s y s t e m s a n d some w e r e p r o d u c e d b y v a p o r s o r p t i o n o f w a t e r o r d e c a n e b y p u r e surfactant. F o r v a p o r s o r p t i o n measurements a t h e r m o s t a t t e d v a p o r s o r p t i o n a p p a r a t u s (Worden Q u a r t z P r o d u c t s , I n c . ) was u s e d ( 2 6 ) . A s m a l l p a n c o n t a i n i n g a b o u t 100 mg o f s u r f a c t a n t was s u s p e n d e d b y a q u a r t z s p r i n g , t h e e x t e n s i o n o f w h i c h was f o l l o w e d b y means of a t r a v e l i n g microscope. The s p r i n g was c a l i b r a t e d u n d e r vacuum. P u r e s o l v e n t s (water o r decane) were u s e d i n s t e a d o f s a t u r a t e d s o l u t i o n s i n the vapor s o r p t i o n experiment, because v a p o r p r e s s u r e l o w e r i n g d u e t o d i s s o l u t i o n o f s u r f a c t a n t was e s t i m a t e d t o b e l e s s t h a n 0.01%, w h e r e a s t e m p e r a t u r e v a r i a t i o n s o f 0 . 0 1 ° C c h a n g e t h e v a p o r p r e s s u r e o f w a t e r b y 0.06%. To a v o i d weight e r r o r because o f c o n d e n s a t i o n on t h e s p r i n g o r on t h e s u r f a c t a n t c r y s t a l , t h e s u r f a c t a n t s p e c i m e n was k e p t a b o u t 1°C above t h e t e m p e r a t u r e o f t h e s o l v e n t . Thus a s m a l l s y s t e m a t i c r e l a t i v e e r r o r o f 5 t o 10% i n t h e s o r b e d amount was i n t r o d u c e d . The s t e a d y s p r i n g r e a d i n g , u s u a l l y a t t a i n e d w i t h i n 4 t o 12 h o u r s a f t e r a i r e v a c u a t i o n , was t a k e n t o be t h e e q u i l i b r i u m v a l u e . T h i s was c o n f i r m e d b y r e p e t i t i o n , p a r t i a l d e s o r p t i o n a n d r e e q u i l i b r a t i o n and temperature c y c l e s . A V a r i a n XLFT-100 F o u r i e r T r a n s f o r m nmr S p e c t r o m e t e r i n t e r f a c e d w i t h a V a r i a n 620-L m i n i c o m p u t e r w i t h m a g n e t i c t a p e s t o r a g e provided high-resolution, proton-decoupled spectra o f natural a b u n d a n c e c a r b o n - 1 3 a t 25.2 MHz. F o r i d e n t i f i c a t i o n o f carbon p e a k s , c h l o r o f o r m - d s o l u t i o n s o f s u r f a c t a n t ( s o l u b i l i t y a b o u t 20 wt%) were p r e p a r e d . Chloroform-d also served f o ra deuterium f i e l d lock. S a m p l e s o f s u r f a c t a n t i n w a t e r o r d e c a n e were p l a c e d
In Chemistry of Oil Recovery; Johansen, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
3.
FRANSES E T
AL.
Alkyl
Aryl Sulfonate
39
Surfactant
i n 12 mm nmr t u b e s w i t h a c a p i l l a r y i n s e r t c o n t a i n i n g e i t h e r D2O o r a c e t o n e - d ^ as l o c k s o l v e n t . The c h e m i c a l s h i f t r e f e r e n c e s were TMS ( t e t r a m e t h y l s i l a n e ) i n c h l o r o f o r m - d a n d a c e t o n e - d ^ , and TSP ( 2 , 2 , 3 , 3 , t e t r a d e u t e r o - 3 ( t r i m e t h y l s i l y l ) - p r o p i o n i c a c i d s o d i u m s a l t , b y M e r c k , S h a r p and Dohme) i n D 0 . Same s a m p l e s ( S p e c t r a 1,2,5 and 6 shown b e l o w ) were p u t i n 5 mm NMR t u b e s and t h e n an e x t e r n a l l o c k on F was e m p l o y e d . The t r u e s p e c t r a l w i d t h was 5120 Hz ( o r 5656 H z ) , t h e a c q u i s i t i o n t i m e was 0.8s (or 0.727s, r e s p e c t i v e l y ) , and t h e s e n s i t i v i t y e n h a n c e m e n t t i m e c o n s t a n t was 0.8s. F o r m o s t s p e c t r a , t h e RF p u l s e w i d t h was 60 y s , c o r r e s p o n d i n g t o a 45° p u l s e f o r a l i p h a t i c c a r b o n s and a s m a l l e r one f o r a r o m a t i c s ; t h e e x c e p t i o n s a r e S p e c t r a 18 and 19, 100 y s , and S p e c t r u m 5, 113 y s . O r d i n a r i l y no p u l s e d e l a y was u s e d . The F o u r i e r t r a n s f o r m l e n g t h was a l w a y s 8192 w o r d s . S a m p l e s were s p u n a t a b o u t 20 Hz. 2
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
1 9
B i p h a s i c s o l u t i o n s were h o m o g e n i z e d by b a r - s t i r r i n g a f t e r l o a d i n g i n t o nmr t u b e s . S i n g l e - p h a s e , s u r f a c t a n t - r i c h samples were p r e p a r e d b y e q u i l i b r a t i n g s u r f a c t a n t c r y s t a l s i n s i d e t h e nmr t u b e s w i t h w a t e r o r d e c a n e v a p o r (200h f o r S p e c t r u m 6, 150h f o r S p e c t r u m 13) u n t i l w e i g h t r e m a i n e d c o n s t a n t . The temp e r a t u r e o f most o f t h e nmr s p e c t r a i s 3 7 ° C , t h e t e m p e r a t u r e t o w h i c h t h e s a m p l e s a r e h e a t e d by t h e RF power o f t h e d e c o u p l e r when t h e r e i s no t e m p e r a t u r e c o n t r o l . However, t e m p e r a t u r e was c o n t r o l l e d f o r one-phase systems. The number o f t r a n s i e n t s (T) and t e m p e r a t u r e s (°C) a r e r e p o r t e d b e l o w w i t h e a c h s p e c t r u m . S o l u t i o n r e s i s t a n c e s w e r e m e a s u r e d a t 1000 Hz w i t h an AC W h e a t s t o n e b r i d g e ; an HP 200 AB o s c i l l a t o r p r o v i d e d t h e i n p u t a t u n e d a m p l i f i e r w i t h a n u l l d e t e c t o r was u s e d t o f i n d t h e b r i d g e b a l a n c e ( w i t h s i m u l t a n e o u s r e s i s t a n c e and c a p a c i t a n c e balancing). A homemade c e l l w i t h P t e l e c t r o d e s was u s e d , s i m i l a r t o t h e one d e s c r i b e d i n R e f . 27a. The c e l l was calib r a t e d w i t h 0.10N NaCl s o l u t i o n s .
and
MATERIALS The s u r f a c t a n t i s t h e s o d i u m s a l t o f 8 - p h e n y l n - h e x a d e c y l p - s u l f o n a t e ( m o l e c u l a r w e i g h t 404.6 d a l t o n ) . One s a m p l e was g e n e r o u s l y p r o v i d e d by P r o f . W. H. Wade o f t h e U n i v e r s i t y o f Texas, A u s t i n . A n o t h e r b a t c h ( R e s e a r c h Sample 8727J) was k i n d l y p r o v i d e d b y C o n t i n e n t a l O i l Company, P o n c a C i t y , Oklahoma. T h i s 'Conoco s a m p l e was f o u n d t o c o n t a i n an i m p u r i t y i n s o l u b l e in chloroform. The c h l o r o f o r m e x t r a c t was e v a p o r a t e d and d r i e d i n a vacuum o v e n . The p u r i f i e d C o n o c o s a m p l e g a v e i d e n t i c a l 13c nmr s p e c t r a ( s e e F i g u r e 6 ) , t h e same UV a b s o r p t i o n maxima, and t h e same p o l a r i z i n g m i c r o s c o p e t e x t u r e s a s t h e T e x a s s a m p l e . The p h a s e b e h a v i o r and i n t e r f a c i a l t e n s i o n s w e r e s i m i l a r , a l t h o u g h n o t a l w a y s t h e same ( 1 0 ) . B e c a u s e t h e f i r s t s a m p l e was l i m i t e d i n amount, t h e Conoco s a m p l e was u s e d f o r some o f t h e e x p e r i m e n t s r e p o r t e d h e r e , a s i n d i c a t e d by a s t e r i s k s . Both a p p e a r e d t o be o f h i g h p u r i t y i n t h e l i g h t o f t h e s y n t h e s i s 1
In Chemistry of Oil Recovery; Johansen, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY OF
40
OIL
RECOVERY
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
1 3
method (8_,9) and their C nmr s p e c t r a , w h i c h e v i d e n c e d no c a r bon p e a k s o t h e r t h a n t h o s e a t t r i b u t a b l e t o t h e p r e s u m e d s t r u c t u r e (see F i g u r e 6 ) . The o r i g i n o f t h e y e l l o w i s h n e s s o f b o t h s a m p l e s was n o t i d e n t i f i e d . Spectroturbidimetry was c o n d u c t e d a t s u c h low c o n c e n t r a t i o n s ( λ > 350 nm. In t h i s range a b s o r p t i o n by t h e s u r f a c t a n t i s n e g l i g i b l e and a b s o r b a n c e i s due a l m o s t e x c l u s i v e l y t o s c a t t e r i n g . T h i s w a v e l e n g t h dependence c o r r e s p o n d s t o R a y l e i g h - D e b y e o r Mie s c a t t e r i n g (15), w h i c h i n d i c a t e s p a r t i c l e s i z e s g r e a t e r t h a n 0.1μ (14), w h e r e a s s m a l l e r p a r t i c l e s g i v e R a y l e i g h s c a t t e r i n g , w i t h w a v e l e n g t h d e p e n d e n c e Ι/λ^ (15).
(ii)
A b s o r b a n c e s t h o u g h c o n s t a n t o v e r measurement p e r i o d s o f h o u r s d e p e n d e d on t h e o r d e r o f m i x i n g , age, and t h e r m a l h i s t o r y o f s p e c i m e n s o f t h e same o v e r a l l composition.
(iii)
The t u r b i d i t y , i . e . s p e c i f i c a b s o r b a n c e due t o s c a t t e r i n g , (A-A k )/lc a t 436 nm was l a r g e r t h a n 15 c m / g . As e s t i m a t e d f r o m d a t a on s o d i u m d o d e c y l s u l f a t e (16), t h i s c o r r e s p o n d s t o many t h o u s a n d s o f s u r f a c t a n t m o l e c u l e s p e r p a r t i c l e i f a l l o f t h e s u r f a c t a n t i s a g g r e g a t e d and t h u s t o p r o p o r t i o n a t e l y more p e r p a r t i c l e i f o n l y a f r a c t i o n o f the t o t a l s u r f a c t a n t c o n c e n t r a t i o n i s aggregated i n t o particles. I n any c a s e t h i s t u r b i d i t y i n d i c a t e s p a r t i c l e s c o n s i d e r a b l y l a r g e r than even the l a r g e s t r e p o r t e d e q u i l i b r i u m m i c e l l e s i n s i m i l a r systems ( l i b ) . When a b s o r b a n c e s had t o be m e a s u r e d a t l e s s t h a n 436 nm t h e r e s u l t s were e x t r a p o l a t e d t o 436 nm i n o r d e r t o a p p l y t h i s criterion. 2
a
s
r
R e p r e s e n t a t i v e r e s u l t s a r e shown i n T a b l e I and F i g u r e s 2 and 3. A t 0.014 and 0.025 wt% s u r f a c t a n t no s c a t t e r i n g was d e t e c t a b l e and t h e s e s y s t e m s s a t i s f i e d none o f t h e t h r e e criteria. F u r t h e r m o r e t h e i r s p e c i f i c a b s o r b a n c e s a t 300 nm were i n d e p e n d e n t o f c o n c e n t r a t i o n (so were t h e i r s p e c i f i c a b s o r b a n c e s a t t h e UV a b s o r p t i o n maxima ( 1 4 ) ) . I t was c o n c l u d e d that
In Chemistry of Oil Recovery; Johansen, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
FRANSES
ET AL.
Alkyl
Aryl Sulfonate
Surfactant
Figure 1. Photomicrograph (χΙΟΟ), with crossed polarizers, of liquid crystals produced by equilibrating dry surfactant crystals with 0.3 wt % aqueous solution of NaCl between two ghss slides. The appearance is the same at NaCl concentra tions from 0 to 1 wt %.
i.o 0.8
0.6
c
0.4 x Increasing Temperatures
0.2
0.0
•
Decreasing Temperatures
20
30
40
50
60
70
80
90
Temperature, C Figure 2. Temperature dependence of total absorbance at 600 nm over 1 cm path length of a biphasic dispersion of 0.70 wt % surfactant in water: bars indi cate fluctuations about average absorbance, which was steady for 2 hr or more; arrows indicate direction of temperature change.
In Chemistry of Oil Recovery; Johansen, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY
46
OF
OIL
RECOVERY
a b s o r b a n c e s o f t h e s e d i l u t e s y s t e m s were due t o a b s o r p t i o n a l o n e and c o u l d be u s e d t o c o r r e c t f o r a b s o r p t i o n i n a r r i v i n g a t t h e t u r b i d i t i e s (A-A^^/lc o f the h i g h e r c o n c e n t r a t i o n samples. The s a m p l e s w i t h 0.061, 0.14 and 0.70 wt% s u r f a c t a n t were t h u s f o u n d t o h a v e t u r b i d i t i e s a t 436 nm l a r g e r t h a n 15 c m / g . Moreover, t h e y showed w a v e l e n g t h d e p e n d e n c e w e a k e r t h a n Ι / λ . F o r example, a t 0.14 wt% t h e r a t i o o f t u r b i d i t i e s a t 350 and 700 nm i s 8 ± 2 i n comparison with (700/350) = 1 6 . So b y c r i t e r i a ( i ) and (iii) t h e s e systems a r e b i p h a s i c . The d i f f e r e n c e s i n t u r b i d i t y and i t s wave-length dependence i n t h e s e t h r e e systems r e f l e c t e d wide v a r i a t i o n s i n t h e mean and d i s t r i b u t i o n o f p a r t i c l e s i z e s ( 1 5 ) . I t s h o u l d be n o t e d t h a t t h e s p e c i m e n w i t h 0.061 wt% l o o k e d q u i t e transparent. 2
4
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
4
The d e p e n d e n c e o f t u r b i d i t y on t e m p e r a t u r e and t h e r m a l h i s t o r y i s shown i n F i g u r e 2 f o r 0.70 wt% s u r f a c t a n t , w h i c h i s c o m p l e t e l y d i s s o l v e d a t 9 0 ° C , and i n F i g u r e 3 f o r 0.14 wt%, w h i c h i s c o m p l e t e l y d i s s o l v e d a t 45°C. A f t e r a s t e p i n c r e a s e i n tem p e r a t u r e , a v e r a g e a b s o r b a n c e r e q u i r e d a few h o u r s t o become s t e a d y , w h e r e a s a f t e r a s t e p d e c r e a s e t h e t i m e r e q u i r e d was f r o m 5 t o 48h. O c c a s i o n a l l y the absorbance would f l u c t u a t e around a steady average v a l u e . T h i s i s i n d i c a t e d i n F i g u r e 2 by b a r s . F l u c t u a t i o n s a r o s e f r o m v a r y i n g s c a t t e r e r amount i n t h e v o l u m e t r a v e r s e d b y t h e l i g h t beam. S o l u b i l i t i e s were d e t e r m i n e d by a p p l y i n g t h e f o r e g o i n g c r i t e r i a t o a s p e c i m e n drawn f r o m t h e u p p e r m o s t l a y e r o f e a c h s y s t e m a f t e r i t had b e e n s t i r r e d w e l l (by m a g n e t i c s t i r r i n g b a r ) and a l l o w e d t o s e t t l e f o r two d a y s o r more. T a b l e I I summarizes the r e s u l t s : the v a l u e s l i s t e d are the h i g h e s t c o n c e n t r a t i o n s a t w h i c h a s e c o n d p h a s e was n o t d e t e c t e d b y e a c h o f t h e methods listed. When a s e c o n d p h a s e h a d p r e c i p i t a t e d , c o n c e n t r a t i o n s were d e t e r m i n e d by UV a b s o r p t i o n . The e f f e c t o f t h e o r d e r o f m i x i n g o f s u r f a c t a n t and s a l t i n w a t e r was f o l l o w e d w i t h s p e c i a l a t t e n t i o n b e c a u s e o f a c o r r e s p o n d i n g e f f e c t on t h e i n t e r f a c i a l t e n s i o n o f r e s u l t i n g s y s t e m a g a i n s t a d r o p o f d e c a n e (10) . F i g u r e 4 shows t h e t i m e d e p e n d e n c e of t o t a l absorbance a t s e v e r a l wavelengths, o f a system which i s b i p h a s i c i n e q u i l i b r i u m a f t e r t h e s a l t c o n c e n t r a t i o n was r a i s e d f r o m 0 t o 0.3 wt%. T u r b i d i t y c o n t i n u e d t o r i s e f o r 80h, e s p e c i a l l y a t lower wavelengths, a t which s c a t t e r i n g i s s t r o n g e r . A l t h o u g h t h e s y s t e m b e g a n s e t t l i n g a f t e r 80h, t h e t u r b i d i t y c o n t i n u e d i n c r e a s i n g f o r a week, and i t a l s o c o n t i n u e d t o i n c r e a s e after ultrafiltration. Ultracentrifugation
and U l t r a f i l t r a t i o n
Tests
T a b l e s I I I , IV, and V show u l t r a v i o l e t a b s o r p t i o n - b a s e d d e t e r m i n a t i o n s o f c o n c e n t r a t i o n s a f t e r c e n t r i f u g a t i o n (C), u l t r a c e n t r i f u g a t i o n (UC) and u l t r a f i l t r a t i o n ( U F ) . The e f f e c t o f t h e o r d e r o f m i x i n g on s i z e o f d i s p e r s e d p a r t i c l e s , a s e v i d e n c e d b y d i f f e r e n t r e s p o n s e s t o t h e same t r e a t m e n t , i s p l a i n i n T a b l e I I I .
In Chemistry of Oil Recovery; Johansen, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
3.
FRANSES E T A L .
Alkyl
Aryl Sulfonate
47
Surfactant
0.4 r x,+ Increasing Temperatures
? 0.3h ΓΟ
•
Decreasing Temperatures
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
0.2 h
ο.ι O.OL
10
20
30
40
50
60
70
80
Temperature, °C Figure 3. Temperature dependence of total absorbance at 340 nm over 1 cm path length of a biphasic dispersion of 0.14 wt % surfactant in water: each point is the steady value observed for 2 hr or longer; arrows indicate direction of tem perature change.
ive,
h
Figure 4. Time dependence of absorb ance over 1 cm path length at several wavelengths, of precipitating surfactant system of 0.070 wt % surfactant and 0.30 wt % NaCl in water, prepared by adding 3.0 wt % NaCl solution in time zero to 0.077 wt % surfactant in water (transparent). The initial total absorb ance is predominantly by absorption, the increase by scattering from the separat ing phase.
American Chemical Society Library 1155 16th St. N. W. In Chemistry of Oil Recovery; R., et al.; Washington, D.Johansen, C. 20036 ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY O F OIL RECOVERY
Downloaded by UNIV OF MICHIGAN ANN ARBOR on September 19, 2015 | http://pubs.acs.org Publication Date: March 2, 1979 | doi: 10.1021/bk-1979-0091.ch003
48
Table I I .
Temperature °C
NaCi. wt%
S o l u b i l i t y (wt%) o f s u r f a c t a n t i n water and s a l t water as determined by d i f f e r e n t c r i t e r i a
Criteria Spectroturbidimetry
c
Visual
Microscopy
25
0
0.10-0.14
0.06
30
0
0.1
3
0.10
45
0
0.2
2
0.14
60
0
90
0
°· ι
0.23
0.7
0.70
3
5
25
0. 30